Discrete Event Systems Verification of Finite Automata (Part 2)

Lana Josipović Digital Systems and Design Automation Group dynamo.ethz.ch

ETH Zurich (D-ITET)

December 5, 2024

Most materials from Lothar Thiele and Romain Jacob

Last week in Discrete Event Systems

Verification Scenarios

reference system \longrightarrow data structure system under test \longrightarrow data structure Comparison of specification and implementation $y = (x_1 + x_2) \cdot x_3$ Example

comparison

Comparison using BDDs

- Boolean (combinatorial) circuits: Compare specification and implementation, or compare two implementations.
- Method:
	- Representation of the two systems in ROBDDs, e.g., by applying the *APPLY* operator repeatedly.
	- Compare the structures of the ROBDDs.
- Example:

Sets and Relations

Reachability of States

- Problem: Is a state $q \in Q$ reachable by a sequence of state transitions?
- Method:
	- Represent set of states and the transformation relation as ROBDDs.
	- Use these representations to transform from one set of states to another. Set Q_i corresponds to the set of states reachable after i transitions.
	- Iterate the transformation until a fixed-point is reached, i.e., until the set of states does not change anymore (steady-state).
- Example:

Reachability of States

 $\psi_{Q_0}(q) = \overline{x_1} \cdot \overline{x_0} \qquad \qquad \psi_{Q_1}$ $Q_1 = \{ q_0, q_1 \}$ $Q_0 = \{q_0\}$ q_0 q_1 q_{2} q_3 q_0 q_3

 q_1

 q_2

explicit state enumeration: limited to systems with $< 10^8$ reachable states BDDs: applied in practice to verify models with \sim 10²⁰ states

Burch et al. Symbolic model checking: 10²⁰ states and beyond. Information and Computation 1992

This week in Discrete Event Systems

Efficient state representation

> Computing reachability

- Set of states as Boolean function
- **E** Binary Decision Diagram representation

- **E** Leverage efficient state representation
- **Explore successor sets of states**

- **Temporal logic (CTL)**
-

Temporal Logic

- Verify properties of a finite automaton, for example
	- Can we always reset the automaton?
	- Is every request followed by an acknowledgement?
	- Are both outputs always equivalent?

Temporal Logic

- Verify properties of a finite automaton, for example
	- Can we always reset the automaton?
	- Is every request followed by an acknowledgement?
	- Are both outputs always equivalent?
- Specification of the query in a formula of temporal logic.
- We use a simple form called Computation Tree Logic (CTL).
- Let us start with a minimal set of operators.
	- Any atomic proposition is a CTL formula.
	- CTL formula are constructed by composition of other CTL formula.

There exists other logics (e.g. LTL, CTL*)

Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

- ϕ holds on all paths ϕ holds on at least one path
- $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup \phi_1 \cup \phi_2 \rightarrow \phi_2 \wedge \phi_1 \wedge \phi_2 \wedge \phi_2 \wedge \phi_1$ holds
- $X\phi \longrightarrow \phi$ NeXt $\phi \rightarrow$, ϕ holds on the next state $\overline{F}\phi \longrightarrow \alpha$ **Finally** ϕ », ϕ holds at some state along the path $G\phi \longrightarrow \alpha G$ lobally $\phi \rightarrow \phi$ holds on all states along the path implies that ϕ_2 has to hold eventually

Quantifiers over paths

Path-specific quantifiers

CTL quantifiers work in pairs: we need one of each! $\{A, E\}$ $\{X, F, G, U\}$ ϕ

Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

 ϕ holds on all paths $\phi \longrightarrow \alpha$ **E**xists ϕ », ϕ holds on at least one path

 $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup \phi_1 \cup \phi_2 \rightarrow \phi_1 \wedge \phi_2 \wedge \phi_2 \wedge \phi_1$ holds

 $X\phi \longrightarrow \phi$ NeXt $\phi \rightarrow$, ϕ holds on the next state $F\phi \longrightarrow \alpha$ **Finally** ϕ », ϕ holds at some state along the path $G\phi \longrightarrow \alpha G$ lobally $\phi \rightarrow \phi$ holds on all states along the path implies that ϕ_2 has to hold eventually Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Quantifiers over paths

Path-specific quantifiers

13

CTL quantifiers work in pairs: we need one of each! $\{A, E\}$ $\{X, F, G, U\}$ ϕ

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

CTL works on computation trees

Automaton of interest

Automaton to work with

Requires fully-defined transition functions

Each state has at least one successor (can be itself)

Visualizing CTL formula

- **We use this computation tree** as a running example.
- **We suppose that the black and red states** satisfy atomic properties p and q, respectively.

