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1 Set Representation

1.1 Set Operations and Characteristic Functions

a) Characteristic function: ψX = 1.

b) Set notation: N ∪ E = X. Characteristic function: ψN + ψE = 1.

c) Set notation: N ∩ O = ∅. Characteristic function: ψN · ψO = 0.

d) Set notation: Q1 = E\O. Characteristic function: ψQ1
= ψE · ψO.

e) Set notation: Q2 = (O ∩ E) ∪O = (O ∪O) ∩ (E ∪O)
= X ∩ (E ∪O)
= E ∪O

Characteristic function: ψQ2 = ψE + ψO.

1.2 Write Specifications in Boolean Encoding and Compose Them

a) The specification for C1, C2 and C3 described using characteristic functions are the
following:

C1 : ψC1 = (x1 + x2 + x3) → xs ψC1 = (x1 + x2 + x3)xs + x1 · x2 · x3 = xs + x1 · x2 · x3.

C2 : ψC2 = x1 · x2 · x3 + x1 · x2 · x3 + x1 · x2 · x3 + x1 · x2 · x3.

C3 : ψC3 = xb → (xs · x1 · x2 · x3).

ψC3 = xb · xs · x1 · x2 · x3 + xb = xs · x1 · x2 · x3 + xb.

b) The specification consists in satisfying all constraints at all times:

ψN = ψC1 · ψC2 · ψC3.



2 Sets of States and State Transitions

See solution in the written exam of HS2023.

3 Binary Decision Diagrams

3.1 Verifying the Equivalence of Combinational Circuits Using BDDs

a) f2 : y = x1 + x2 + x3 + x1 + x2 + x3 + x1 + x2 + x3

b) for f1, we have
• case x1 = 0:
y|x1=0 = x2x3 + x2x3
– case x2 = 0:
y|x1=0,x2=0 = x3

– case x2 = 1:
y|x1=0,x2=1 = x3

• case x1 = 1:
y|x1=1 = x2 + x3 + x2x3
– case x2 = 0:
y|x1=1,x2=0 = 1

– case x2 = 1:
y|x1=1,x2=1 = x3

for f2, we have
• case x1 = 0:
y|x1=0 = x2 + x3 + x2 + x3
– case x2 = 0:
y|x1=0,x2=0 = x3 + 1 + x3 = x3

– case x2 = 1:
y|x1=0,x2=1 = 1 + x3 = x3

• case x1 = 1:
y|x1=1 = 1 + 1 + x2 + x3 = x2 + x3
– case x2 = 0:
y|x1=1,x2=0 = 1

– case x2 = 1:
y|x1=1,x2=1 = x3

The two ROBDDs have identical falls, therefore they are equivalent.
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3.2 ROBDDs with Respect to Different Orderings

a) g = x1

{
x2

[
y1(y2)+y1(0)

]
+x2[y1(y2)+y1(0)]

}
+x1

{
x2

[
y1(0)+y1(y2)

]
+x2

[
y1(0)+y1(y2)

]}
b) The ROBDD for g is the following:

c) Using the new ordering π′, the Boole-Shannon decomposition becomes

g = x1

{
y1
[
x2(y2) + x2(y2)

]
+ y1[0]

}
+ x1

{
y1[0] + y1

[
x2(y2) + x2(y2)

]}
.

This is a better ordering as it leads to a ROBDD with fewer nodes with respect to π (6
instead of 9).
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