
Computer Systems

Exercise Session 11

HS 2024

Slides last updated:
28.11.2023

Approximate Agreement

Approximate Agreement

It enables nodes to obtain values that are:

1. within the range of correct inputs (correct-range
validity)

2. ε-close for some predefined ε > 0 (ε-agreement)

1. n > 3f must hold
2. synchronous algorithm for f < n/3 byzantine nodes
3. asynchronous algorithm for f < n/3 byzantine nodes

Synchronous Approximate Agreement

I = a sufficient number of iterations

x0 = initial value

for i = 1…I:

○ Distribute your value xi-1.

○ R = multiset containing the values received.

○ T = multiset containing all but the lowest f and the highest f values in R.

○ xi = (min T + max T) / 2

Output xI

Insights

1. The multisets R contain at most f corrupted values

=> the multisets T are included in the range of correct values.

Insights

2. If any two correct nodes obtain multisets R that intersect in n - f values, the

range of correct values is halved in each iteration

1. synchronous model: simply sending your value to everyone is

enough.

2. asynchronous model: witness technique.

Reliable-Broadcast

● asynchronous network with f < n/3 byzantine nodes

● Properties:

○ If the sender is correct, all correct nodes accept its value eventually.

○ If a correct node accepts x, no correct node accepts y != x.

○ If a correct node accepts x, all correct nodes accept x eventually.

It’s not sufficient with only Reliable-Broadcast

● As nodes only accept n-f values, algorithm may fail due to

bad scheduling

Witness Technique

Key idea:

Once a node accepts values from n - f nodes via Reliable Broadcast, it tries
to convince all nodes to wait a bit longer: so that they receive these nodes’
values as well.

=> nodes obtain multisets R that pair-wise intersect in n - f values.

Insights

1. Value from a correct witness will be accepted by all correct nodes.

2. Value of correct nodes will be collected in R by all correct nodes.

Consistency & Logical Time

Consistency models

• Linearizable

• Sequentially Consistency

• Quiescent Consistency

Theorem:

Linearizable implies both sequentially and quiescent consistency.

Linearizable

• “one global order”

• Linearizable  put points on a “line”

• Strongest assumption, implies other two

Linearizable

• “one global order”

• Linearizable  put points on a “line”

• Strongest assumption, implies other two

write x=1 write x=3 read x=2

read x=1 write y=1

write x=2 read y=1

Linearizable

• “one global order”

• Linearizable  put points on a “line”

• Strongest assumption, implies other two

write x=1 write x=3 read x=2

read x=1 write y=1

write x=2 read y=1

write x=1 < read x=1< write x=3 < write x=2 < write y=1 < read y=1< read x=1

Sequential Consistency

• “per thread order”

• Sequential consistency  build “sequences”

Sequential Consistency

• “per thread order”

• Sequential consistency  build “sequences”

write x=1 read x=2 read y=2

write x=2 write y=1

write y=2 read y=2

Sequential Consistency

• “per thread order”

• Sequential consistency  build “sequences”

write x=1 read x=2 read y=2

write x=2 write y=1

write y=2 read y=2

Not

linearizable

Sequential Consistency

• “per thread order”

• Sequential consistency  build “sequences”

write x=1 read x=2 read y=2

write x=2 write y=1

write y=2 read y=2

write x=1 < write x=2 < write y=2 < read x=2 < read y=2 < read y=2 < write y=1

Quiescent Consistency

• Synchronizes all threads on quiescent point, i.e. point where no execution

happens

read x=1 read y=1

write x=1 write y=1

write x=2 read y=1

Quiescent Consistency

• Synchronizes all threads on quiescent point, i.e. point where no execution

happens

read x=1 read y=1

write x=1 write y=1

write x=2 read y=1

Quiescent Consistency

• Synchronizes all threads on quiescent point, i.e. point where no execution

happens

read x=1 read y=1

write x=1 write y=1

write x=2 read y=1

write x=2 < write x=1 < write y=1 < read y=1 < read x=1 < read y=1

Composable Consistency

• Definition: If you only look at all operations concerning any object and the

execution is consistent, then also the whole execution is consistent

• Sequentially consistent is not composable

• Linearizability is composable

• Quiescent consistency is composable

Composable Consistency

• Definition: If you only look at all operations concerning any object and the

execution is consistent, then also the whole execution is consistent

• Sequentially consistent is not composable

• Linearizability is composable

• Quiescent consistency is composable

read x=3 read x=2

read x=1 write y=1

write x=2 read y=1

write x=1

Logical Clocks:

• Happened before relation “” holds

1) IF f < g on the same node

2) Send happens before receive

3) If f  g and g  h, then f h (transitivity)

Logical Clocks:

• Happened before relation “” holds

1) IF f < g on the same node

2) Send happens before receive

3) If f  g and g  h, then f h (transitivity)

• C(a): timestamp of event a

Logical Clocks:

• Happened before relation “” holds

1) IF f < g on the same node

2) Send happens before receive

3) If f  g and g  h, then f h (transitivity)

• C(a): timestamp of event a

• logical clocks: a b implies c(a) < c(b)

• Strong logical clock: c(a) < c(b) implies a b (in addition)

Lamport Clocks:

Lamport Clocks:

Weak logical clock: a  b implies c(a) < c(b) but not vice versa

Vector Clocks:

Vector Clocks:

• What does c(a) < c(b) mean now?

- if all the entries in a<= b and at least one entry where a < b

• Is a logical clock (so if a  b then c(a) < c(b))

• Is also a strong logical clock (if c(a) < c(b) -> a  b)

Intuition: because in order to achive c(a) < c(b), all entries have to be
at least as big, so a message from a must have reached b (not
necessarily directly) so that b has the right value

Consistent Snapshot:

• Cut: prefix of a distributed execution

• Consistent Snapshot:

a cut where for every operation g in that cut, if f  g, then the cut contains f

 if all “connected” preceding operations are included

• With number of consistent snapshots, one can make conclusions about

degrees of concurrency in system

Quiz

1. Does sequential consistency imply quiescent consistency?

2. Are there guarantees a Lamport clock can achieve a vector clock cannot?

3. Does a high number of consistent snapshots imply a high level of

concurrency?

Quiz

1. Does sequential consistency imply quiescent consistency? - Wrong

2. Are there guarantees a Lamport clock can achieve a vector clock cannot?

No, because the concept of a Lamport clock is included in the vector clock concept

3. Does a high number of consistent snapshots imply a high level of

concurrency? - True

e.g. x=1.5 is a valid outcome for
sequential consistency, but not quiescent

