Slides last
28.11.2023

Systems® ETH s

L.“.‘...v .

A5

+ il
Bkl T
) R

Computer Systems

TITTH.
SN
uur

Exercise Session 11
HS 2024

I R
) L W e .
i " crr r
- t
A YPA] / ey o e et S w [
) y ! A At v a
¢ " » ™ " e

—FPGA_PCle_x16 P
c_ag.nae « 3 gl

R e

955

)
FeGEA O0OR4 1
et

ETH =(irich



Approximate Agreement



Approximate Agreement

Systems @ ETH raa
It enables nodes to obtain values that are: Distributed ,,
1. within the range of correct inputs (correct-range AUty —
validity)

2. e-close for some predefined € > 0 (e-agreement)

. n > 3f must hold
. synchronous algorithm for f < n/3 byzantine nodes
. asynchronous algorithm for f < n/3 byzantine nodes

WN -

ETH z(irich



Synchronous Approximate Agreement

Systems @ ETH raa

o
Distributed ‘fc.-- .

Computing ¥ <%0

| = a sufficient number of iterations I v l

Xo = initial value

fori =1...I 0

o Distribute your value X; ;.

o R = multiset containing the values received.

o T = multiset containing all but the lowest f and the highest f values in R.
o X;=(MINT+maxT)/2

Output X,

ETH z(irich



Insights

Systems @ ETH raa

A
_ _ Distributed 5{.-,-u_
1. The multisets R contain at most f corrupted values Computing W %5

=> the multisets T are included in the range of correct values.

ETH z(irich



Insights

Systems @ ETH o
o

Distributed gé'.'._’n_
. . . . Computing ¥ <%0
2. If any two correct nodes obtain multisets R that intersect in n - f values, the
range of correct values is halved in each iteration
1. synchronous model: simply sending your value to everyone is
enough.
2. asynchronous model: witness technique.

B-A . ;
—o long iterations
e

5

ETH z(irich



Reliable-Broadcast
Systems @ ETH raa

Distributed tfr
4 Y .

Computing WS <50

®
©

.

" .

e asynchronous network with f < n/3 byzantine nodes

e Properties:
o If the sender is correct, all correct nodes accept its value eventually.
o If acorrect node accepts x, no correct node acceptsy !=x.
o If a correct node accepts x, all correct nodes accept x eventually.

ETH z(irich



It's not sufficient with only Reliable-Broadcast
Systems @ ETH o

P
Distributed  fre#i®s.
Computing W5 %%

e As nodes only accept n-f values, algorithm may fail due to
bad scheduling

()

= | -1

Reliable
Broadcast

ETH z(irich



Witness Technique
Systems @ ETH raa

Distributed {‘{cf‘..
Computing W& <%0

Key idea:
Once a node accepts values from n - f nodes via Reliable Broadcast, it tries
to convince all nodes to wait a bit longer: so that they receive these nodes’

values as well.

=> nodes obtain multisets R that pair-wise intersect in n - f values.

ETH z(irich



Insights

Systems @ ETH o
o

Distributed  fFrens* s
1. Value from a correct witness will be accepted by all correct nodes. Computing € e

2. Value of correct nodes will be collected in R by all correct nodes.

ETH z(irich



Algorithm 21.12 The Witness Technique: Iteration ¢

Systems @ ETH

1: Code for node v with input z.

10:
11:
12:
13:

Let R=0,S=0, W =0.

Distributed  ffgns* s,
Computing W% 500

Send z to all the nodes via Algorithm [18.11] (in the instance for iteration i,

with sender v).
upon accepting msg; ,(y) from u via Algorithm
iteration ¢ with sender u):
Add y to R and u to S.
The first time when |S| > n — f holds:
Send wait;(.S) to all the nodes.
end upon

18.11

(in the instance for

upon receiving wait;(S’) from u such that |S’| > n — f:

When S’ C S, add u to W.
The first time when |W| > n — f:
Output R.
end upon

ETH z(irich



Consistency & Logical Time



45
Distributed g.gr-‘ pt
Lyt 8

»
Computing ¥4 % \‘5..:

Systems @ ETH raa

Consistency models Distributed [f.

Computing W %5

* Linearizable
* Sequentially Consistency

* (Quiescent Consistency

Theorem:

Linearizable implies both sequentially and quiescent consistency.