The topmost state is the initial state; in the examples, it always satisfies the given formula.

Over paths:

16

Path-specific:

M satisfies $\phi \iff q_0 \vDash \phi$ where q_0 is the initial state of M

Path-specific: Over paths: $A\phi \rightarrow All \phi$ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1$ Until ϕ_2

Over paths: Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1$ Until ϕ_2

Path-specific: Over paths: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1$ Until ϕ_2

Path-specific: Over paths: $A\phi \rightarrow All \phi$ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1$ Until ϕ_2

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1$ Until ϕ_2

Path-specific: Over paths: $A\phi \rightarrow All \phi$ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1$ Until ϕ_2

Formulation of CTL properties

Can be more than one pair

A and F are convenient, but not necessary

AG ϕ_1 where $\phi_1 = \text{EF } \phi_2 \equiv \text{AG EF } \phi_2$

E,G,X,U are sufficient to define the whole logic.

$$
AF\phi \equiv \neg EG(\neg \phi)
$$

AG\phi \equiv \neg EF(\neg \phi)
AX\phi \equiv \neg EX(\neg \phi)
EF\phi \equiv true EU\phi

No need to know that one $\rightarrow \phi_1 \text{AU} \phi_2 \equiv \neg ((\neg \phi_1) \text{EU} \neg (\phi_1 + \phi_2)) + \text{EG}(\neg \phi_2))$

Intuition for "AF $p = -EG(-p)$ "

Over paths: Path-specific: $A\phi \rightarrow All \phi$ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1$ Until ϕ_2

Intuition for "AF $p = -EG(-p)$ "

Evaluating a CTL formula $EF \phi$: "There exists a path along which at some state ϕ holds." Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $E\phi \rightarrow E$ xists ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

 $\models \phi$ $q \vDash \textsf{EF} \phi$ $r \in ?$ $s \vDash ?$

Evaluating a CTL formula $EF \phi$: "There exists a path along which at some state ϕ holds." Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Evaluating a CTL formula $EF \phi$: "There exists a path along which at some state ϕ holds."

 $\models \phi$ $q \vDash \textsf{EF} \phi$ $r \not\models EF \phi$ s $\not\models$ EF ϕ

Evaluating a CTL formula $AF \phi : "On all paths,$ at some state ϕ holds."

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Evaluating a CTL formula $AF \phi : "On all paths,$ at some state ϕ holds."

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Evaluating a CTL formula $AF \phi : "On all paths,$ at some state ϕ holds."

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

 $\models \phi$ $q \vDash AF \phi$ $r \vDash AF \phi$ $s \not\models AF\phi$

Evaluating a CTL formula $AG \phi$: "On all paths, for all states ϕ holds."

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Evaluating a CTL formula $AG \phi$: "On all paths, for all states ϕ holds."

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Evaluating a CTL formula $AG \phi$: "On all paths, for all states ϕ holds."

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

 $\models \phi$ $q \in AG \phi$ $r \vDash AG \phi$ s $\not\vDash AG \phi$
Evaluating a CTL formula $EG \phi$: "There exists a path along which for all states ϕ holds." Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Evaluating a CTL formula $EG \phi$: "There exists a path along which for all states ϕ holds."

