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1 Synchronous Model
Quiz

1.1 Synchronous Consensus in a Grid

In the lecture you learned how to reach consensus in a fully connected network where every
process can communicate directly with every other process. Now consider a network that is
organized as a 2-dimensional grid such that every process has up to 4 neighbors. The width of
the grid is w, the height is h. Width and height are defined in terms of edges: A 2 x 2 grid
contains 9 nodes! The grid is big, meaning that w + A is much smaller than w - h. We use the
synchronous time model; i.e., in every round every process may send a message to each of its
neighbors, and the size of the message is not limited.

a) Assume every node knows w and h. Write a short protocol to reach consensus.

b) From now on the nodes do not know the size of the grid. Write a protocol to reach consensus
and optimize it according to runtime.

¢) How many rounds does your protocol from b) require?

Assume there are Byzantine nodes and that you are the adversary who can select which nodes
are Byzantine.

d) What is the smallest number of Byzantine nodes that you need to prevent the system from
reaching agreement, and where would you place them?
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1.2 Synchronous Consensus in a Grid - Crash Failures

Consider the same network as in Question 1.1. Assume that some of the nodes crashed at the
beginning of the algorithm such that any two correct processes are still connected through at
least one path of correct processes.

Let [ be the length of the longest shortest path between any pair of nodes in the grid; i.e., [
is the number of edges between those two nodes which are “farthest away” from each other. If
there are no failures, [ is the distance between two corners, i.e. [ =w + h.

a) Modify the algorithm from 1.1b) to solve consensus in ! + 1 rounds with this special type
of crash failures. Show that your algorithm works correctly; i.e., a node does not terminate
before it learned the initial value of all nodes.



b) As an adversary you are allowed to crash up to w + h many nodes at the beginning of the
algorithm. Let w = 7,h = 6. What is the largest [ you can achieve?

c) Assume that you run the algorithm with any type of crash failures; i.e, nodes can crash at
any time during the execution. Show that with such failures the algorithm does not always
work correctly anymore, by giving an execution and a failure pattern in which some nodes
terminate too early!



2 Asynchronous Model
Quiz

2.1 What is the Average?

Assume that we are given 7 nodes with input values {—3,—2,—1,0,1,2,3}. The task of the
nodes is to establish agreement on the average of these values. As always, our system might be
faulty - nodes could crash or even be byzantine.

a) Show that in the presence of even one failure (crash or byzantine), the nodes cannot agree
on the average of all input values.

Since we cannot establish agreement on the exact value, it would be great to understand how
close we can get to the average value. Let us begin by only considering crash failures in the
system. Assume that at most 2 of the 7 given nodes can crash.

b) In which range do you expect the consensus value to be?

From now on, we will consider byzantine failures as well. Assume that we have 9 nodes in total.
7 of these nodes are correct and have the input values specified above. The remaining two nodes
are byzantine. We will start with a synchronous system.

c) Show that the consensus values can be basically anything now.

d) Suggest a rule that a node could use to locally choose a value as an approximation to the
average.

e) What is the range of all possible local approximations of the average?

f) Suggest a validity condition that can be used to determine a consensus value.
Now assume that the system is asynchronous. Keep in mind that the scheduling is worst-case.

g) How does the range of all possible local approximations of the average change in this case?

h) Suggest a new validity condition that can be used to determine a consensus value.
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2.2 Computing the Average Synchronously

In the lecture, we have focused on a class of algorithms which satisfy termination and agreement.
In the following, we drop the termination condition and relax the agreement assumption:

Agreement The interval size of the input values of all correct nodes converges to 0.

a) Suggest a simple synchronous algorithm satisfying the agreement property defined above.
Use the strategy from Question 2.1d).

b) Apply your algorithm to the input from Question 2.1, again with 9 nodes in total, two of
which are byzantine. Compute 3 iterations assuming that byzantine nodes try to prevent
the nodes from converging.



