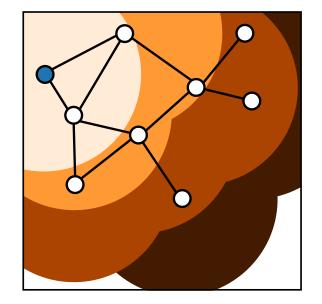
Discrete Event Systems Verification of Finite Automata (Part 2)



Lana Josipović Digital Systems and Design Automation Group dynamo.ethz.ch

ETH Zurich (D-ITET)

December 5, 2024

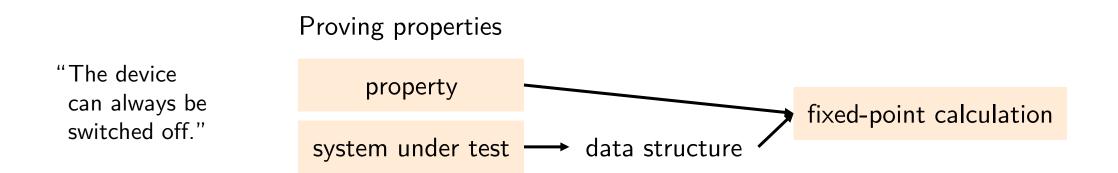
Most materials from Lothar Thiele and Romain Jacob

Last week in Discrete Event Systems

Verification Scenarios

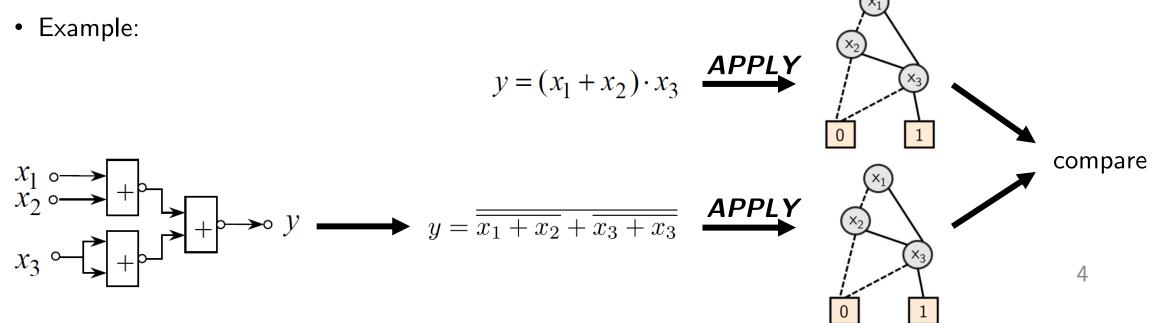
Example

Comparison of specification and implementation $y = (x_1 + x_2) \cdot x_3$ reference system data structure comparison system under test data structure

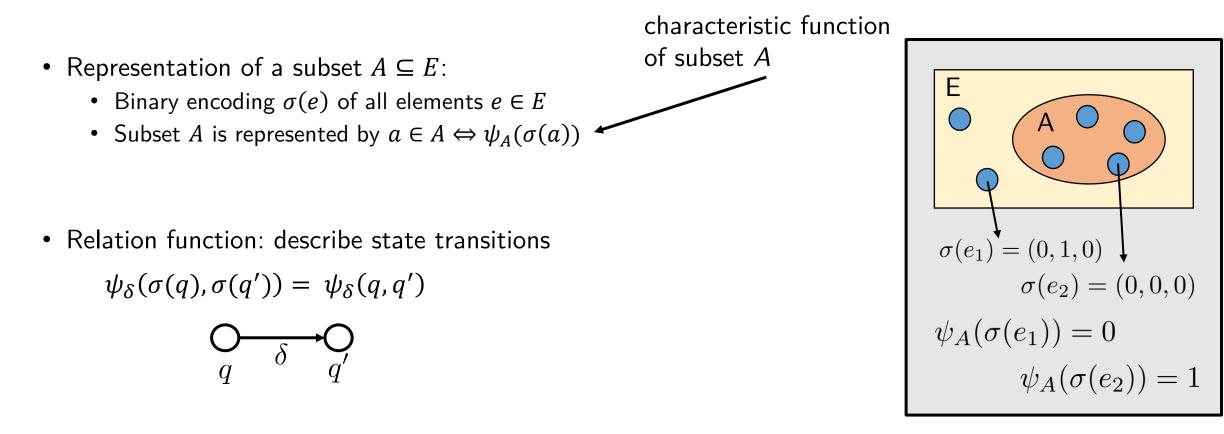


Comparison using BDDs

- Boolean (combinatorial) circuits: Compare specification and implementation, or compare two implementations.
- Method:
 - Representation of the two systems in ROBDDs, e.g., by applying the **APPLY** operator repeatedly.
 - Compare the structures of the ROBDDs.

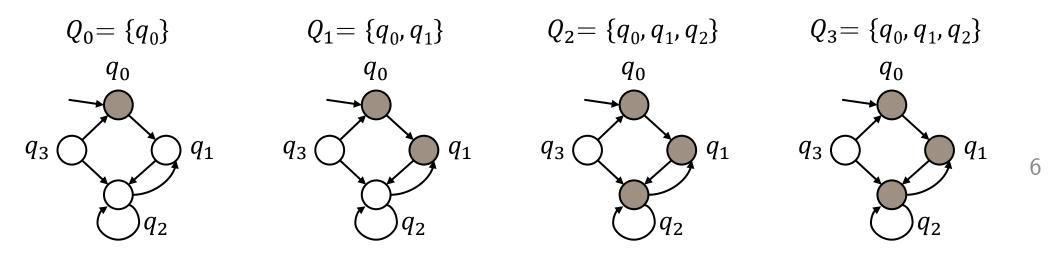


Sets and Relations



Reachability of States

- Problem: Is a state $q \in Q$ reachable by a sequence of state transitions?
- Method:
 - Represent set of states and the transformation relation as ROBDDs.
 - Use these representations to transform from one set of states to another. Set Q_i corresponds to the set of states reachable after i transitions.
 - Iterate the transformation until a fixed-point is reached, i.e., until the set of states does not change anymore (steady-state).
- Example:



Reachability of States

	State encoding		Characteristic function: 1 if state in set, 0 otherwise				
$\sigma(q)$	x ₁	x ₀	$\psi_{Q_{_0}}$	ψ_{Q_1}	ψ_{Q_2}	ψ_{Q_3}	
\mathbf{q}_0	0	0	1	1	1	1	
q_1	0	1	0	1	1	1	
q_2	1	0	0	0	1	1	
q_3	1	1	0	0	0	0	

 $\psi_{Q_0}(q) = \overline{x_1} \cdot \overline{x_0}$ $Q_0 = \{q_0\}$ $Q_1 = \{q_0, q_1\}$ q_0 q_0 q_1 $q_{3}($ $q_{3}($

 q_1

explicit state enumeration: limited to systems with $< 10^8$ reachable states BDDs: applied in practice to verify models with $\sim 10^{20}$ states

Burch et al. Symbolic model checking: 10²⁰ states and beyond. Information and Computation 1992

 $\psi_{Q_1}(q) = \overline{x_1} \qquad \qquad \psi_{Q_2}(q) = \overline{x_1} + \overline{x_0} \qquad \qquad \psi_{Q_3}(q) = \overline{x_1} + \overline{x_0}$ $Q_2 = \{q_0, q_1, q_2\}$ $Q_3 = \{q_0, q_1, q_2\}$ q_0 q_0 q_1 $q_{3}($ q_1 q_3 7 q_2 q_2

This week in Discrete Event Systems

Efficient state representation

Computing reachability

- Set of states as Boolean function
- Binary Decision Diagram representation

- Leverage efficient state representation
- Explore successor sets of states

- Temporal logic (CTL)
- Encoding as reachability problem

Temporal Logic

- Verify properties of a finite automaton, for example
 - Can we always reset the automaton?
 - Is every request followed by an acknowledgement?
 - Are both outputs always equivalent?

Formula	Examples
Atomic proposition	The printer is busy. The light is on.
Boolean logic	$\phi_1 + \phi_2$; $\neg \phi_1$

Temporal Logic

- Verify properties of a finite automaton, for example
 - Can we always reset the automaton?
 - Is every request followed by an acknowledgement?
 - Are both outputs always equivalent?
- Specification of the query in a formula of temporal logic.
- We use a simple form called Computation Tree Logic (CTL).
- Let us start with a minimal set of operators.
 - Any atomic proposition is a CTL formula.
 - CTL formula are constructed by composition of other CTL formula.

Formula	Examples
Atomic proposition	The printer is busy. The light is on.
Boolean logic	$\phi_1 + \phi_2$; $\neg \phi_1$
CTL logic	EX ϕ_1

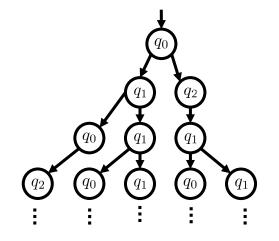
There exists other logics (e.g. LTL, CTL*)

Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

Aφ	\rightarrow «AII ϕ »,
Εø	\rightarrow « E xists ϕ »,

- ϕ holds on all paths ϕ holds on at least one path
- ϕ holds on the next state ϕ holds at some state along the path ϕ holds on all states along the path ϕ_1 holds until ϕ_2 holds implies that ϕ_2 has to hold eventually



