

DYNAMO

 $\mathrm{HS}~2024$

Prof. Dr. Lana Josipović and Jiahui Xu based on Prof. Dr. Lothar Thiele's material

Discrete Event Systems

Solution to Exercise Sheet 14

step	τ	$t_{ m fired}$	M^{τ}	$L^{ au}$
0	0	-	[0, 1]	$(t_3, 2)$
1	2	t_3	[2, 1]	$(t_1, 3), (t_3, 4)$
2	3	t_1	[0, 2]	$(t_3, 4), (t_2, 5)$
3	4	t_3	[2,2]	$(t_1, 5), (t_3, 6), (t_2, 6)$
4	5	t_1	[0, 3]	$(t_3, 6), (t_2, 6)$
5	6	t_2	[2,1]	$(t_3, 8), (t_1, 7)$

1 Time Petri Net

2 Liveness Properties

- **a)** t_1 : L_3 -live. We can fire t_1 infinitely starting from the initial marking, e.g., with sequence $\{t_1, t_1, \ldots\}$. t_1 is not L_4 -live, because t_1 is dead for any marking we obtain after firing t_2 .
 - t_2 : L_1 -live. It can be fired once and exactly once starting from the initial state, e.g., with sequence $\{t_2\}$. After firing it, there is no way to place a token at p_1 , therefore it is not L_2 -live.
 - t_3 : L_2 -live. For any positive integer N, we can first fire t_1 for N times, then fire t_2 once, then fire t_3 N times. It is not L_3 -live, since infinitely firing t_1 means t_2 is never fired, therefore infinitely firing t_1 means t_3 is never fired, and t_3 cannot be infinitely fired.
 - t_4 : L_1 -live. It can be fired once and exactly once starting from the initial state, e.g., with sequence $\{t_1, t_2, t_4\}$. It is not L_2 -live, since after it has been fired once, it can never be enabled again.

3 Calculating with Petri nets

NOTE: the solution is not unique.