Advanced

2.3 Computing the Average Asynchronously

Consider the algorithm you derived in Question 2.2 in an asynchronous system. Assume that
each node broadcasts the current round together with the current input value.

a) Sketch your algorithm in the asynchronous setting.

b) Show that byzantine nodes can prevent this algorithm from converging if we apply it to
the input sequence from Question 2.1.

c) What is the largest value of f for which your algorithm will work in the asynchronous
system?

d) Show that with the chosen bounds on the number of byzantine nodes each of the algorithms
will converge.

e) Explain how the bounds change in the asynchronous case if FIFO broadcast is used instead
of best-effort broadcast or vice versa?



3 Broadcast

Basic

3.1 Simplifying Reliable Broadcast?!

In the script, you have seen Algorithm 18.11, which implements reliable broadcast in the asyn-
chronous communication model for n > 3f byzantine nodes. In this task, we attempt to simplify
the algorithm. Concretely, we have removed the last three lines of the Algorithm 18.11, and now
a node accepts msg_; .- (z) immediately after broadcasting ready_, , .~ (7).

Algorithm 1 Reliable Broadcast: Iteration 4, Sender vg

Code for sender vg with input zg:
Send msg_; .~ (7s) to everyone.

Code for node v:
// Ignore any messages tagged with different values i, vg.
upon receiving msg_, , .~ () from vg:
If no echo.; s> message was sent in this instance:
Send echoc; s> () to everyone.
end upon
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upon receiving echo.; o> (z) from n — f distinct nodes or
ready_,; .~ (7) from f + 1 distinct nodes:

12:  Send ready_, .- () to everyone.
13:  Accept msg_; .~ (2).
14: end upon

a) Does the algorithm still implement reliable broadcast? That is, does it still achieve validity,
integrity, agreement and totality? For each property, either explain why it still holds, or
provide a counterexample execution where it fails.

3.2 Broadcast With Erasure Coding

In this exercise, we are studying a simplified broadcast algorithm which, like the efficient reliable
broadcast algorithms you have seen in the lecture, makes use of erasure coding to reduce com-
munication complexity. Comparing this algorithm to the efficient reliable broadcast algorithms
from the lecture, most notably, the Merkle Proofs are missing.

Unsurprisingly, this algorithm is not capable of providing reliable broadcast in a setting with
byzantine nodes. Furthermore, one can show that this algorithm is also incapable of providing
reliable broadcast in the crash failure model. We thus consider an even weaker model for this
exercise. Nodes may still fail, but each broadcast operation adheres to the following model.

Definition 1 (Crash Failure Model With All-Or-Nothing Broadcast). In this model, nodes may
still crash at arbitrary points in the execution of the algorithm (like in the Crash Failure Model),
but we require broadcast operations to happen with all-or-nothing semantics. That is, if a node
fails, it either fails before a broadcast operation, or after completing it.

You might ask: In this model, why do we need anything other than best-effort broadcast?
After all, if a sender just broadcasts its input by sending it to everyone, then this broadcast
either succeeds completely or fails completely. The reason is that the sender could have a large
input, and it could be too costly for it to just send this whole input to everyone.



Algorithm 2 Efficient Broadcast: Iteration ¢, Sender vg. We use an (n, f + 1)-erasure code.

Code for sender vg with input zg:
(f1,-.., fn) = get_fragments(zg)
for j € {1,...,n} do

Send msg<i,vs>(fj) to v;
end for

Code for node v;:
F =)
upon receiving msg_, .~ (f;) from the sender vg:
if not broadcast echo.; s> (f;) before then
Broadcast echo; o> (f;)
end if
end upon

e el e
AN e =

: upon receiving echoc; ¢ (f) from any node vg:
Fi= FU{(k fi)}
if |F|=f+1 then
m = recover _message(F')
(f1,--., fn) = get_fragments(m)
if not broadcast echo.; ¢ (f;) before then
Broadcast echo; s> (f;)
end if
Accept msg_; .~ (m).
end if
: end upon
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a) In a network of n nodes, for which values of f does this broadcast algorithm achieve
validity, totality and weak integrity against f crash faults under the crash failure model
with all-or-nothing broadcast? Explain your answer.

b) Which of the broadcast properties (validity, totality and weak integrity) are violated when
running this algorithm under the crash failure model without all-or-nothing broadcast?

c) Can we make this algorithm work without all-or-nothing broadcast in the crash failure
model? If so, explain the necessary changes to the algorithm. How many crashes does your
algorithm tolerate?



