
Distributed
 Computing

Prof. T. Roscoe, Prof. R. Wattenhofer

Computer Systems
— Solution to Assignment 8 —

1 Synchronous Model

1.1 Synchronous Consensus in a Grid

a) We can establish consensus on the minimum value. In every round a node broadcasts the
smallest value it has received so far to its neighbors. Since the longest distance between any
two nodes on a grid is w + h, it will take at most w + h rounds until every node learns the
minimum value in the grid.

b) All nodes store from which nodes they already received their initial value. In the first round,
every node sends its value to all of its neighbors. In all consecutive rounds, every node only
forwards values: If it receives a tuple (u, x) containing the initial value x of a node u, it only
forwards the tuple to all neighbors, if this is the first time the node hears the value from u.
As soon as there is a round in which a node does not hear a new tuple, the node decides for
the minimum of all received values and terminates.

c) Since the longest path from any node to any other node is an upper bound on the duration
until a node receives a value, we know that the algorithm terminates after at most w+h+1
rounds. The nodes on the corners of the grid require exactly w+h time until they learn the
value of the corner on the opposite side. Therefore, the runtime is exactly w+h+1 rounds.

d) One Byzantine node, placed next to a corner. In that case, the corner node has one Byzantine
neighbor, and one correct neighbor. If the Byzantine node pretends to send messages in such
a way, that it looks like a completely normal execution of the algorithm, but with wrong
initial values, the corner node gets two different pictures, and cannot determine which one is
right. Any algorithm must choose one of the nodes to be Byzantine and listen to the other,
and since there is no good way to do that, any algorithm for the corner node will violate the
agreement property in at least 50% of the executions.

1.2 Synchronous Consensus in a Grid - Crash Failures

a) This is the algorithm described in Exercise 1.1b).

The goal of the algorithm is that every node learns the initial values of all nodes. Each node
stores the received values in a set “allValues”. Every round, all newly received information is
forwarded to all neighbors, until no new information is received anymore. In the first round,
every node sends its own value to its neighbors.

Correctness: Let us look at a particular node u. Note that all messages are transported on
the shortest path to u. Hence, in round 1, u receives all messages from its direct neighbors.

In round 2, all values from nodes in distance 2. And so on. Hence, u receives a new value
every round, until it received all values.

Termination: The longest path from any node to any other node is an upper bound on
the duration until a node receives a value. We know that any node will have received all
values by round l (see Correctness). Therefore, the algorithm terminates after at most l+1
rounds. (The last new information could be received in round l, and in round l+1 the node
realizes that no new values will arrive and terminates.)

Algorithm 1 Simple Consensus in a Grid

1: allValues = {(myId, myValue)}
2: recv = {(myId, myValue)}
3: for Round 1 to ∞ do
4: Send values(recv) to all neighbors

5: recv = receive tuples from neighbors

6: remove all tuples from recv which are already in allValues
7: if recv = ∅ then
8: No new tuple received
9: return minimum value in allValues

10: else
11: allValues = allValues ∪ recv
12: end if
13: end for

b) In our example (w = 7,h = 6), the crashing nodes could be arranged as in Figure 1). The
longest shortest path has the length of 32.

For every w and h it is possible to arrange the faulty nodes in a pattern as shown in Figure
2. In that case, a longest shortest path of l ≈ 2 · (w + h) can be achieved. For our special
case this only gives a length of l = 25.

t

s

Figure 1: Strategy for w = 7,h = 6, with faulty nodes marked as black. The longest shortest path
l leads from t to s.

2

t

s

Figure 2: Strategy for any grid that achieves a longest shortest path of l ≈ 2 · (w + h).

c) Consider a 1 × 2 grid with six nodes. We show that two nodes, v and w, in the bottom of
the grid will terminate too early:

(a) In the first round of the execution we assume that
node x crashes before forwarding its input value to
the node w. Only node u1 receives the value x.

(b) In the second round, the node u1 crashes before
forwarding its value to v. Again, only the node u2

learns the value x.