Quantifiers over paths

Path-specific quantifiers

CTL quantifiers work in pairs: we need one of each! $\{A,E\} \{X,F,G,U\}\phi$

Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

Aφ	\rightarrow « A II ϕ »,
Eφ	$\rightarrow $ «E xists ϕ »,

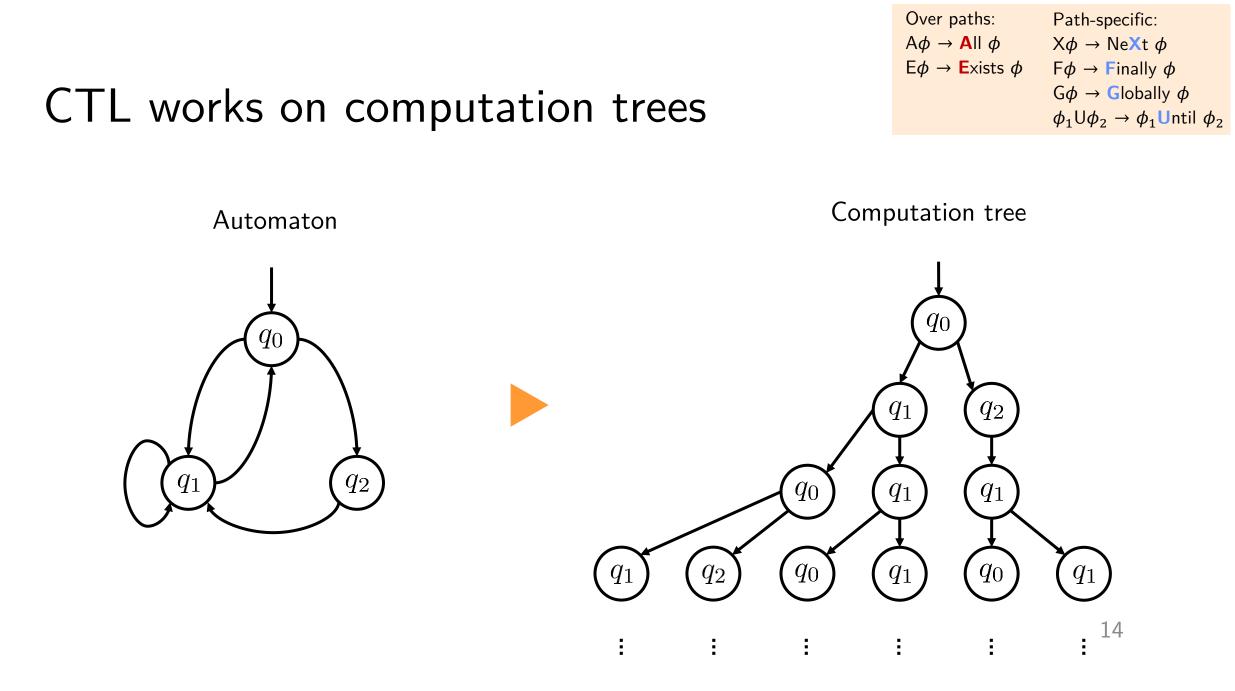
 ϕ holds on all paths ϕ holds on at least one path

 ϕ holds on the next state ϕ holds at some state along the path ϕ holds on all states along the path ϕ_1 holds until ϕ_2 holds implies that ϕ_2 has to hold eventually Quantifiers over paths

Path-specific quantifiers

CTL quantifiers work in pairs: we need one of each! $\{A,E\} \{X,F,G,U\}\phi$

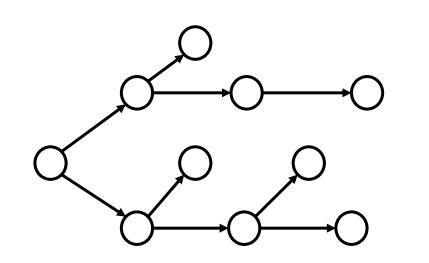
13



CTL works on computation trees

Automaton of interest

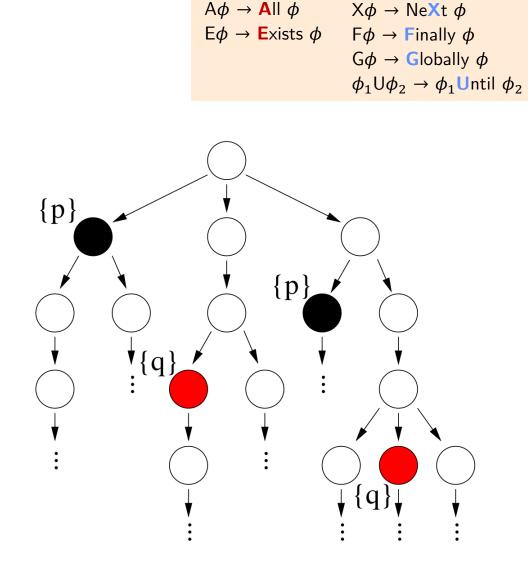
Automaton to work with



Requires fully-defined transition functions Each state has at least one successor (can be itself)

- We use this computation tree as a running example.
- We suppose that the black and red states satisfy atomic properties p and q, respectively.

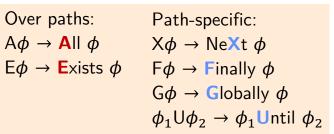
 The topmost state is the initial state; in the examples, it always satisfies the given formula.

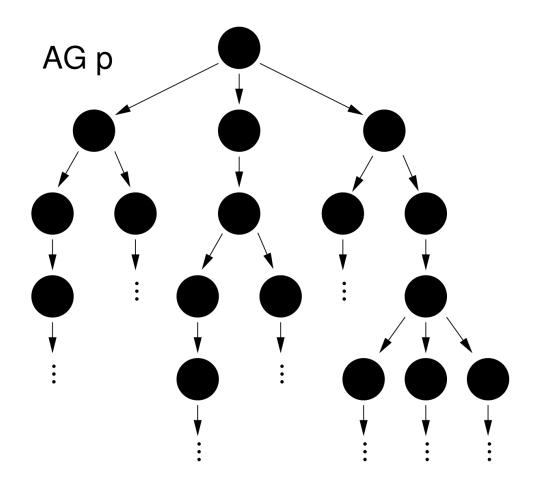


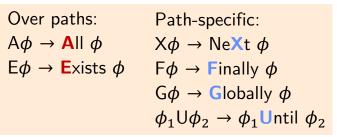
Over paths:

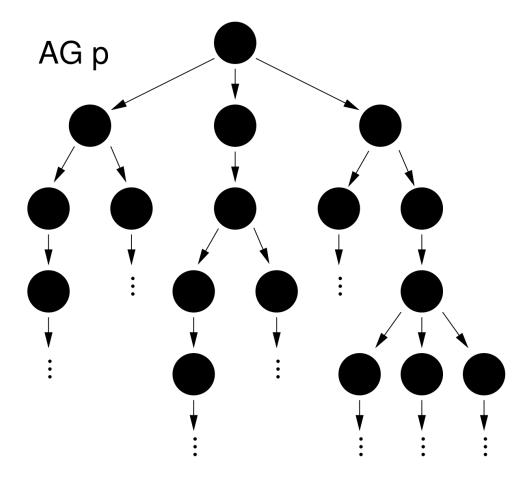
M satisfies $\phi \iff q_0 \vDash \phi$ where q_0 is the initial state of M

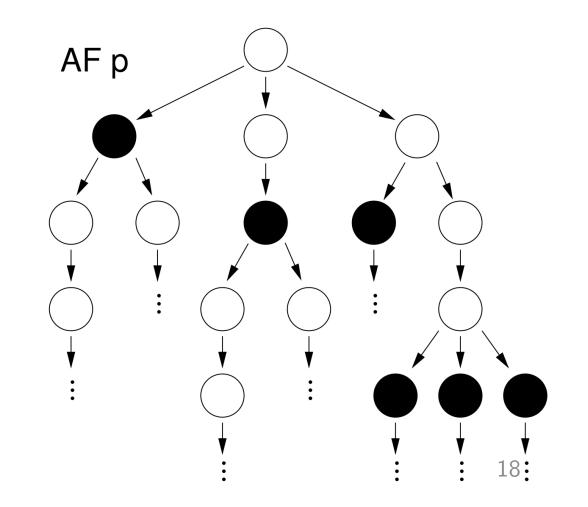
Path-specific:

