
Exercise Session 12 · HS 2024

Slides last updated:
17.11.2024

Computer Systems
Distributed Systems

Agenda
• Assignment Review

• Lecture Recap
• Clock Synchronization

• Distributed Storage

• Quiz

• Assignment Preview

Assignment Review

1.2 From Approximate Agreement to Byzantine Agreement
Core idea: Use Approximate Agreement and round the final value according to 𝑥 ≥ 0.5.

Does all-same validity hold?

• Yes, Approximate Agreement achieves correct-range validity and therefore also all-same validity.

Does agreement still hold?

• No after the rounds, our values could be distributed around 0.5 which could lead to differing
rounding decisions.

2.1 Different Consistencies
Prove or disprove:

Neither sequential consistency nor quiescent consistency imply linearizability.

• Sequential consistency: No, it does not care about real time.

• Quiescent consistency: No, it does not care for in thread consistency.

If a system is both sequentially consistent and quiescent consistent, it is linearizable.

• No, we can combine the two counter examples.

y? = 1

y := 1

y? = 1

x := 1

y := 1

y? = 1

y := 1

x := 1

Clock Synchronization

Time & Clocks
• Wall Clock: “true time” clock. An unrealistic baseline.

• Clock Errors:
• Drift 𝛿: The predictable difference in clock speed compared to the wall clock.

• Jitter 𝜉: The unpredictable short-term errors in clock speed compared to the wall clock.

• Skew: Error between two clocks: Modeled as 𝑡 = 1 + 𝛿 𝑡∗ + 𝜉∗(𝑡∗)

Clock Synchronization Algorithm
Do we expect to ever truly catch up?

• No, we expect our neighbor’s time to be further
already.

How good is our approximation?

• Let’s analyze.

Core idea:

Periodically inform neighbors about current time,
whenever you are lagging behind increase clock
to match others time.

Clock Synchronization Algorithm Analysis

vw 1. At 𝐶𝑤 w sends out its time
2. At 𝐶𝑣 in v or 𝐶𝑤

′ in w, v receives 𝐶𝑤. v observes 𝐶𝑤 > 𝐶𝑣 and sets
its local time to match 𝐶𝑤.

We know that:
• The real time between (1.) and (2.) is limited by some T.
• Each clock has a drift in [1 − 𝜀, 1 + 𝜀].

At time (2.) what is the maximal difference the clock values after the
update to 𝐶𝑤 in v?
• 1 + 𝜀 𝑇 at most 𝑇 passed and the clock of w runs at most 1 + 𝜀

faster than real time.

What about just before the update?
• 1 + 𝜀 𝑇 +

2𝜀

1−𝜀
, for this we look at the next update and the

different clock value differences since (2.):
1

1−𝜀
 factor is a safety margin for difference in real time broadcast.

𝐶𝑤 𝐶𝑤

𝐶𝑤
′

𝐶𝑣

𝐶𝑤
2

𝐶𝑣
2

𝐶𝑤
2

𝐶𝑤
2′

≤ 1 + 𝜀

≥ 1 − 𝜀

1 + 𝜀 𝑇 + (1 + 𝜀 − 1 − 𝜀)
1

1 − 𝜀

Clock Synchronization Algorithm Analysis

With a bigger network with diameter 𝐷?

Result: Clock skew between any 2 nodes at most:

1 + 𝜀 𝐷𝑇 +
2𝜀

1 − 𝜀
Only the 1 + 𝜀 𝑇 error scales with the network.

Can we do better?

vw

𝐶𝑤 𝐶𝑤

𝐶𝑤
′

𝐶𝑣 𝐶𝑤

𝐶𝑢

u

Global and Local Skew

Global Skew: The maximal difference between clock
values in the network.

Trivial lower bound: 𝐷𝑇/2 which seems reasonable
as nodes need to communicate over 𝐷𝑇 sized time
differences.

Local Skew: Maximal difference between two
neighboring clocks in the network.

Lower bound: 𝛩 𝑇 log 𝐷 is this intuitive?

• Not really, they can communicate with time
difference T, why does the diameter influence
this?

• This is not as bad as it seems, because most
values involved in these calculations behave very
nicely according to predictable distributions.

vw

𝐶𝑤 𝐶𝑤

𝐶𝑤
′

𝐶𝑣 𝐶𝑤

𝐶𝑢

u

Distributed Storage
Consistent Hashing
Hypercubic networks
Distributed hash table

Distributed Storage

Idea: Distribute resource like movies over many
machines to have them quickly and always available.

Goals:

• High Availability for all movies.

• Good load balancing.

• Global Distribution.

How do we decide where to store the movies and
how do we give users this information?

Consistent Hashing

Idea:

• How to store many items on many nodes in a

“consistent” manner?

• Use hash functions to transform item and node IDs into

values in [0,1)

• For each hash function, item is stored on machine with

the closest hash.