Evaluating a CTL formula $EG \phi$: "There exists a path along which for all states ϕ holds." Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

 $\models \phi$ $q \vDash EG \phi$ $r \vDash \text{EG } \phi$ s $\not\models$ EG ϕ

Evaluating a CTL formula ϕ EUY : "There exists a path along which ϕ holds until Ψ holds." Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

40

Evaluating a CTL formula ϕ EUY : "There exists a path along which ϕ holds until Ψ holds." Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

 $\models \Psi$

 $\models \phi$

 $q \vDash \phi$ EUY

 $r \vDash \phi$ EU Ψ

 $s \vDash ?$

Evaluating a CTL formula ϕ EUY : "There exists a path along which ϕ holds until Ψ holds." Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

 $\models \Psi$ $\models \phi$ $q \vDash \phi$ EU Ψ $r \vDash \phi$ EU Ψ $s \not\vdash \phi$ EUY

Evaluating a CTL formula ϕ AUY "On all paths, ϕ holds until Ψ holds."

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

 $\vdash \Psi$

Evaluating a CTL formula ϕ AUY "On all paths, ϕ holds until Ψ holds."

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Evaluating a CTL formula AUΨ : "On all paths, holds until Ψ holds."

Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

45

Evaluating a CTL formula $EX\phi$: "There exists a path along which the next state satisfies ϕ ." Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $E\phi \rightarrow E$ xists ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Evaluating a CTL formula $EX\phi$: "There exists a path along which the next state satisfies ϕ ." Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $E\phi \rightarrow E$ xists ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

47

Evaluating a CTL formula $EX\phi$: "There exists a path along which the next state satisfies ϕ ." Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

 $\models \phi$ $q \vDash EX\phi$ $r \vDash E X \phi$ $s \not\models EX\phi$

 S

q

 $\models \phi$ $q \models AGEF \phi$ $r \vDash ?$ $s \in ?$

s

r

q

 $\models \phi$ $q \vDash AG$ EF ϕ $r \vDash AG$ EF ϕ $s \in ?$

s

r

q

 $\models \phi$ $q \vDash AG$ EF ϕ $r \vDash AG$ EF ϕ $s \vDash AG$ EF ϕ

Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

 $\models \phi$ q $\not\models$ AG EF ϕ $r \not\models AG$ EF ϕ $s \vDash AG$ EF ϕ

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Interpreting a CTL formula

AG p \blacksquare

Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Interpreting a CTL formula

■ AG p I will like chocolate from now on, no matter what happens.

Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

- AG p I will like chocolate from now on, no matter what happens.
- \blacksquare EF p

- AG p I will like chocolate from now on, no matter what happens.
- EF p It's possible I may like chocolate someday, at least for one day.

Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

- AG p I will like chocolate from now on, no matter what happens.
- EF p The It's possible I may like chocolate someday, at least for one day.
- AF EG p

- AG p I will like chocolate from now on, no matter what happens.
- EF p The It's possible I may like chocolate someday, at least for one day.
- AF EG p There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).

- AG p I will like chocolate from now on, no matter what happens.
- EF p The It's possible I may like chocolate someday, at least for one day.
- AF EG p There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).
- EG AF p

- AG p I will like chocolate from now on, no matter what happens.
- EF p It's possible I may like chocolate someday, at least for one day.
- AF EG p There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).

EG AF p This is a critical time in my life. Depending on what happens (E) , it's possible that for the rest of time (G), there will always be some time in the future (AF) when I will like chocolate. However, if the wrong thing happens next, then all bets are off and there's no guarantee about whether I will ever like chocolate.

- AG p I will like chocolate from now on, no matter what happens.
- EF p It's possible I may like chocolate someday, at least for one day.
- AF EG p There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).
- EG AF p This is a critical time in my life. Depending on what happens (E), it's possible that for the rest of time (G), there will always be some time in the future (AF) when I will like chocolate. However, if the wrong thing happens next, then all bets are off and there's no guarantee about whether I will ever like chocolate.
- p AU q

- AG p I will like chocolate from now on, no matter what happens.
- EF p The It's possible I may like chocolate someday, at least for one day.
- AF EG p There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).
- EG AF p This is a critical time in my life. Depending on what happens (E), it's possible that for the rest of time (G), there will always be some time in the future (AF) when I will like chocolate. However, if the wrong thing happens next, then all bets are off and there's no guarantee about whether I will ever like chocolate.
- p AU q No matter what happens, I will like chocolate from now on. But when it gets warm outside, I don't know whether I still like it. And it will get warm outside someday.

Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Famous problem Dining Philosophers

- Five philosophers are sitting around a table, taking turns at thinking and eating.
- Each needs two forks to eat.
- They put down forks only once they have eaten.
- **There are only five forks.**

Atomic proposition e_i : Philosopher i is currently eating.

65

"Philosophers 1 and 4 will never eat at the same time." $\mathcal{L}_{\mathcal{A}}$

"Every philosopher will get infinitely many turns to eat." $\mathcal{L}_{\mathcal{A}}$

"Philosopher 2 will be the first to eat." $\overline{}$

"Philosophers 1 and 4 will never eat at the same time." $\mathcal{L}_{\mathcal{A}}$

 $AG\neg(e_1 \cdot e_4)$

"Every philosopher will get infinitely many turns to eat." $\mathcal{L}_{\mathcal{A}}$

"Philosopher 2 will be the first to eat." $\overline{}$

"Philosophers 1 and 4 will never eat at the same time." $\mathcal{L}_{\mathcal{A}}$

 $AG\neg(e_1 \cdot e_4)$

- "Every philosopher will get infinitely many turns to eat." $\mathcal{L}_{\mathcal{A}}$ $AG(AFe_1 \cdot AF_2 \cdot AF_3 \cdot AF_4 \cdot AF_5)$
- "Philosopher 2 will be the first to eat." $\overline{}$

"Philosophers 1 and 4 will never eat at the same time." $\overline{}$

 $AG\neg(e_1 \cdot e_4)$

- "Every philosopher will get infinitely many turns to eat." $\mathcal{L}_{\mathcal{A}}$ $AG(AFe_1 \cdot AF_2 \cdot AF_3 \cdot AF_4 \cdot AF_5)$
- "Philosopher 2 will be the first to eat." $\overline{}$

 $\neg(e_1 + e_3 + e_4 + e_5) \,\text{AU}\, e_2$

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $E\phi \rightarrow E$ xists ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1$ Until ϕ_2

Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Computing a CTL formula

- 1. Define $\llbracket \phi \rrbracket$ as the set of all states of the finite automaton for which CTL formula ϕ is true.
- 2. A finite automaton with initial state q_0 satisfies ϕ iff

 $q_0 \in [\![\phi]\!]$

- Now, we can use our "trick": computing with sets of states!
	- $\psi_{\llbracket \phi \rrbracket}(q)$ is true if the state q is in the set $\llbracket \phi \rrbracket$, i.e., it is a state for which the CTL formula is true.
	- Therefore, we can also say characteristic function of the state function of the state function of

$$
q_0 \in [\![\phi]\!] \equiv \psi_{[\![\phi]\!]}(q_0) \longrightarrow \text{characteristic function}
$$

Computing a CTL formula: $EX \phi$

Computing a CTL formula: $EX \phi$

• Suppose that Q is the set of states for which the formula ϕ is true.

$$
Sets \t\t Q = [\![\phi]\!]
$$

Characteristic functions

 $\psi_Q(q)$

Over paths: Path-specific: $A\phi \rightarrow$ All ϕ $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $E\phi \rightarrow E$ xists ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Computing a CTL formula: $EX \phi$

- Suppose that Q is the set of states for which the formula ϕ is true.
- Q' is the set of predecessor states of Q , i.e., the set of states that lead in one transition to a state in Q :

$$
Q' = Pre(Q, \delta) = \{q' \mid \exists q : \psi_{\delta}(q', q) \cdot \psi_{Q}(q)\}\
$$

Sets
$$
Q = [\![\phi]\!] \longrightarrow Q' = [\![\mathbf{EX}\phi]\!] = \mathbf{Pre}([\![\phi]\!], \delta)
$$

Charact functions

$$
\begin{array}{lll}\text{teristic} & \psi_Q(q) & \longrightarrow & \psi_{Q'}(q') = (\exists q \; : \; \psi_Q(q) \cdot \psi_{\delta}(q', q))\end{array}
$$

• Example for EX ϕ : Compute EX q_2

1. Define $\left[\mathbb{E} X q_2\right]$: set of all states of the finite automaton for which CTL formula $EX q_2$ is true.

Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

• Example for EX ϕ : Compute EX q_2

 $' = [EX \ q_2] = Pre(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$ $[[q_2]] = {q_2}$ $q' | \exists q : \psi_{\delta}(q', q) \cdot \psi_{Q}(q) \}$ 1. Define $\left[\mathbb{E} X q_2\right]$: set of all states of the finite automaton for which CTL formula $EX q_2$ is true. Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

• Example for EX ϕ : Compute EX q_2

 $' = [EX \ q_2] = Pre(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$ $[[q_2]] = \{q_2\}$ $q' | \exists q : \psi_{\delta}(q', q) \cdot \psi_{Q}(q) \}$ 1. Define $\left[\mathbb{E} X q_2\right]$: set of all states of the finite automaton for which CTL formula $EX q_2$ is true.

As $q_0 \notin \llbracket EX \ q_2 \rrbracket = \{q_1, q_2, q_3\}$, the CTL formula EX q_2 is not true. 2. A finite automaton with initial state q_0 satisfies EX q_2 iff $q_0 \in \llbracket E X | q_2 \rrbracket$ Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

Computing a CTL formula: EF ϕ

- Start with the set of states for which the formula ϕ is true.
- Add to this set the set of predecessor states. Repeat for the resulting set of states,..., until we reach a fixed point.

 $f{Q}_i = Q_{i-1} \cup \text{Pre}(Q_{i-1}, \delta)$ for all $i > 1$ until a fixed point Q' is reached $\llbracket \text{EF}\phi \rrbracket = Q'$

77

Computing a CTL formula: EF ϕ

• Example for $E\mathsf{F}\phi$: Compute EF q_2

*q*0

 $\widehat{q^{}_{2}}$

 q_3

*q*1

1. Define $[EF q_2]$: set of all states of the finite automaton for which CTL formula EF q_2 is true.

$$
Q_0=[\![q_2]\!]=\{q_2\}
$$

• Example for EF ϕ : Compute EF q_2

1. Define $[EF q_2]$: set of all states of the finite automaton for which CTL formula EF q_2 is true.

 $Q_0 = [q_2] = {q_2}$ $\{q' | \exists q \text{ with } \psi_Q(q) \cdot \psi_{\delta}(q', q)\} = {q_1, q_2, q_3}$ $Q_1 = \{q_2\} \cup \text{Pre}(\overline{\{q_2\}}, \delta) = \{q_1, q_2, q_3\}$

• Example for EF ϕ : Compute EF q_2

1. Define $[EF q_2]$: set of all states of the finite automaton for which CTL formula EF q_2 is true.

*q*0 *q*1 *q*2 *q*3

 $Q_0 = [q_2] = {q_2}$ $\{q' | \exists q \text{ with } \psi_Q(q) \cdot \psi_{\delta}(q', q)\} = {q_1, q_2, q_3}$ $Q_1 = \{q_2\} \cup \text{Pre}(\overline{\{q_2\}}, \delta) = \{q_1, q_2, q_3\}$ $Q_2 = \{q_1, q_2, q_3\} \cup \text{Pre}(\{q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$

• Example for EF ϕ : Compute EF q_2

*q*0 *q*1 *q*2 q_3

1. Define $[EF q_2]$: set of all states of the finite automaton for which CTL formula EF q_2 is true. $Q_0 = [q_2] = {q_2}$ $\{q' | \exists q \text{ with } \psi_Q(q) \cdot \psi_{\delta}(q', q)\} = {q_1, q_2, q_3}$ $Q_1 = \{q_2\} \cup \text{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$ $Q_2 = \{q_1, q_2, q_3\} \cup Pre(\{q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$ $Q_3 = \{q_0, q_1, q_2, q_3\} \cup \text{Pre}(\{q_0, q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$ $\mathbb{E} \mathbb{F} q_2 \mathbb{I} = Q_3 = \{q_0, q_1, q_2, q_3\}$