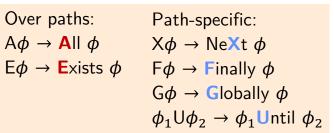


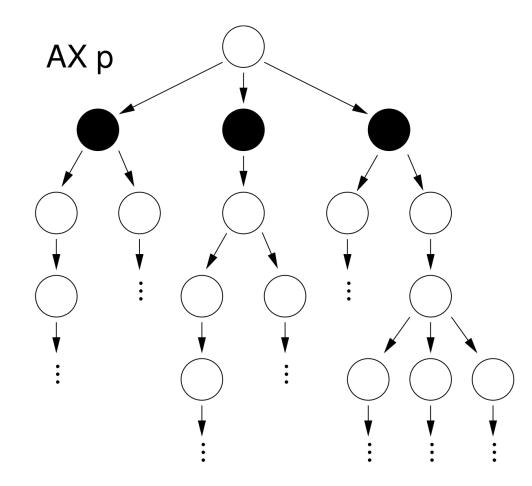


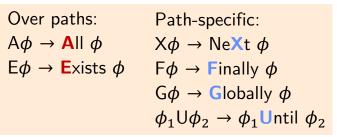


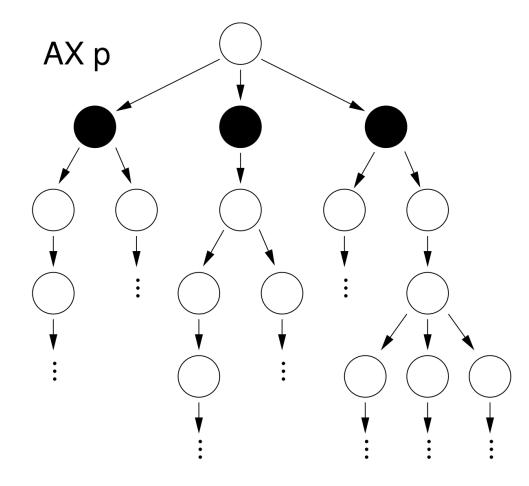




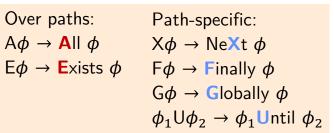


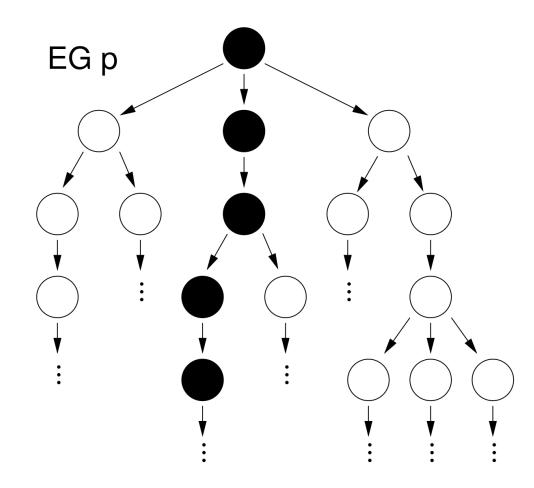


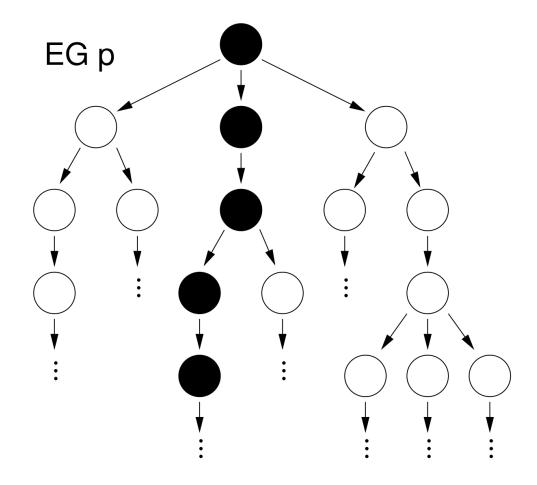


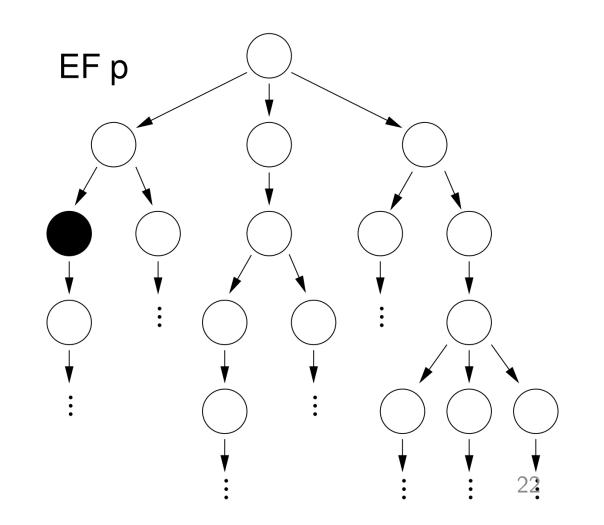


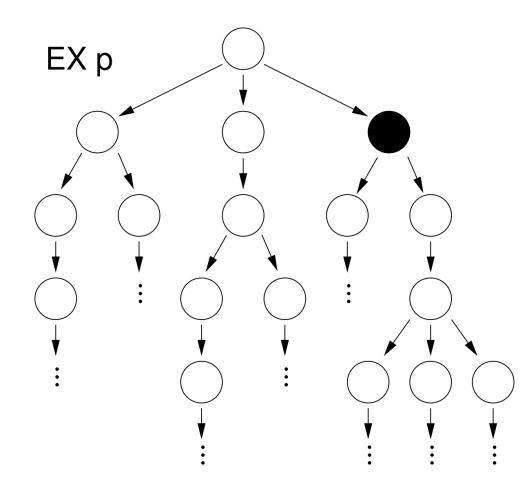


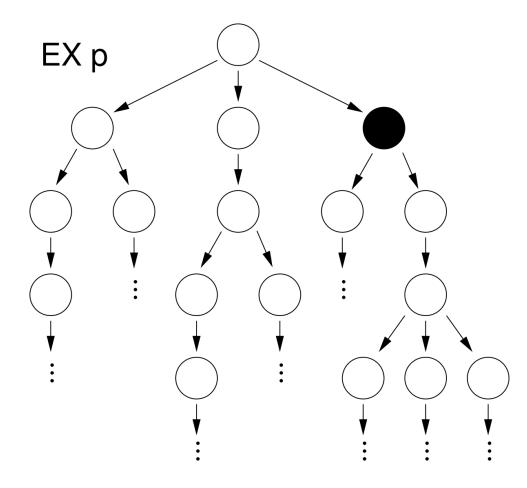


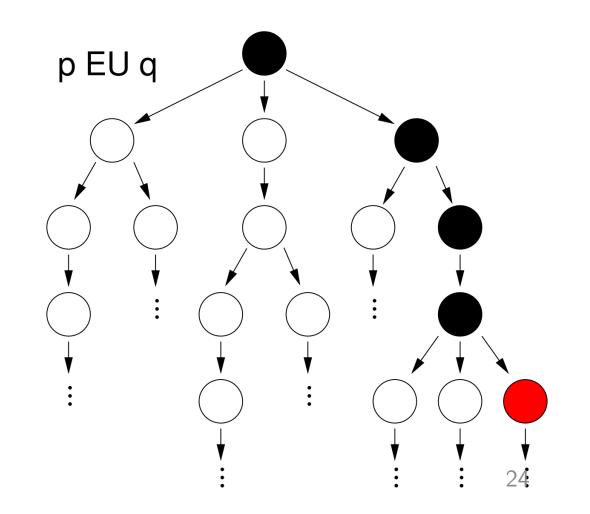












Formulation of CTL properties

Can be more than one pair

A and F are convenient, but not necessary

AG
$$\phi_1$$
 where $\phi_1 = EF \phi_2 \equiv AG EF \phi_2$

E,G,X,U are sufficient to define the whole logic.

$$AF\phi \equiv \neg EG(\neg \phi)$$

$$AG\phi \equiv \neg EF(\neg \phi)$$

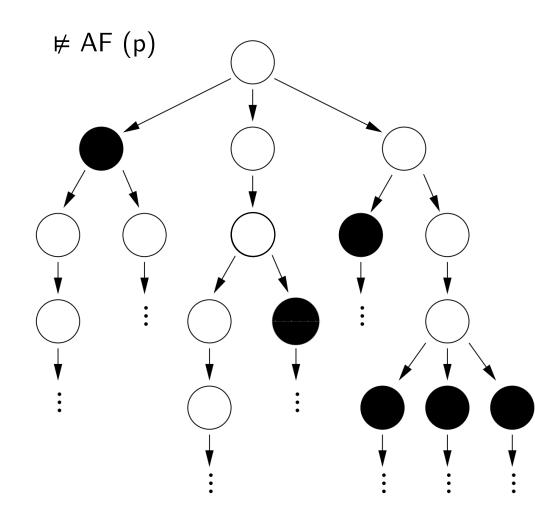
$$AX\phi \equiv \neg EX(\neg \phi)$$

$$EF\phi \equiv true EU\phi$$

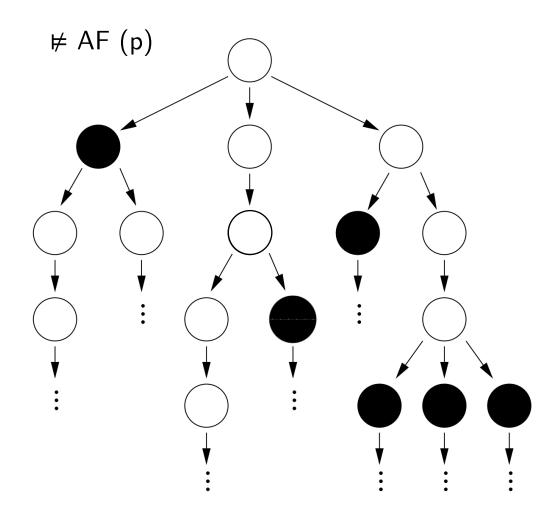
No need to know that one $\blacktriangleright \phi_1 AU \phi_2 \equiv \neg ([(\neg \phi_1) EU \neg (\phi_1 + \phi_2)] + EG(\neg \phi_2))$

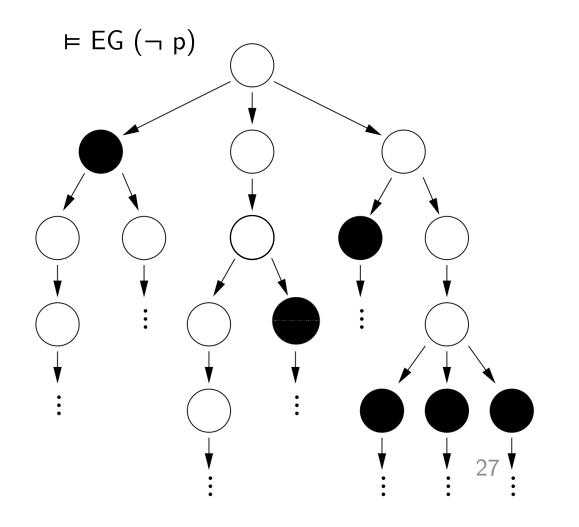
Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne^{Xt} \phi$
$E\phi \to E$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 U \phi_2 o \phi_1 U$ ntil ϕ_2

Intuition for "AF $p = \neg EG (\neg p)$ "

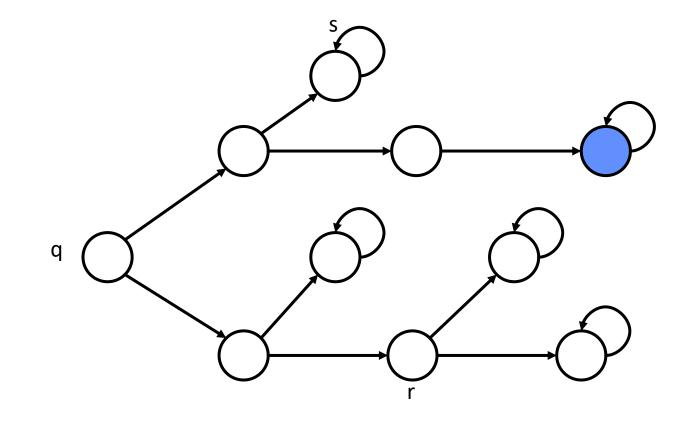


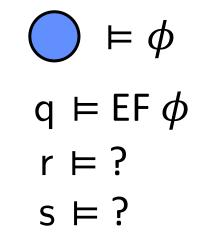
Intuition for "AF $p = \neg EG (\neg p)$ "





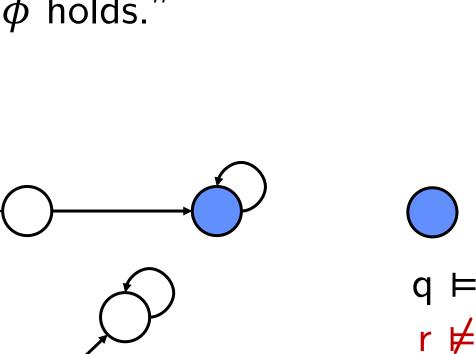
Evaluating a CTL formula $EF \phi$: "There exists a path along which at some state ϕ holds." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$





Evaluating a CTL formula $EF \phi$: "There exists a path along which at some state ϕ holds."

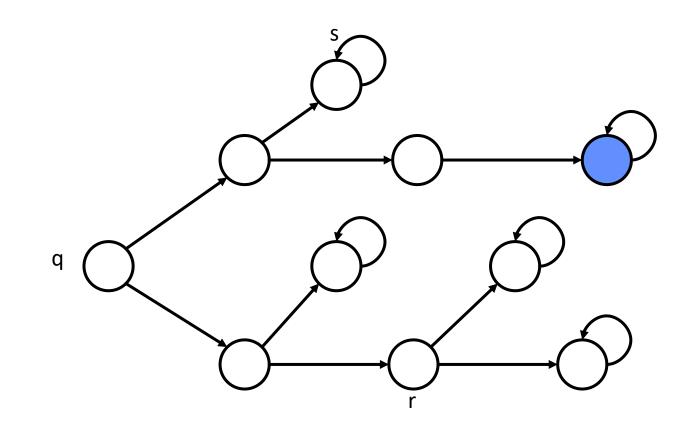
q



 $\bigcirc \vDash \phi$ $q \vDash EF \phi$ $r \not \models EF \phi$ $s \vDash ?$

29

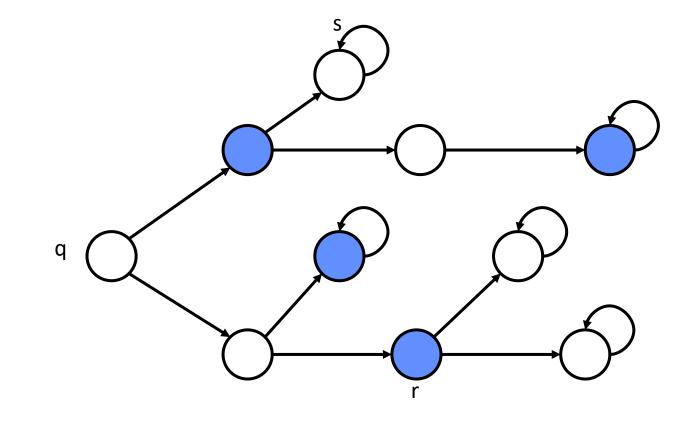
Evaluating a CTL formula $EF \phi$: "There exists a path along which at some state ϕ holds."



Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$

 $\bigcirc \vDash \phi$ $q \vDash EF \phi$ $r \not \models EF \phi$ $s \not \models EF \phi$

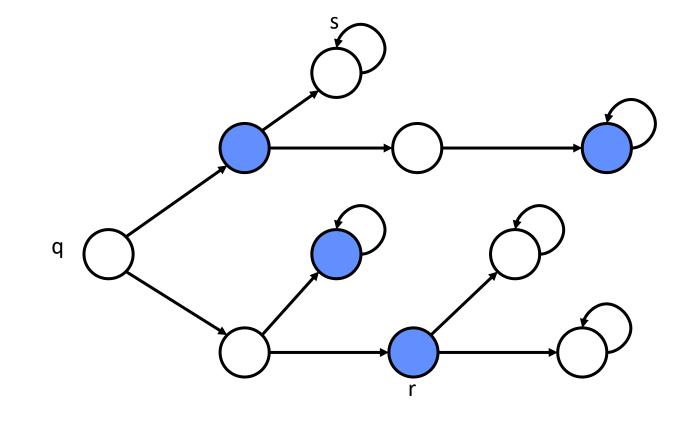
Evaluating a CTL formula AF ϕ : "On all paths, at some state ϕ holds." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$



 $\bigcirc \vDash \phi \\ q \vDash AF \phi \\ r \vDash ? \\ s \vDash ?$

31

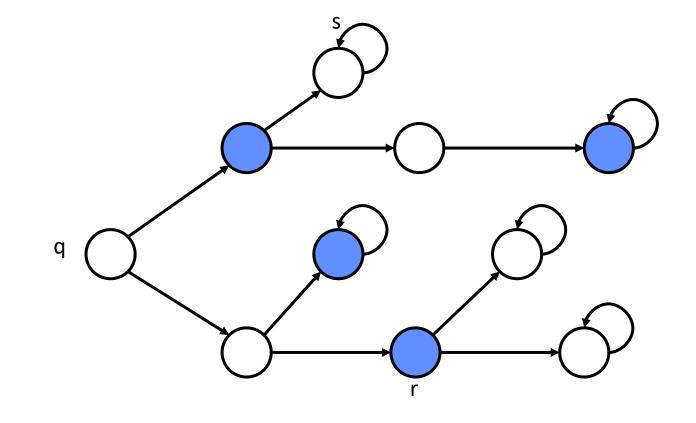
Evaluating a CTL formula AF ϕ : "On all paths, at some state ϕ holds." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$



 $\bigcirc \vDash \phi$ $q \vDash AF \phi$ $r \vDash AF \phi$ $s \vDash ?$

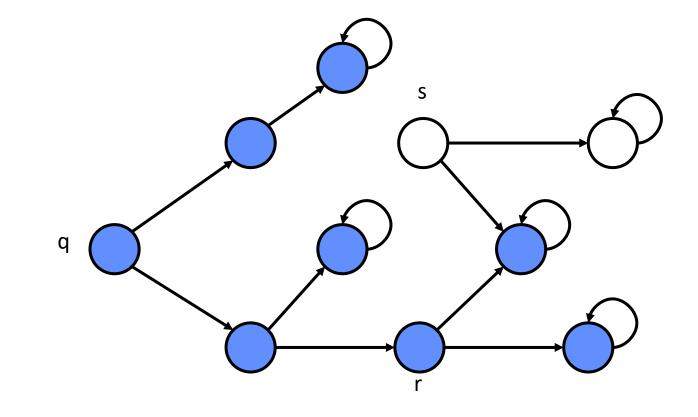
32

Evaluating a CTL formula AF ϕ : "On all paths, at some state ϕ holds." Over paths: Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$



 $\bigcirc \vDash \phi$ $q \vDash AF \phi$ $r \vDash AF \phi$ $s \not\vDash AF \phi$

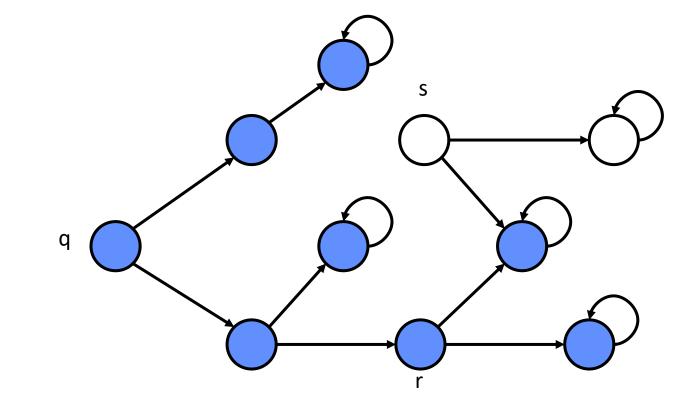
Evaluating a CTL formula AG ϕ : "On all paths, for all states ϕ holds." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$



 $\bigcirc \vDash \phi$ $q \vDash AG \phi$ $r \vDash ?$ $s \vDash ?$

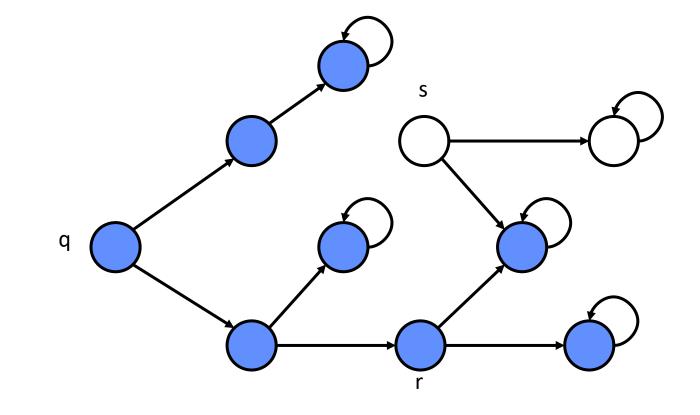
34

Evaluating a CTL formula AG ϕ : "On all paths, for all states ϕ holds." Over paths: Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$



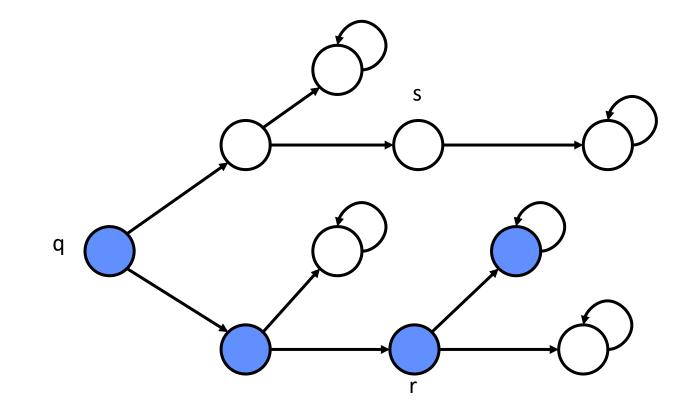
 $[\]bigcirc \vDash \phi$ $q \vDash AG \phi$ $r \vDash AG \phi$ $s \vDash ?$

Evaluating a CTL formula AG ϕ : "On all paths, for all states ϕ holds." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$



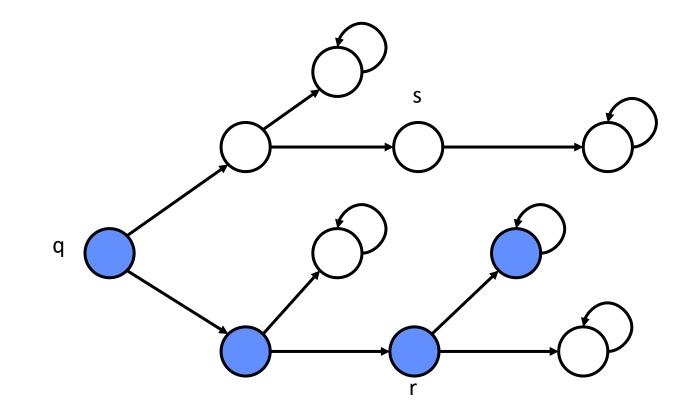
 $\bigcirc \models \phi$ $q \models AG \phi$ $r \models AG \phi$ $s \not\models AG \phi$

Evaluating a CTL formula EG ϕ : "There exists a path along which for all states ϕ holds." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$



 $\bigcirc \vDash \phi \\ q \vDash EG \phi \\ r \vDash ? \\ s \vDash ?$

Evaluating a CTL formula EG ϕ : "There exists a path along which for all states ϕ holds."