With 2 hash functions and
[0, 1) mapped to a ring

Consistent Hashing

Properties:

• In expectation each node stores the same amount of

data.

• Duplication rate is well controlled.

• Supports nodes leaving / entering.

What would happen if the blue server leaves the

system?

• Job of storing second copy of grey movie gets

transferred to orange.
With 2 hash functions and
[0, 1) mapped to a ring

Hypercubic Networks

Idea: Get good topological features from our
network.

Topological Features:

• Homogeneous: Nodes should be similar / equal.

• IDs: Each node should have a unique id.

• Degree: Number of neighbours of each node

• Diameter: Furthest distance between nodes.

How are the degree and diameter optimal and why?

• Both should be small.

• Small degree to keep work of a single node low.

• Small diameter to enable fast communication.

Analysis of the Hypercube Family

Idea: In each dimension increase: Double the nodes and
connect those with only a single difference in ID.

Topological Features:

• Homogeneous:
• Yes

• Degree:
• log 𝑛

• Diameter:

• log 𝑛

Can we decrease degree and keep diameter in 𝑂(log 𝑛)?

Analysis of the Cube Connected Cycle Family

Idea: Hypercube, but each corner has d nodes
connected in a cycle.

Topological Features:

• Homogeneous:
• Yes

• Degree:
• 3

• Diameter:
• 2 log 𝑛

Why is the diameter not 𝑙𝑜𝑔2𝑛 as we
might need to walk each cycle in each corner we
pass?

• In total we just pass the cycle once if we
reduce the dimensions in the right order.

000.1

000.2000.3

Analysis of other Families

Butterfly

Idea: Use efficient Reduce All communication
structure to design network.

Analysis: How does this differ from the CCC?

• No loop for each ID.

• Connections between rounds instead of in
same round.

• One to many nodes per id.

Binary Tree (Fat)

Idea: Always split network in half through a
capable root node.

Analysis: Which property isn’t achieved?

• Homogeneous

CCC(3)Butterfly

x

Distributed Hash Table (DHT) & Churn

Idea:

• Combine Consistent Hashing with overlay
networks.

• Support Inserting and Searching data.

• Use Hypercubic networks with Hyper nodes.

Hyper Node:

• Collection of fully connected nodes, that are
split into a core and periphery group.

• Act in the network like a single dynamic node,
which has a single state.

• Core nodes store data and are interconnected.

• Periphery nodes don’t store data and are
ready to hop to load balance.

Robustness against Churn

Churn:

• High turn over of participating nodes.

• Nodes often join, leave or crash.

How does the DHT react?

Attacker targets some hypernode and starts
crashing those nodes:

• Hyper node weakness is picked up by
neighbours which send over its periphery
nodes.

Why are periphery nodes even associated
with hyper nodes to begin with?

• Load balancing and smaller more consistent
state for ready, but none core nodes.

Quiz

Quiz questions
1. Local skew can be independent of the network diameter.

False

2. Global skew is always bigger than local skew.

True

3. The fully connected graph is a good hyper cubic network.

False

4. In consistent hashing node positions are determined randomly.

False

5. The butterfly network has similar properties to the CCC.

True

6. In DHT hyper nodes move to different positions to load balance.

False

Questions and Tasks

Draw a 4d Hypercube

When load on the electric grid is high, the
frequency of the grid is lowered. If this is
sustained over a while, what clock error do we
expect on oven clocks?

• Drift they will slowly start falling behind,
because they expect net frequency to be
exactly 50 Hz.

Assignment Preview

Assignment Preview

• Clocks and Time Algorithms

• Drawing Hypercubic Networks

• Hash functions

Final Words

	Standardabschnitt
	Slide 1:
	Slide 2: Agenda

	Assignment Review
	Slide 3: Assignment Review
	Slide 4: 1.2 From Approximate Agreement to Byzantine Agreement
	Slide 5: 2.1 Different Consistencies

	Clock Synchronization
	Slide 6: Clock Synchronization
	Slide 7: Time & Clocks
	Slide 8: Clock Synchronization Algorithm
	Slide 9: Clock Synchronization Algorithm Analysis
	Slide 10: Clock Synchronization Algorithm Analysis
	Slide 11: Global and Local Skew

	Distributed Storage
	Slide 12: Distributed Storage
	Slide 13: Distributed Storage
	Slide 14: Consistent Hashing
	Slide 15: Consistent Hashing
	Slide 16: Hypercubic Networks
	Slide 17: Analysis of the Hypercube Family
	Slide 18: Analysis of the Cube Connected Cycle Family
	Slide 19: Analysis of other Families
	Slide 20: Distributed Hash Table (DHT) & Churn
	Slide 21: Robustness against Churn

	Quiz
	Slide 22: Quiz
	Slide 23
	Slide 24: Questions and Tasks

	Assignment Preview
	Slide 25: Assignment Preview
	Slide 26: Assignment Preview

	Outro
	Slide 27: Final Words