By the end of the second round node v will have learned the values from the nodes u1, u2, u3

and w. Since two nodes crashed during the execution of the algorithm, the value x will take
the longest path from x to v on the grid, which takes exactly 4 rounds. In round 3, node
v will not learn any new information and will therefore terminate too early. After node v
terminates, node w becomes isolated and terminates within one round as well.

2 Asynchronous Model

2.1 What is the Average?

a) Assume we have a crash failure in the system. A node might crash before broadcasting its
own input value. For the given input values any node that crashes would make other nodes
decide on a value that is not 0.

b) In the worst case, two nodes with either the largest or the smallest input values will crash.
We therefore expect the consensus value to be inside the interval [−1, 1].

c) Note that a byzantine node is not restricted to send a value inside the interval [−3, 3] as
the correct nodes do. Since byzantine values can be arbitrarily small or large, the consensus
value is expected to be unbounded.

3

d) A node could remove the largest and the smallest f values upon receiving them and compute
the average of the remaining values.

e) The two boundary cases are: if byzantine nodes send values that are too large, a correct
node will remove the byzantine values and the two smallest correct values; if the byzantine
nodes send values that are too small, a correct node will remove the byzantine values and
the two largest correct values. Therefore the approximations will be inside [−1, 1].

f) A valid value is a value inside the interval

[average without the largest f correct values, average without the smallest f correct values].

g) The two boundary cases are: if byzantine nodes send values that are too large plus the two
smallest correct values do not arrive at the node due to scheduling, a correct node will remove
the byzantine values, the third and the fourth smallest correct values; if the byzantine nodes
send values that are too small plus the two largest correct values do not arrive at the node
due to scheduling, a correct node will remove the byzantine values, the third and the fourth
largest correct values. Therefore the approximations will be inside [−2, 2].

h) A valid value is a value inside the interval

[average without the largest 2f correct values, average without the smallest 2f correct values].

2.2 Computing the Average Synchronously

a) Algorithm 2 shows a possible implementation.

b) Since the byzantine nodes try to prevent other nodes from converging, they will choose their
input values in such a way that the new input values are as far away from each other as pos-
sible. Assume that in each of the rounds the byzantine nodes send a value smaller than −3 to
three correct nodes, a value larger than 3 to other three correct nodes, and no values at all to
the remaining one correct node. Then, the new input values of the correct nodes after the first
round are {−1,−1,−1, 0, 1, 1, 1}, after the second round {−2/5,−2/5,−2/5, 0, 2/5, 2/5, 2/5}
and after the third round {−4/25,−4/25,−4/25, 0, 4/25, 4/25, 4/25}.

Algorithm 2 Simple Synchronous Approximate Agreement

1: Lest xu be the input value of node u
2: repeat:
3: Broadcast xu

4: I := all received values xv without the largest and the smallest f values
5: Set xu := mean(I)

2.3 Computing the Average Asynchronously

a) Algorithm 3 shows a possible implementation.

b) Byzantine strategy is similar to Question 2.2b): to the first three correct nodes, byzantine
nodes send values smaller than −3 and additionally delay the values 3 and 2 until the end of
the round; to the second three correct nodes, byzantine nodes send values larger than 3 and
additionally delay the values −3 and −2 until the current round is completed; the remaining
correct node does not receive any byzantine values at all. Then, the new inputs after the
end of the first round are {−2,−2,−2, 0, 2, 2, 2}. Since the intervals I of the nodes do not
intersect in any value, the input values at the end of the second round remain the same.
This way, the algorithm does not converge.