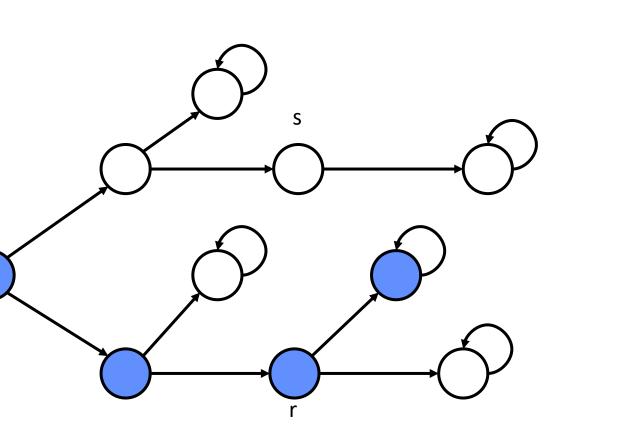


Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$

 $\bigcirc \vDash \phi$ $q \vDash EG \phi$ $r \vDash EG \phi$ $s \vDash ?$

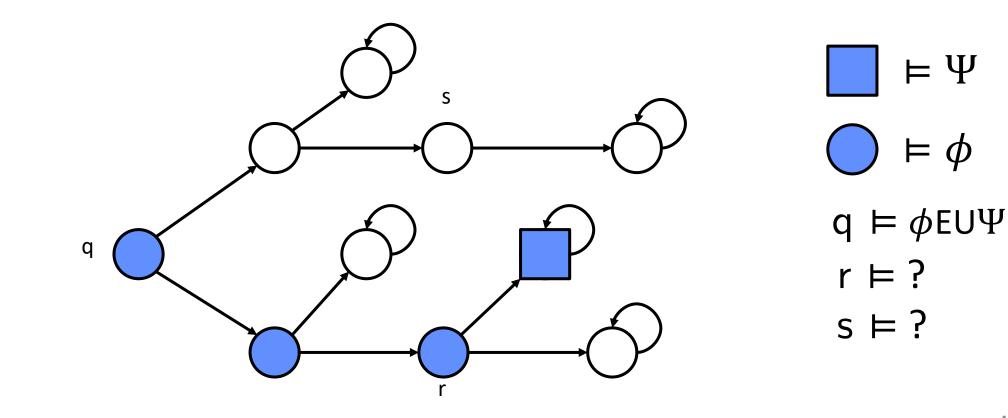
Evaluating a CTL formula EG ϕ : "There exists a path along which for all states ϕ holds."

q

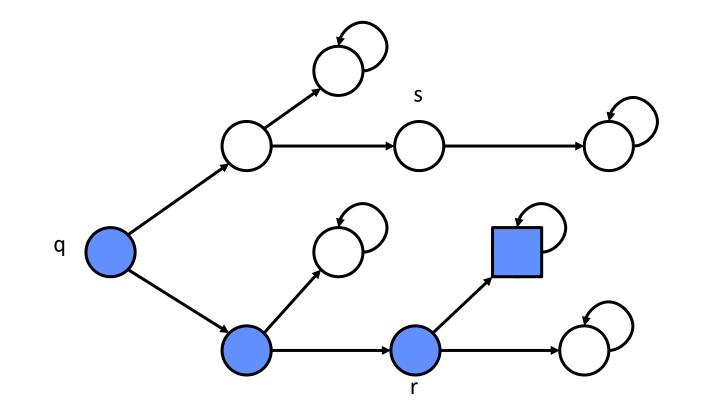


 $\bigcirc \vDash \phi$ $q \vDash EG \phi$ $r \vDash EG \phi$ $s \nvDash EG \phi$

Evaluating a CTL formula $\phi EU\Psi$: "There exists a path along which ϕ holds until Ψ holds." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$



Evaluating a CTL formula $\phi EU\Psi$: "There exists a path along which ϕ holds until Ψ holds." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$



 $\models \Psi$ $\bigcirc \models \phi$ $q \models \phi E U \Psi$ $r \models \phi E U \Psi$ $s \models ?$

Evaluating a CTL formula $\phi EU\Psi$: "There exists a path along which ϕ holds until Ψ holds."

q

S

Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$

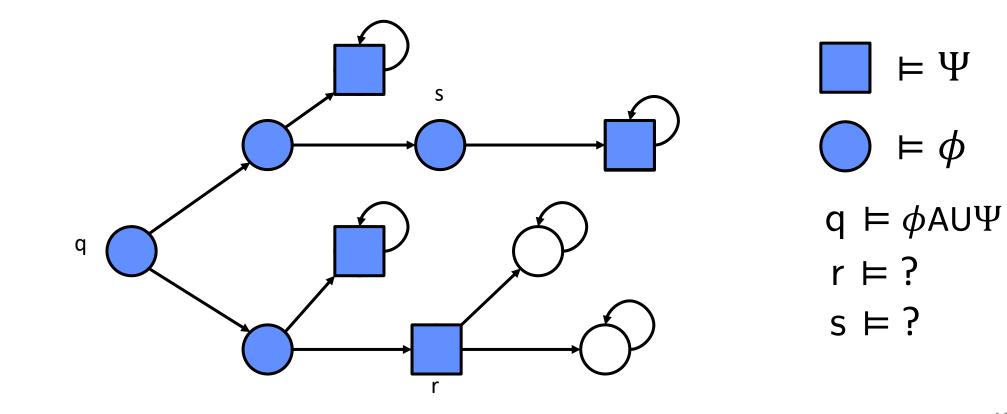
 $\models \Psi$ $\bigcirc \models \phi$ $q \models \phi E U \Psi$ $r \models \phi E U \Psi$ $s \neq \phi E U \Psi$

Evaluating a CTL formula $\phi AU\Psi$: "On all paths, ϕ holds until Ψ holds."

Over paths: Path-specific: $A\phi \rightarrow A \parallel \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow F$ inally ϕ $G\phi \rightarrow Globally \phi$ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup \mathsf{ntil} \phi_2$

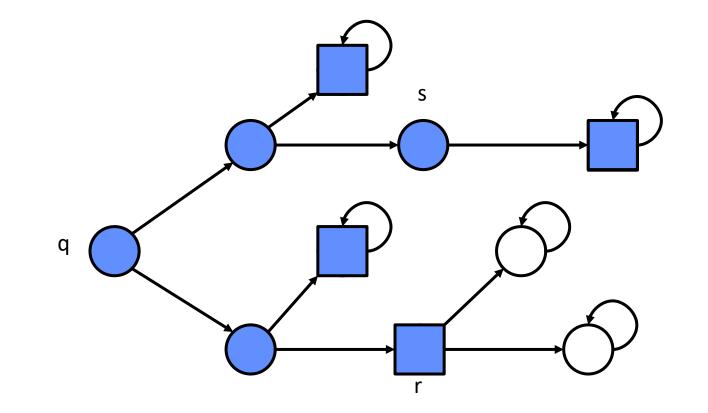
 $\models \Psi$

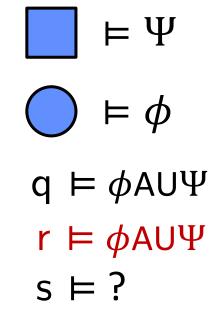
 $\models \phi$



Evaluating a CTL formula $\phi AU\Psi$: "On all paths, ϕ holds until Ψ holds."

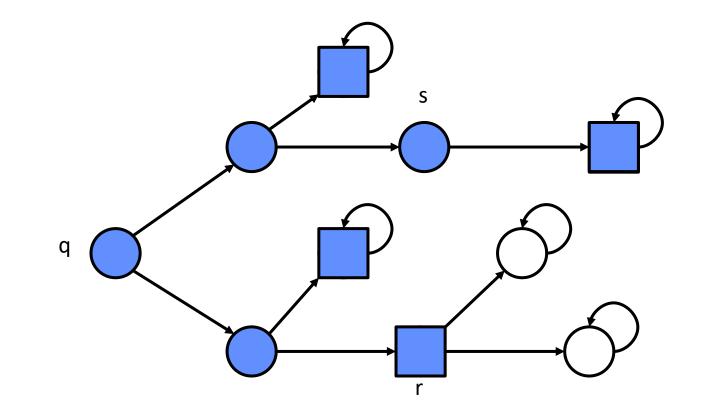
Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

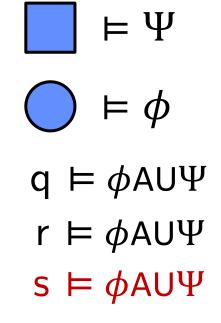




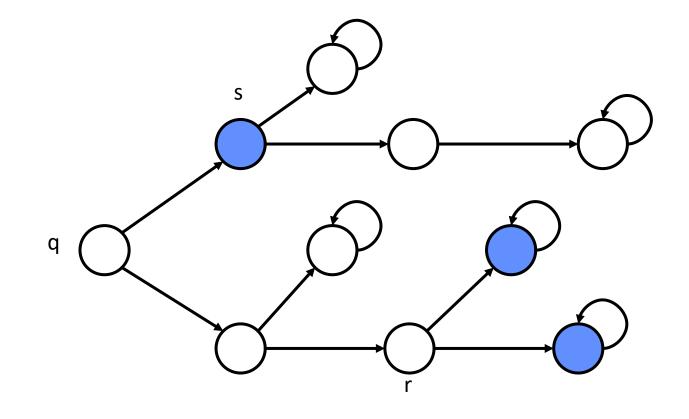
Evaluating a CTL formula $\phi AU\Psi$: "On all paths, ϕ holds until Ψ holds."

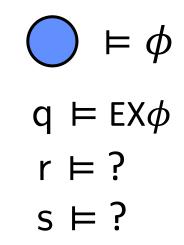
Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$



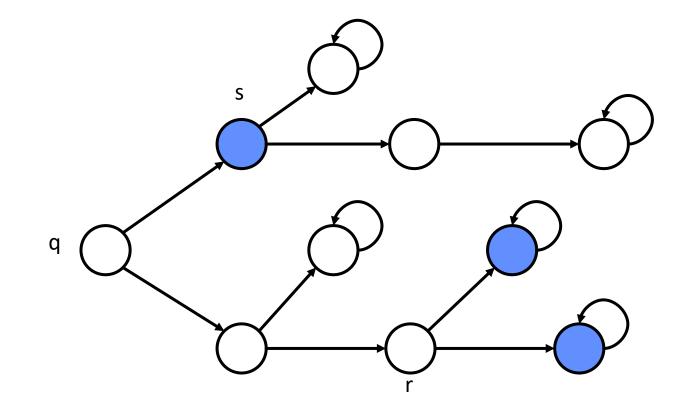


Evaluating a CTL formula $EX\phi$: "There exists a path along which the next state satisfies ϕ ." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$



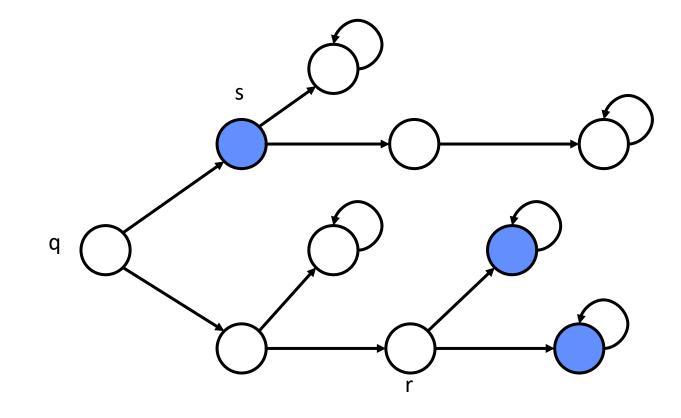


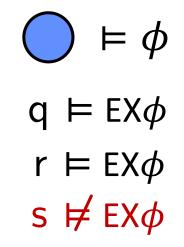
Evaluating a CTL formula $EX\phi$: "There exists a path along which the next state satisfies ϕ ." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$



 $\bigcirc \vDash \phi$ $q \vDash EX\phi$ $r \vDash EX\phi$ $s \vDash ?$

Evaluating a CTL formula $EX\phi$: "There exists a path along which the next state satisfies ϕ ." Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$





Evaluating a CTL formula <u>AG EF ϕ : "On all paths</u> and <u>for all states</u>, <u>there exists a path</u> along which <u>at some state</u> ϕ holds."