• Example for EF ϕ : Compute EF q_2

1. Define $[EF q_2]$: set of all states of the finite automaton for which CTL formula EF q_2 is true. *q*0 $Q_0 = [q_2] = {q_2}$ $\{q' | \exists q \text{ with } \psi_Q(q) \cdot \psi_{\delta}(q', q)\} = {q_1, q_2, q_3}$ $Q_1 = \{q_2\} \cup \text{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$ *q*1 *q*3 $Q_2 = \{q_1, q_2, q_3\} \cup Pre(\{q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$ *q*2 $Q_3 = \{q_0, q_1, q_2, q_3\} \cup Pre(\{q_0, q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$ $\mathbb{E} \mathbb{F} q_2 \mathbb{I} = Q_3 = \{q_0, q_1, q_2, q_3\}$

2. A finite automaton with initial state q_0 satisfies EF q_2 iff $q_0 \in \llbracket E F | q_2 \rrbracket$

As $\; q_0 \in \llbracket \mathrm{E}\mathrm{F} q_2 \rrbracket = \{q_0, q_1, q_2, q_3\}$, the CTL formula EF $\,_2$ is true.

- Start with the set of states for which the formula ϕ is true.
- Cut this set with the set of predecessor states. Repeat for the resulting set of states,…, until we reach a fixed point.

 $Q_0=\llbracket\phi\rrbracket$

 $f{Q}_i = Q_{i-1} \cap \text{Pre}(Q_{i-1}, \delta)$ for all $i > 1$ until a fixed point Q' is reached

Computing a CTL formula: EG ϕ

• Example for EG ϕ : Compute EG q_2

1. Define $[EG q_2]$: set of all states of the finite automaton for which CTL formula EG q_2 is true. $Q_0 = [q_2] = \{q_2\}$

Computing a CTL formula: EG ϕ

• Example for EG ϕ : Compute EG q_2

1. Define $[EG q_2]$: set of all states of the finite automaton for which CTL formula EG q_2 is true. $Q_0 = [q_2] = \{q_2\}$ $\qquad \qquad$ $\{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_{\delta}(q', q)\} = \{q_1, q_2, q_3\}$ $Q_1 = \{q_2\} \cap \text{Pre}(\{q_2\}, \delta) = \{q_2\}$ $\mathbb{E} G q_2 \mathbb{I} = Q_2 = \{q_2\}$

2. A finite automaton with initial state q_0 satisfies EG q_2 iff $q_0 \in \llbracket EG~ q_2 \rrbracket$

As $\; q_0 \not\in \llbracket \textup{EG}{q_2} \rrbracket = \{q_2\}$, the CTL formula EG q_2 is not true.

- Start with the set of states for which the formula ϕ_2 is true.
- Add to this set the set of predecessor states for which the formula ϕ_1 is true. Repeat for the resulting set of states we do the same,…, until we reach a fixed point.
- Like EF ϕ_2 ; the only difference is that, on our path backwards, we always make sure that also ϕ_1 holds.

$$
Q_0 = [\![\phi_2]\!]
$$

 $f_i = Q_{i-1} \cup (\text{Pre}(Q_{i-1}, \delta) \cap [\![\phi_1]\!])$ for all $i > 1$ until a fixed point is reached

Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ

Over paths: $A\phi \rightarrow$ **A**ll ϕ

 $E\phi \rightarrow E$ xists ϕ

Over paths: $A\phi \rightarrow$ **A**ll ϕ $E\phi \rightarrow E$ xists ϕ Path-specific: $X\phi \rightarrow$ NeXt ϕ $F\phi \rightarrow$ Finally ϕ $G\phi \rightarrow G$ lobally ϕ $\phi_1 \cup \phi_2 \rightarrow \phi_1 \cup$ ntil ϕ_2

• Example for $\phi_1 EU \phi_2$: Compute $q_0 EU q_1$

*q*0 *q*1 $\widehat{q^{}_{2}}$ *q*3

1. Define $\llbracket q_0 \, EU \, q_1 \rrbracket$: set of all states of the finite automaton for which CTL formula $q_0\,EU\,q_1$ is true.