ETH z(irich



a5
Distributed  fige3® o
Computing WS %%,

Systems @ ETH raa

Linearizable Distributed (:
Computing W& <%0

* “one global order”

* Linearizable = put points on a “line”

e Strongest assumption, implies other two

ETH z(irich



5
Distributed ,-é.;- ,
Computing WS %%,
Systems @ ETH raa

Linearizable Distributed é’:
Computing W <%0

* “one global order”

* Linearizable = put points on a “line”

e Strongest assumption, implies other two

write x=1 write x=3 read x=2
read x=1 write le
write x=2 read y=1

ETH z(irich



o

Distributed éﬁ\j" pt
Computing WS %%,
Systems @ ETH raa
Linearizable Distributed (:
Computing W& <%0

* “one global order”
* Linearizable = put points on a “line”

e Strongest assumption, implies other two

write x=1 write x=3 read x=2
—_— () —_ ) () —
read x=1 write le
s ) Eeee————\
write x=2 read v=1

[ L o-0—0©0 -0
write x=1 < read x=1< write x=3 < write x=2 < write y=1 < read y=1< read x=1
ETHziirich




5
Distributed ,-é.;- ,
Computing WS %%,
Systems @ ETH raa

Sequential Consistency Distributed é’:
Computing W <%0

 “per thread order”

* Sequential consistency = build “sequences”

ETH z(irich



#5Fs
Distributed ,-.;.\.' pt
Computing WS %%,

Systems @ ETH raa

Sequential Consistency Distributed (3

Computing W& <%0

 “per thread order”

* Sequential consistency = build “sequences”

write x=1 read x=2 read y=2
write x=2 write y=1
I S —
write y=2 read y=2

ETH z(irich



55
Distributed é’,’"

Computing ¥ %%

Systems @ ETH naa

Sequential Consistency Distributed é‘.'
Computing W%

.
A P

 “per thread order”

* Sequential consistency = build “sequences”

write x=1 read x=2 read y=2

write x=2 write y=1
- S

write y=2 read y=2

(o]

linearizable

ETH z(irich



o

Distributed gﬁ»}.
Computing WS %%,
Systems @ ETH raa
o
Sequential Consistency Distributed (-»
Computing W& <%0

 “per thread order”

* Sequential consistency = build “sequences”

i = d x= =
wr.lte x=1 rea.x 2 .read y=2
write x=2 write y=1
| @) T— [ ]
write y=2 read y=2
— [ ) Ny
[ o [ [ o—0 o

write x=1 < write x=2 < write y=2 < read x=2 < read y=2 < read y=2 < write y=1
ETH ziirich



7
Distributed ,-,;.».' .
Computing WS %%,

Systems @ ETH raa

g
Quiescent Consistency Distributed (..

Computing W& <%0

* Synchronizes all threads on quiescent point, i.e. point where no execution

happens
read x=1 read y=1
write x=1 write le
—
write x=2 read x:]_

ETH z(irich



#a's
Distributed .g',_;;' .y
Computing WS %%,

Systems @ ETH naa

Quiescent Consistency Distributed (:

Computing W5 %50

* Synchronizes all threads on quiescent point, i.e. point where no execution

happens
read x=1 read y=1
write x=1 write le
—
write x=2 read x:l

ETH z(irich



#a's
Distributed .g',_;;' .y
Computing WS %%,

Systems @ ETH naa

Quiescent Consistency Distributed (:

Computing W5 %50

* Synchronizes all threads on quiescent point, i.e. point where no execution

happens
read x=1 read y=1
write x=1 write le
— -
write x=2 read }Fl

write x=2 < write x=1 . < write y=1 < read y=1 < read x=1 < read y=1

ETH z(irich



P
Distributed gttt 1
Computing WS %%,

Systems @ ETH raa

Composable Consistency Distributed {{'

Computing WS <50

* Definition: If you only look at all operations concerning any object and the
execution is consistent, then also the whole execution is consistent

* Sequentially consistent is not composable

e Linearizability is composable

* Quiescent consistency is composable

ETH z(irich



475
Distributed  fiyns® s,

Computing WS %%,

Systems @ ETH raa

Composable Consistency Digg::ﬁjﬂg ;f:-

* Definition: If you only look at all operations concerning any object and the
execution is consistent, then also the whole execution is consistent

* Sequentially consistent is not composable

e Linearizability is composable

* Quiescent consistency is composable

___write x=1 read x=3 read x=2
read x=1 write :::1
write x=2 read y=1

ETH z(irich



45
Distributed g,ﬂ'..

Computing WS %%,
Systems @ ETH raa

Logical Clocks: Distributed (..

