
DYNAMO

HS 2024 Prof. Dr. Lana Josipović and Jiahui Xu

based on Prof. Dr. Lothar Thiele’s material

Discrete Event Systems

Solution to Exercise Sheet 11

1 Specifications in Computation Tree Logic (CTL)

a) AG (valid→ AF ready)

b) AGAF (ready)

c) AG ((valid ∧ ¬ready)→ AX valid)



2 Model Checking CTL Specifications (I)

a) Q = {0, 1, 2, 3}

b) Q = {0, 3}

c) (AX a) holds for {2, 3}, thus Q = {1, 2}

d) (a ∧EX¬a) is true for states where a is true and there exists a direct successor for which
it is not. Only state 0 satisfy this (from it you can transition to 1, where a does not hold).
Moreover, state 0 is reachable for all states in this state machine (”from all states there
exists a path going through 0 at some point”). Hence Q = {0, 1, 2, 3}

3 Model Checking CTL Specifications (II)

a) ¬AFZ ≡ EG¬Z

b) The goal is to compute J¬EG¬ZK; we use the following procedure:

Q0 = S \ Z
Qi+1 = Qi ∩ Pre(Qi, R)

k = min{i | Qi+1 = Qi}
JAFZK = S \Qk

The set of states Qk = JEG¬ZK is obtained when the procedure discovered a fixed-
point (i.e., it finds a value of k such that Qk = Qk+1). The final solution is obtained
by taking a negation: JAFZK = S \Qk.

The main idea is that we start with the states that are not in Z. Then, at each iteration, we
create an intersection between the current set of states, and all predecessors from which we
can reach one of the states in the set. By doing this, we will remove any states from which
there exists some future, in which Z does not hold. We stop the iteration once nothing
changes anymore (we define k to be the first index for which the set of states remains the
same). Hence, we express have Qk = JEG¬ZK. What is left to do is to negate the final
set (every state which is not present in Qk).

c) We translate the procedure above directly into an algorithm:

Require: ψZ , ψR

ψcur ← ¬ψZ
ψnext ← ψcur ∧ ψPre(ψcur,R)

while ψcur ̸= ψnext do
ψcur ← ψnext
ψnext ← ψcur ∧ ψPre(ψcur,R)

end while
return ψAFZ = ¬ψcur

2



4 Sequential Equivalence Checking

a)

ψA(xA, x
′
A, u) = ¬xA¬x′A¬u+ ¬xAx′Au+ xAx

′
Au+ xA¬x′A¬u

ψB(xB , x
′
B , u) = ¬xB¬x′B¬u+ ¬xBx′Bu+ xBx

′
B¬u+ xB¬x′Bu

b)

ψf (xA, x
′
A, xB , x

′
B) =(¬xAx′A + xAx

′
A) · (¬xBx′B + xB¬x′B)

+(¬xA¬x′A + xA¬x′A) · (¬xB¬x′B + xBx
′
B)

=¬xAx′A¬xBx′B + ¬xAx′AxB¬x′B + xAx
′
A¬xBx′B + xAx

′
AxB¬x′B

+¬xA¬x′A¬xB¬x′B + ¬xA¬x′AxBx′B + xA¬x′A¬xB¬x′B + xA¬x′AxBx′B

c) Computation of the reachable states is performed incrementally. Starts with the initial
state of the system ψX0(xA, xB) = ¬xAxB and then add the successors until reaching a
fix-point,

ψX1
(x′A, x

′
B) =ψX0

(x′A, x
′
B) + (∃(xA, xB) : ψX0

(xA, xB) · ψf (xA, x′A, xB , x′B))
= ¬x′Ax′B + ¬x′Ax′B + x′A¬x′B
= ¬x′Ax′B + x′A¬x′B

ψX2
(x′A, x

′
B) =¬x′Ax′B + x′A¬x′B + x′Ax

′
B + ¬x′A¬x′B

ψX3
(x′A, x

′
B) =¬x′Ax′B + x′A¬x′B + x′Ax

′
B + ¬x′A¬x′B = ψX2

→ the fix-point is reached!

⇒ ψX(xA, xB) = ¬xAxB + xA¬xB + xAxB + ¬xA¬xB

d) Here you first need to express the output function of each state machine, that is the feasible
combinations of states and outputs, ψgA = ¬xA¬yA + xAyA and ψgB = ¬xByB + xB¬yB .
Then the reachable outputs are the combination of the reachable states and the outputs
functions, that is,

ψY (yA, yB) =(∃(xA, xB) : ψX · ψgA · ψgB )
= yAyB + ¬yA¬yB + ¬yAyB + yA¬yB

e) From the reachable output function, we see that these state machine are not equivalent.
Indeed, there exists a reachable output admissible (ψY ((yA, yB) = (0, 1)) = 1) for which
yA ̸= yB .

Another way of looking at it: ψY · (yA ̸= yB) ̸= 0 where (yA ̸= yB) = ¬yAyB + yA¬yB .

3


	Specifications in Computation Tree Logic (CTL)
	Model Checking CTL Specifications (I)
	Model Checking CTL Specifications (II)
	Sequential Equivalence Checking