 $Q_0 = [q_1] = \{q_1\}$

• Example for $\phi_1 EU \phi_2$: Compute $q_0 EU q_1$

1. Define $\llbracket q_0 \, EU \, q_1 \rrbracket$: set of all states of the finite automaton for which CTL formula $q_0\,EU\,q_1$ is true. $Q_0 = [q_1] = {q_1}$ $\qquad \qquad$ $\{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q', q)\} = {q_0, q_2}$ $Q_1 = \{q_1\} \cup (\text{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}$

• Example for $\phi_1 EU \phi_2$: Compute $q_0 EU q_1$

1. Define
$$
[q_0 \, EU \, q_1]
$$
: set of all states of the finite automaton for which CTL formula $q_0 \, EU \, q_1$ is true.

\n
$$
Q_0 = [q_1] = \{q_1\} \qquad \{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q', q)\} = \{q_0, q_2\}
$$
\n
$$
Q_1 = \{q_1\} \cup (\text{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}
$$
\n
$$
Q_2 = \{q_0, q_1\} \cup (\text{Pre}(\{q_0, q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}
$$
\n
$$
[q_0 \, EU \, q_1] = Q_2 = \{q_0, q_1\} \qquad \{q_0, q_2, q_3\}
$$

As $q_0\in \llbracket q_0\mathrm{EU} q_1\rrbracket=\{q_0,q_1\}$, the CTL formula q_0 EU q_1 is true. 2. A finite automaton with initial state q_0 satisfies $q_0\,EU\,q_1$ iff $q_0\in \llbracket q_0\,EU\,q_1$

90

Computing a CTL formula: $\phi_1 EU\phi_2$

• Example for $\phi_1 EU \phi_2$: Compute $q_0 EU q_1$

$$
Q_0 = [q_1] = \{q_1\} \qquad \text{where } [q_0 \text{ EU } q_1] \text{ is true.}
$$
\n
$$
Q_0 = [q_1] = \{q_1\} \qquad \{q' \mid \exists q \text{ with } \psi_Q(q) \cdot \psi_\delta(q', q)\} = \{q_0, q_2\}
$$
\n
$$
Q_1 = \{q_1\} \cup (\text{Pre}(\{q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}
$$
\n
$$
Q_2 = \{q_0, q_1\} \cup (\text{Pre}(\{q_0, q_1\}, \delta) \cap \{q_0\}) = \{q_0, q_1\}
$$
\n
$$
[q_0 \text{EU} q_1] = Q_2 = \{q_0, q_1\} \qquad \{q_0, q_2, q_3\}
$$

As $q_0\in \llbracket q_0\mathrm{EU} q_1\rrbracket=\{q_0,q_1\}$, the CTL formula q_0 EU q_1 is true. 2. A finite automaton with initial state q_0 satisfies $q_0\,EU\,q_1$ iff $q_0\in \llbracket q_0\,EU\,q_1$

> Compute other CTL expressions as: $AF\phi \equiv \neg EG(\neg \phi)$ $AG\phi \equiv \neg EF(\neg \phi)$ $AX\phi \equiv \neg EX(\neg \phi)$

So… What Is Model Checking Exactly?

Efficient state representation

> Computing reachability

- Set of states as Boolean function
- **E** Binary Decision Diagram representation

- **E** Leverage efficient state representation
- **Explore successor sets of states**

- **Temporal logic (CTL)**
-

Conclusion and perspectives

Next week(s) Petri Nets

- **E** asynchronous DES model
- **E** tailored model concurrent distributed systems
- capture an infinite state space with a finite model

a computer a network

How they work? How to use them for modeling systems? How to verify them?

Your turn to practice! after the break

- 1. Familiarise yourself with CTL logic and how to compute sets of states satisfying a given formula
- 2. Convert a concrete problem into a state reachability question (adapted from state-of-the-art research!)

Any feedback? Please fill out this short (anonymous) form!

The form will be available throughout the lecture—feel free to provide feedback at any point.

<https://forms.gle/auDL4KRPvBt15R2q9>

95

Thanks for your attention and see you next week! \odot