S

q

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne Xt \phi$
$E\phi o \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup ntil \phi_2$

 $\bigcirc \vDash \phi$ $q \vDash AG EF \phi$ $r \vDash ?$ $s \vDash ?$

Evaluating a CTL formula <u>AG EF ϕ : "On all paths</u> and <u>for all states</u>, <u>there exists a path</u> along which <u>at some state</u> ϕ holds."

S

q

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne Xt \phi$
$E\phi o \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

 $\bigcirc \models \phi$ $q \models AG EF \phi$ $r \models AG EF \phi$ $s \models ?$

Evaluating a CTL formula <u>AG EF ϕ : "On all paths</u> and <u>for all states</u>, <u>there exists a path</u> along which <u>at some state</u> ϕ holds."

S

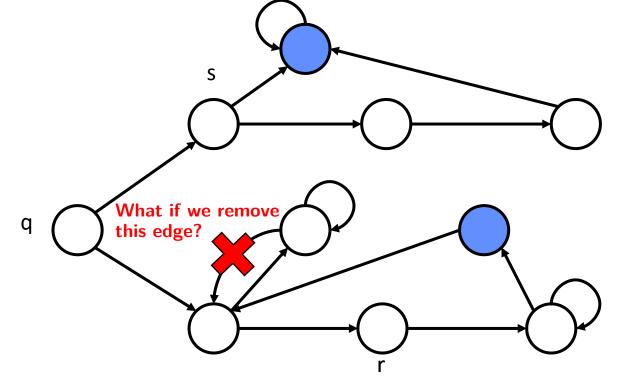
q

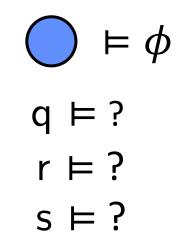
Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

 $\bigcirc \models \phi$ $q \models AG EF \phi$ $r \models AG EF \phi$ $s \models AG EF \phi$

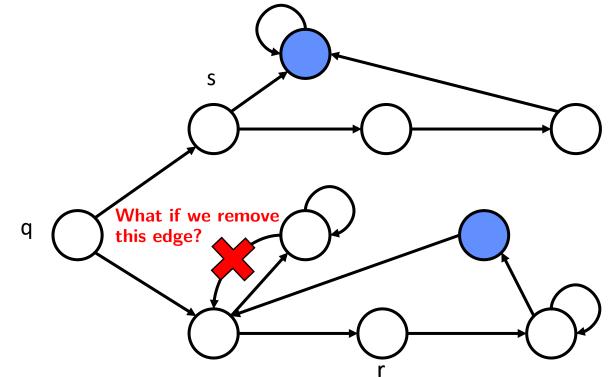
Evaluating a CTL formula <u>AG EF ϕ </u> : "<u>On all paths</u> and <u>for all states</u>, <u>there exists a path</u> along which <u>at some state</u> ϕ holds."

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow NeXt \phi$
$E\phi o E$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup ntil \phi_2$





Evaluating a CTL formula <u>AG EF ϕ </u> : "<u>On all paths</u> and <u>for all states</u>, <u>there exists a path</u> along which <u>at some state</u> ϕ holds."



Over paths: Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

⊨ φq ≠ AG EF φr ≠ AG EF φs ⊨ AG EF φs ⊨ AG EF φ

Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$

Encoding	Proposition
р	I like chocolate
q	lt's warm outside

Over paths:	Path-specific:
$A\phi o A { } \phi$	$X\phi ightarrow Ne Xt \phi$
$E\phi o Ex$ ists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 U \phi_2 ightarrow \phi_1 U$ ntil ϕ_2

Encoding	Proposition
р	I like chocolate
q	lt's warm outside

AG p

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi \rightarrow Ne Xt \phi$
$E\phi o E$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 U \phi_2 \rightarrow \phi_1 U$ ntil ϕ_2

Encoding	Proposition
р	I like chocolate
q	lt's warm outside

• AG p I will like chocolate from now on, no matter what happens.

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi \rightarrow Ne Xt \phi$
$E\phi \to \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 U \phi_2 \rightarrow \phi_1 U$ ntil ϕ_2

Encoding	Proposition
р	I like chocolate
q	lt's warm outside

- AG p I will like chocolate from now on, no matter what happens.
- EF p

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi \rightarrow Ne Xt \phi$
$E\phi \to \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 U \phi_2 \rightarrow \phi_1 U$ ntil ϕ_2

Encoding	Proposition
р	I like chocolate
q	It's warm outside

- AG p I will like chocolate from now on, no matter what happens.
- EF p It's possible I may like chocolate someday, at least for one day.

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne^{Xt} \phi$
$E\phi \to \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 U \phi_2 \rightarrow \phi_1 U$ ntil ϕ_2

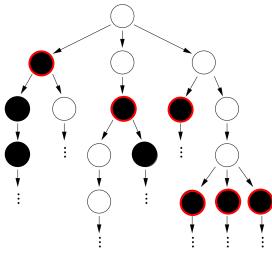
Encoding	Proposition
р	I like chocolate
q	It's warm outside

- AG p I will like chocolate from now on, no matter what happens.
- EF p It's possible I may like chocolate someday, at least for one day.
- AF EG p

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne^{Xt} \phi$
$E\phi \to \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 U \phi_2 \rightarrow \phi_1 U$ ntil ϕ_2

Encoding	Proposition
р	I like chocolate
q	It's warm outside

- AG p I will like chocolate from now on, no matter what happens.
- EF p It's possible I may like chocolate someday, at least for one day.
- AF EG p There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).



Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne^{Xt} \phi$
$E\phi \to \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 U \phi_2 \rightarrow \phi_1 U$ ntil ϕ_2

Encoding	Proposition
р	I like chocolate
q	It's warm outside

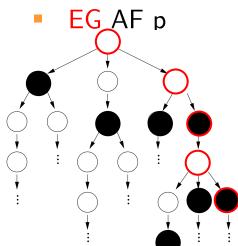
- AG p I will like chocolate from now on, no matter what happens.
- EF p It's possible I may like chocolate someday, at least for one day.
- AF EG p There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).
- EG AF p

Over paths:	Path-specific:
$A\phi ightarrow A \parallel \phi$	$X\phi ightarrow Ne Xt \phi$
$E\phi \to \mathbf{E}$ xists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \rightarrow \phi_1 \bigcup$ ntil ϕ_2

Interpreting a CTL formula

Encoding	Proposition
р	I like chocolate
q	It's warm outside

- I will like chocolate from now on, no matter what happens. AG p
- EF p It's possible I may like chocolate someday, at least for one day.
- AF EG p There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).



This is a critical time in my life. Depending on what happens (E), it's possible that for the rest of time (G), there will always be some time in the future (AF)when I will like chocolate. However, if the wrong thing happens next, then all bets are off and there's no guarantee about whether I will ever like chocolate.

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne^{Xt} \phi$
$E\phi o Exists \phi$	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \rightarrow \phi_1 \bigcup$ ntil ϕ_2

Encoding	Proposition
р	I like chocolate
q	It's warm outside

- I will like chocolate from now on, no matter what happens. AG p
- It's possible I may like chocolate someday, at least for one day. EF p
- AF EG p There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).
- EG AF p This is a critical time in my life. Depending on what happens (E), it's possible that for the rest of time (G), there will always be some time in the future (AF)when I will like chocolate. However, if the wrong thing happens next, then all bets are off and there's no guarantee about whether I will ever like chocolate.
- p AU q

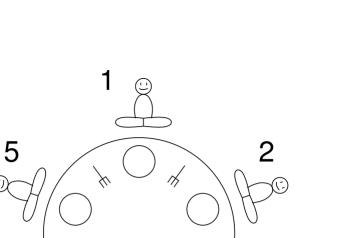
Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne^{Xt} \phi$
$E\phi o Exists \phi$	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 \rightarrow \phi_1 \bigcup$ ntil ϕ_2

Encoding	Proposition
р	I like chocolate
q	It's warm outside

- I will like chocolate from now on, no matter what happens. AG p
- EF p It's possible I may like chocolate someday, at least for one day.
- AF EG p There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).
- EG AF p This is a critical time in my life. Depending on what happens (E), it's possible that for the rest of time (G), there will always be some time in the future (AF)when I will like chocolate. However, if the wrong thing happens next, then all bets are off and there's no guarantee about whether I will ever like chocolate.
- No matter what happens, I will like chocolate from now on. But when it gets warm p AU q outside, I don't know whether I still like it. And it will get warm outside someday.

Famous problem Dining Philosophers

- Five philosophers are sitting around a table, taking turns at thinking and eating.
- Each needs two forks to eat.
- They put down forks only once they have eaten.
- There are only five forks.



Æ

F

Over paths:

 $A\phi \rightarrow A \parallel \phi$

 $E\phi \rightarrow Exists \phi$

 e_i : Philosopher *i* is currently eating.

65

3

Path-specific:

 $X\phi \rightarrow NeXt \phi$

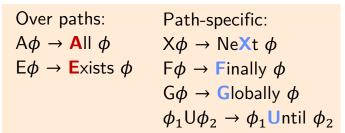
 $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$

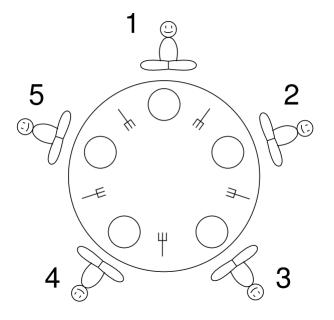
 $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup \operatorname{ntil} \phi_2$

"Philosophers 1 and 4 will never eat at the same time."

"Every philosopher will get infinitely many turns to eat."

"Philosopher 2 will be the first to eat."



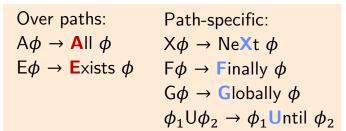


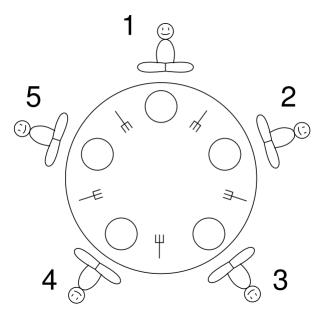
"Philosophers 1 and 4 will never eat at the same time."

 $AG\neg(e_1\cdot e_4)$

"Every philosopher will get infinitely many turns to eat."

"Philosopher 2 will be the first to eat."