Computing W& <%0

* Happened before relation “=” holds
1) IF f < g on the same node
2) Send happens before receive

3) Iff 2 gand g =2 h, then f= h (transitivity)

ETH z(irich



5
Distributed g,.;—" o
Computing Wi %%
Systems @ ETH raa
Logical Clocks: Distributed ,:'f-

Computing W& <%0

* Happened before relation “=” holds

1) IF f < g on the same node

2) Send happens before receive

3)If f 2 gand g = h, then f-> h (transitivity)

 (C(a): timestamp of event a

ETH z(irich



A5
Distributed g.ﬂ'-_

Computing W%
Systems @ ETH ra

Logical Clocks: Distributed [':.

Computing %% %%

* Happened before relation “=” holds

1) IF f < g on the same node

2) Send happens before receive

3) Iff 2 gand g =2 h, then f= h (transitivity)

e (C(a): timestamp of event a

* logical clocks: a=> b implies c(a) < c(b)

« Strong logical clock: c(a) < c(b) implies a= b (in addition)

ETH z(irich



L

Distributed @ 5 o
. i W
Computing ¥ %5 5%

Lamport Clocks:

+1 max(1,2)+1

1 2
Po
a ]
™
P, O O
) 1 / 3
store own clock
P, O

ETH z(irich

Systems @ ETH naa

Distributed é-;'..
Computing We %50



oy

. . - "
Dlstnbutec.i f"’;‘? s

Computing ¥ %

QTN
Systems @ ETH naa
Lamport Clocks: Distributed f
Computing W %500
+1 max(1,2) +1
| ,,,l,,,
f 2 3 4 5 6 7
P O
o a 4] dv 4 g -
send current timestam
P -—0O Oo—
‘7 J - y 4
store own clock
P2 O <
f ] m 2

>
time
Weak logical clock: a = b implies c(a) < c¢(b) but not vice versa
ETH :ziirich



L
Distributed P ‘..
(SR
Computing ¥ %%

Vector Clocks: Distributed
Computing

now vector of clocks  increase own clock for event

| |

|

- (1,0.0) (200) (31,0 (4,1,0) (5.1,2) (6.1,2) (7.1.2)

Po-—.G a3 oY c

b < ¢

send current timestamp

1= o o
1 A e e
010 1220, k632
increase own by one and
take max of received and own
Pz ., for every other one Vo
10.1) m (0,02
>
timel

ETH z(irich



P
Distributed gttt 1
Computing WS %%,
Systems @ ETH raa

'
o...“ ®
s

Vector Clocks: Distributed

Computing %% %%

 What does c(a) < c(b) mean now?
- if all the entries in a<=b and at least one entry wherea<b
* Is alogical clock (so if a 2 b then c(a) < c(b))

* Is also a strong logical clock (if c(a) < c(b) ->a = b)

Intuition: because in order to achive c(a) < c(b), all entries have to be
at least as big, so a message from a must have reached b (not
necessarily directly) so that b has the right value

ETH z(irich



A5
Distributed  fiyns® s,
Computing W%

Systems @ ETH raa

Consistent Snapshot: Distributed [’f.

Computing WS <50
e Cut: prefix of a distributed execution

* Consistent Snapshot:
a cut where for every operation g in that cut, if f 2 g, then the cut contains f

-=> if all “connected” preceding operations are included
e With number of consistent snapshots, one can make conclusions about

degrees of concurrency in system

ETH z(irich



45
Distributed gttt 1
Computing WS %%,

Systems @ ETH raa

Qu iz Distributed {3{;;‘ .
Computing W& <%0

1. Does sequential consistency imply quiescent consistency?
2. Are there guarantees a Lamport clock can achieve a vector clock cannot?

3. Does a high number of consistent snapshots imply a high level of

concurrency?

ETH z(irich



A
Distributed it s
Computing %S %%,
Systems @ ETH raa
e s L a- .’
Quiz Distributed t;:r,‘ .

Computing WS <50
1. Does sequential consistency imply quiescent consistency? - Wrong

x=2%x e.g. x=1.5 is a valid outcome for

=1 sequential consistency, but not quiescent

2. Are there guarantees a Lamport clock can achieve a vector clock cannot?

No, because the concept of a Lamport clock is included in the vector clock concept
3. Does a high number of consistent snapshots imply a high level of

concurrency? - True

ETH z(irich