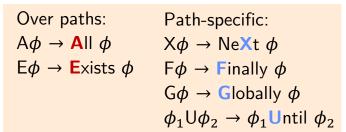


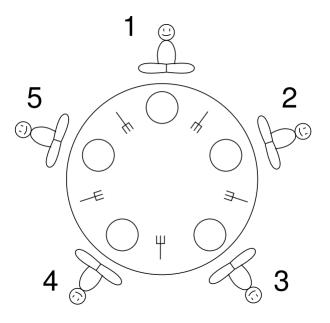


"Philosophers 1 and 4 will never eat at the same time."

 $AG\neg(e_1\cdot e_4)$

- "Every philosopher will get infinitely many turns to eat." $AG(AFe_1 \cdot AFe_2 \cdot AFe_3 \cdot AFe_4 \cdot AFe_5)$
- "Philosopher 2 will be the first to eat."





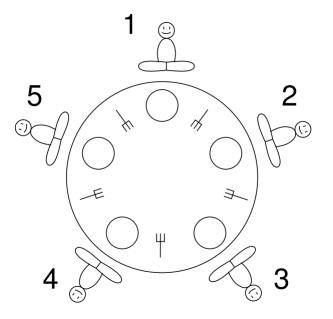
"Philosophers 1 and 4 will never eat at the same time."

 $\operatorname{AG}_{\neg}(e_1 \cdot e_4)$

- "Every philosopher will get infinitely many turns to eat." $AG(AFe_1 \cdot AFe_2 \cdot AFe_3 \cdot AFe_4 \cdot AFe_5)$
- "Philosopher 2 will be the first to eat."

 $\neg (e_1 + e_3 + e_4 + e_5) \operatorname{AU} e_2$

Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

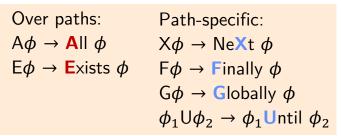


Computing a CTL formula

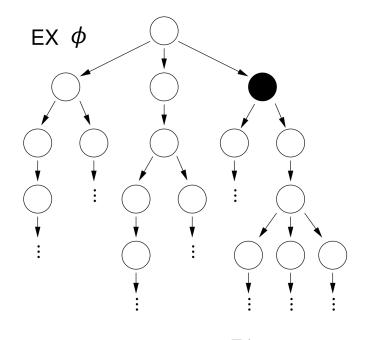
- 1. Define $\llbracket \phi \rrbracket$ as the set of all states of the finite automaton for which CTL formula ϕ is true.
- 2. A finite automaton with initial state q_0 satisfies ϕ iff

 $q_0 \in \llbracket \phi \rrbracket$

- Now, we can use our "trick": computing with sets of states!
 - $\psi_{\llbracket \phi \rrbracket}(q)$ is true if the state q is in the set $\llbracket \phi \rrbracket$, i.e., it is a state for which the CTL formula is true.
 - Therefore, we can also say



Computing a CTL formula: EX ϕ



Computing a CTL formula: EX ϕ

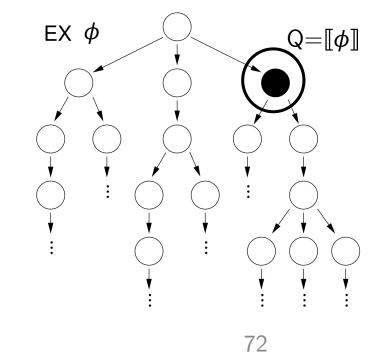
• Suppose that Q is the set of states for which the formula ϕ is true.

Sets
$$Q = \llbracket \phi \rrbracket$$

Characteristic functions

$$\psi_Q(q)$$

Over paths:Path-specific:
$$A\phi \rightarrow All \phi$$
 $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$



Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

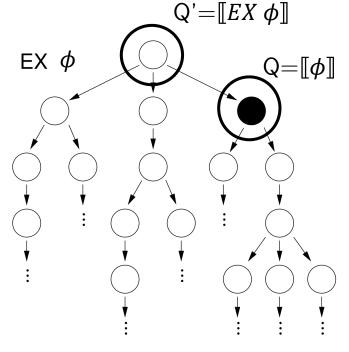
Computing a CTL formula: EX ϕ

- Suppose that Q is the set of states for which the formula ϕ is true.
- Q' is the set of predecessor states of Q, i.e., the set of states that lead in one transition to a state in Q:

$$Q' = Pre(Q, \delta) = \{q' \mid \exists q : \psi_{\delta}(q', q) \cdot \psi_{Q}(q)\}$$

Sets
$$Q = \llbracket \phi \rrbracket \longrightarrow Q' = \llbracket \operatorname{EX} \phi \rrbracket = \operatorname{Pre}(\llbracket \phi \rrbracket, \delta)$$

Characteristic functions $\psi_Q(q) \longrightarrow \psi_{Q'}(q') = (\exists q : \psi_Q(q) \cdot \psi_\delta(q',q))$



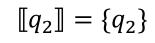
73

Computing a CTL formula: EX ϕ

• Example for EX ϕ : Compute EX q_2

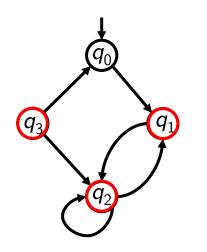
 q_3

1. Define $\llbracket EX q_2 \rrbracket$: set of all states of the finite automaton for which CTL formula EX q_2 is true.



Computing a CTL formula: EX ϕ

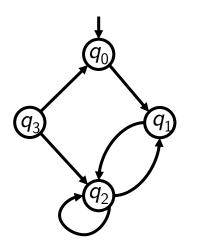
• Example for EX ϕ : Compute EX q_2



1. Define $[\![EX q_2]\!]$: set of all states of the finite automaton for which CTL formula EX q_2 is true. $[\![q_2]\!] = \{q_2\}$ $Q' = [\![EX q_2]\!] = \underline{Pre(\{q_2\}, \delta)} = \{q_1, q_2, q_3\}$ $\{q' \mid \exists q : \psi_{\delta}(q', q) \cdot \psi_Q(q)\}$

Computing a CTL formula: EX ϕ

• Example for EX ϕ : Compute EX q_2

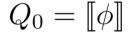


1. Define $[\![EX q_2]\!]$: set of all states of the finite automaton for which CTL formula EX q_2 is true. $[\![q_2]\!] = \{q_2\}$ $Q' = [\![EX q_2]\!] = Pre(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$ $\{q' \mid \exists q : \psi_{\delta}(q', q) \cdot \psi_Q(q)\}$

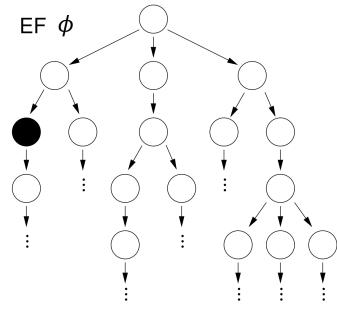
2. A finite automaton with initial state q_0 satisfies EX q_2 iff $q_0 \in \llbracket EX q_2 \rrbracket$ As $q_0 \notin \llbracket EX q_2 \rrbracket = \{q_1, q_2, q_3\}$, the CTL formula EX q_2 is not true. Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

Computing a CTL formula: EF ϕ

- Start with the set of states for which the formula ϕ is true.
- Add to this set the set of predecessor states. Repeat for the resulting set of states,..., until we reach a fixed point.



 $Q_i = Q_{i-1} \cup \operatorname{Pre}(Q_{i-1}, \delta)$ for all i > 1 until a fixed point Q' is reached $[\![\operatorname{EF} \phi]\!] = Q'$

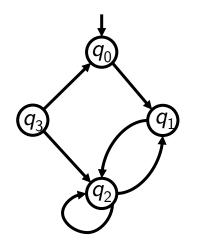


Computing a CTL formula: EF ϕ

• Example for $\mathsf{EF}\phi$: Compute $\mathsf{EF}\ q_2$

1. Define $[\![EF q_2]\!]$: set of all states of the finite automaton for which CTL formula EF q_2 is true.

$$Q_0 = [\![q_2]\!] = \{q_2\}\!]$$



Computing a CTL formula: EF ϕ

• Example for $\mathsf{EF}\phi$: Compute $\mathsf{EF}\ q_2$

 q_3

1. Define $\llbracket EF q_2 \rrbracket$: set of all states of the finite automaton for which CTL formula EF q_2 is true.

 $Q_0 = \llbracket q_2 \rrbracket = \{q_2\} \qquad \{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q',q)\} = \{q_1, q_2, q_3\}$ $Q_1 = \{q_2\} \cup \underline{\operatorname{Pre}(\{q_2\}, \delta)} = \{q_1, q_2, q_3\}$

Computing a CTL formula: EF ϕ

• Example for $EF\phi$: Compute EFq_2

 q_1 q_2 q_1 q_2 1. Define $[\![EF q_2]\!]$: set of all states of the finite automaton for which CTL formula EF q_2 is true. $Q_0 = [\![q_2]\!] = \{q_2\}$ $\{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q',q)\} = \{q_1, q_2, q_3\}$ $Q_1 = \{q_2\} \cup \operatorname{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$ $Q_2 = \{q_1, q_2, q_3\} \cup \operatorname{Pre}(\{q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$

Computing a CTL formula: EF ϕ

• Example for $\mathsf{EF}\phi$: Compute $\mathsf{EF}\ q_2$

1. Define $\llbracket EF q_2 \rrbracket$: set of all states of the finite automaton for which CTL formula EF q_2 is true. $Q_0 = \llbracket q_2 \rrbracket = \{q_2\}$ $\{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q',q)\} = \{q_1, q_2, q_3\}$ $Q_1 = \{q_2\} \cup \operatorname{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$ $Q_2 = \{q_1, q_2, q_3\} \cup \operatorname{Pre}(\{q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$ $Q_3 = \{q_0, q_1, q_2, q_3\} \cup \operatorname{Pre}(\{q_0, q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$ $\llbracket EFq_2 \rrbracket = Q_3 = \{q_0, q_1, q_2, q_3\}$

Over paths:	Path-specific:
$A\phi ightarrow A \parallel \phi$	$X\phi ightarrow Ne Xt \phi$
$E\phi o Ex$ ists ϕ	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 o \phi_1 \bigcup$ ntil ϕ_2

Computing a CTL formula: EF ϕ

• Example for $EF\phi$: Compute EFq_2

1. Define $\llbracket EF q_2 \rrbracket$: set of all states of the finite automaton for which CTL formula $EF q_2$ is true. $Q_0 = \llbracket q_2 \rrbracket = \{q_2\}$ $Q_0 = \llbracket q_2 \rrbracket = \{q_2\}$ $Q_1 = \{q_2\} \cup \operatorname{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$ $Q_1 = \{q_2\} \cup \operatorname{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$ $Q_2 = \{q_1, q_2, q_3\} \cup \operatorname{Pre}(\{q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$ $Q_3 = \{q_0, q_1, q_2, q_3\} \cup \operatorname{Pre}(\{q_0, q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$ $\llbracket EF q_2 \rrbracket = Q_3 = \{q_0, q_1, q_2, q_3\}$

2. A finite automaton with initial state q_0 satisfies EF q_2 iff $q_0 \in \llbracket EF q_2 \rrbracket$

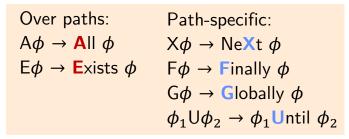
As $q_0 \in \llbracket \operatorname{EF} q_2
rbracket = \{q_0, q_1, q_2, q_3\}$, the CTL formula EF q_2 is true.

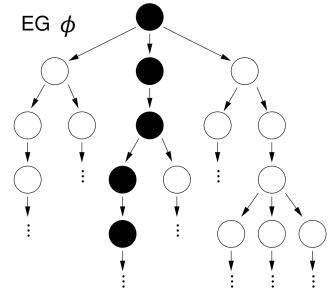
Computing a CTL formula: EG ϕ

- Start with the set of states for which the formula ϕ is true.
- Cut this set with the set of predecessor states. Repeat for the resulting set of states,..., until we reach a fixed point.

 $Q_0 = \llbracket \phi \rrbracket$

 $Q_i = Q_{i-1} \cap \operatorname{Pre}(Q_{i-1}, \delta)$ for all i > 1 until a fixed point Q' is reached

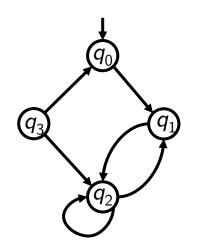




Computing a CTL formula: EG ϕ

Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U \phi_2 \rightarrow \phi_1 Until \phi_2$

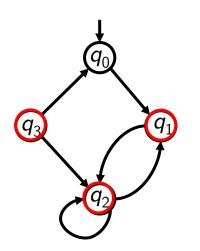
• Example for EG ϕ : Compute EG q_2



1. Define $\llbracket EG \ q_2 \rrbracket$: set of all states of the finite automaton for which CTL formula EG q_2 is true. $Q_0 = \llbracket q_2 \rrbracket = \{q_2\}$

Computing a CTL formula: EG ϕ

• Example for EG ϕ : Compute EG q_2



1. Define $\llbracket EG q_2 \rrbracket$: set of all states of the finite automaton for which CTL formula EG q_2 is true. $Q_0 = \llbracket q_2 \rrbracket = \{q_2\}$ $\{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q',q)\} = \{q_1,q_2,q_3\}$ $Q_1 = \{q_2\} \cap \operatorname{Pre}(\{q_2\},\delta) = \{q_2\}$ $\llbracket EGq_2 \rrbracket = Q_2 = \{q_2\}$

2. A finite automaton with initial state q_0 satisfies EG q_2 iff $q_0 \in \llbracket EG \ q_2
rbracket$

As $q_0 \not\in \llbracket \mathrm{EG} q_2
rbracket = \{q_2\}$, the CTL formula EG q_2 is not true.

- Start with the set of states for which the formula ϕ_2 is true.
- Add to this set the set of predecessor states for which the formula ϕ_1 is true. Repeat for the resulting set of states we do the same,..., until we reach a fixed point.
- Like EF ϕ_2 ; the only difference is that, on our path backwards, we always make sure that also ϕ_1 holds.

$$Q_0 = \llbracket \phi_2$$

 $Q_i = Q_{i-1} \cup (\operatorname{Pre}(Q_{i-1}, \delta) \cap \llbracket \phi_1 \rrbracket)$ for all i > 1 until a fixed point is reached

 ϕ_1

 $\phi_1 \text{ EU } \phi_2$

Over paths:Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow NeXt \phi$ $E\phi \rightarrow Exists \phi$ $F\phi \rightarrow Finally \phi$ $G\phi \rightarrow Globally \phi$ $\phi_1 U\phi_2 \rightarrow \phi_1 Until \phi_2$

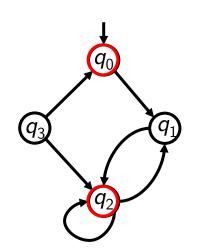
• Example for $\phi_1 EU\phi_2$: Compute $q_0 EU q_1$

1. Define $[\![q_0 EU q_1]\!]$: set of all states of the finite automaton for which CTL formula $q_0 EU q_1$ is true.

 $Q_0 = \llbracket q_1 \rrbracket = \{q_1\}$

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne^{Xt} \phi$
$E\phi o Exists \phi$	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 U \phi_2 o \phi_1 U$ ntil ϕ_2

• Example for $\phi_1 EU\phi_2$: Compute $q_0 EU q_1$



1. Define $\llbracket q_0 EU q_1 \rrbracket$: set of all states of the finite automaton for which CTL formula $q_0 EU q_1$ is true. $Q_0 = \llbracket q_1 \rrbracket = \{q_1\} \qquad \{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q', q)\} = \{q_0, q_2\}$ $Q_1 = \{q_1\} \cup (\operatorname{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}$

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne^Xt \phi$
$E\phi o Exists \phi$	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 o \phi_1 \cup$ ntil ϕ_2

• Example for $\phi_1 EU\phi_2$: Compute $q_0 EU q_1$

$$\begin{array}{l} \begin{array}{c} 1. \text{ Define } \llbracket q_0 \, EU \, q_1 \rrbracket: \text{ set of all states of the finite} \\ \text{automaton for which CTL formula } q_0 \, EU \, q_1 \text{ is true.} \end{array} \\ \begin{array}{c} Q_0 = \llbracket q_1 \rrbracket = \{q_1\} \\ Q_0 = \llbracket q_1 \rrbracket = \{q_1\} \\ Q_1 = \{q_1\} \cup (\operatorname{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\} \\ Q_2 = \{q_0, q_1\} \cup (\operatorname{Pre}(\{q_0, q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\} \\ \\ \llbracket q_0 \operatorname{EU} q_1 \rrbracket = Q_2 = \{q_0, q_1\} \\ \end{array} \\ \begin{array}{c} \left[q_0 \operatorname{EU} q_1 \rrbracket = Q_2 = \{q_0, q_1\} \\ q_0, q_2, q_3 \end{bmatrix} \end{array}$$

2. A finite automaton with initial state q_0 satisfies $q_0 EU q_1$ iff $q_0 \in \llbracket q_0 EU q_1 \rrbracket$ As $q_0 \in \llbracket q_0 EU q_1 \rrbracket = \{q_0, q_1\}$, the CTL formula q_0 EU q_1 is true.

Over paths:	Path-specific:
$A\phi \rightarrow A \parallel \phi$	$X\phi ightarrow Ne^Xt \phi$
$E\phi o Exists \phi$	$F\phi o F$ inally ϕ
	$G\phi ightarrow G$ lobally ϕ
	$\phi_1 \cup \phi_2 o \phi_1 \cup$ ntil ϕ_2

Computing a CTL formula: $\phi_1 EU\phi_2$

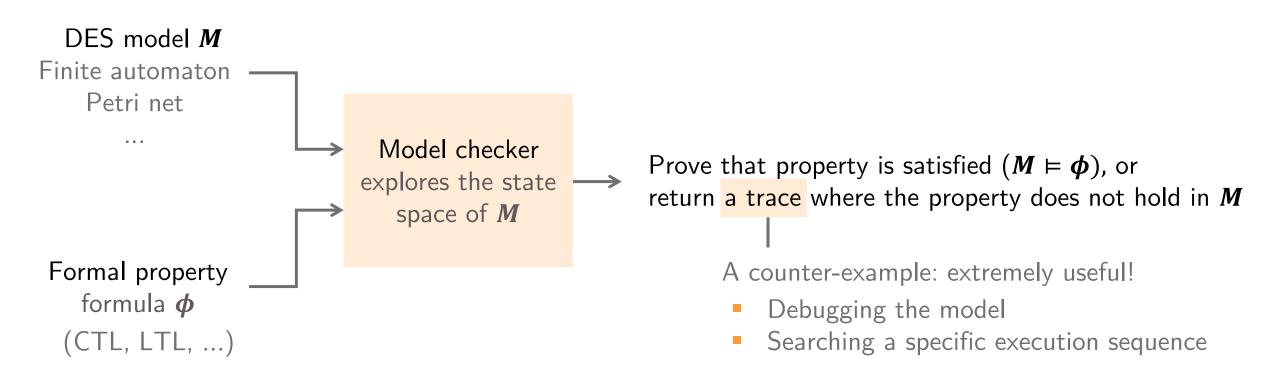
• Example for $\phi_1 EU\phi_2$: Compute $q_0 EU q_1$

1. Define $[\![q_0 EU q_1]\!]$: set of all states of the finite automaton for which CTL formula $q_0 EU q_1$ is true. $Q_0 = [\![q_1]\!] = \{q_1\}$ $\{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q', q)\} = \{q_0, q_2\}$ $Q_1 = \{q_1\} \cup (\operatorname{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}$ $Q_2 = \{q_0, q_1\} \cup (\operatorname{Pre}(\{q_0, q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}$ $[\![q_0 \operatorname{EU}q_1]\!] = Q_2 = \{q_0, q_1\}$ $\{q_0, q_2, q_3\}$

2. A finite automaton with initial state q_0 satisfies $q_0 EU q_1$ iff $q_0 \in \llbracket q_0 EU q_1 \rrbracket$ As $q_0 \in \llbracket q_0 EU q_1 \rrbracket = \{q_0, q_1\}$, the CTL formula q_0 EU q_1 is true.

> Compute other CTL expressions as: $AF\phi \equiv \neg EG(\neg \phi) \quad AG\phi \equiv \neg EF(\neg \phi) \quad AX\phi \equiv \neg EX(\neg \phi)$

So... What Is Model Checking Exactly?



Efficient state representation

Computing reachability

- Set of states as Boolean function
- Binary Decision Diagram representation

- Leverage efficient state representation
- Explore successor sets of states

- Temporal logic (CTL)
- Encoding as reachability problem

Conclusion and perspectives

Next week(s)

Petri Nets

- asynchronous DES model
- tailored model concurrent distributed systems
- capture an infinite state space with a finite model

a computer a network

How they work? How to use them for modeling systems? How to verify them?

Your turn to practice! after the break

- Familiarise yourself with CTL logic and how to compute sets of states satisfying a given formula
- Convert a concrete problem into a state reachability question (adapted from state-of-the-art research!)

Any feedback? Please fill out this short (anonymous) form!

The form will be available throughout the lecture—feel free to provide feedback at any point.

https://forms.gle/auDL4KRPvBt15R2q9

Thanks for your attention and see you next week! 😳