4

c) All local intervals I of the correct nodes can be shown to intersect in at least one value for
f < n/5: from the n−f correct values, the nodes can hide at most 2f too large or too small
values. After the removal, the intervals should intersect, i.e. (n− f)− 2f − 2f = n− 5f > 0
should be satisfied.

d) In every round of the algorithm, all nodes will have at least one common value inside their
intervals I. We need to show that the new input values of the correct nodes will span a
smaller interval than the current input values. Consider therefore the extreme case where
the local intervals of two nodes intersect in exactly one value. Let the smaller interval be
spanned by the values v1 and v2, while the larger interval is spanned by v2 and v3, where
v1 ≤ v2 ≤ v3. The mean of the first interval is strictly larger than v1, unless v1 = v2; while
the mean of the second interval is strictly smaller than v3, unless v2 = v3. If the values have
not converged yet (v1 = v2 = v3), then at least one of the two nodes will choose a new input
value that is strictly inside the interval of its current values. This is true for any pair of
correct nodes, which concludes the proof.

e) If FIFO broadcast is used instead of best-effort broadcast, byzantine nodes are prevented
from sending different input values to different nodes. Therefore, the nodes see the same
n values, unless the byzantine nodes use scheduling to hide f values. As before, byzantine
nodes can make the correct nodes ignore the smallest and the largest 2f values from the
interval. Since n− 2f − 2f = n− 4f , the FIFO broadcast improves the number of tolerated
byzantine nodes to f < n/4.

Algorithm 3 Simple Asynchronous Approximate Agreement

1: Lest xu be the input value of node u
2: Let r := 1 denote the round
3: repeat:
4: Broadcast (xu, r)
5: Wait until received n− f messages of the form (xv, r)
6: I := all received values xv in round r without the largest and the smallest f values
7: Set xu := mean(I) and r := r + 1

3 Broadcast

3.1 Simplifying Reliable Broadcast?!

a) This algorithm does not implement reliable broadcast, as the totality property is violated.

Validity still holds. If a correct node vs broadcasts a message xs, every correct node will
echo xs. Since we have n−f correct nodes by assumption, every node will eventually receive
at least n− f echo messages for xs. Hence, every correct node will eventually accept xs.

Integrity and Agreement are preserved as well. Assume for the sake of contradiction that
some nodes v and u (where possibly v = u) are the first ones to accept msg<i,vs>

(x)
and msg<i,vs>

(y), respectively, where x ̸= y. Since v and u were the first ones to accept
msg<i,vs>

(x) and msg<i,vs>
(y), respectively, they could not have accepted these messages as

the result of receiving f +1 ready messages. Hence, v has received echo<i,vs>(x) from n−f
nodes, while u has received echo<i,vs>(y) from n − f nodes. This means that there are at
least (n − f) + (n − f) − n = n − 2f > f nodes, and hence at least one correct node, that
echoed both x and y. This is a contradiction, because a correct node echoes only one value.
Therefore, we conclude that there exists some x such that the correct nodes can only accept
msg<i,vs>

(x).

Totality does not hold. To see why, consider a network with n = 4 nodes, of which f = 1
are byzantine. Let node 4 be the byzantine node. The byzantine node sends msg<i,4>(x) to

5

nodes 1 and 2. Consequently, the correct nodes 1 and 2 both send echo<i,4>(x). Furthermore,
the byzantine node sends echo<i,4>(x) to node 3. Node 3 thus receives n − f = 3 echo
messages from distinct nodes, and accepts x. Node 1 and 2 will, however, never accept this
message, as they will neither receive n − f echo messages from distinct nodes, nor receive
more than the f = 1 ready message sent by Node 3.

3.2 Broadcast With Erasure Coding

a) This algorithm can tolerate up to f < n/2 failures in this model. We first show why this is
an upper bound, and then proceed with proving the correctness for f < n/2. Let f ≥ n/2.
In this case, the faulty nodes can crash before sending any message, which prevents correct
nodes from ever accepting a message (since we only have n−f < n/2 correct nodes). Hence,
the validity property does not hold.

We now show that this algorithm works for f < n/2.

Validity holds, because if the sender is correct, then n − f correct nodes vj receive the
fragment fj from the sender, and broadcast fj . This ensures that every correct node receives
n− f ≥ f + 1 fragments, causing the node to accept x.

Totality also holds. Consider a node v that accepted msg<i,vs>
(m). This node must have

received fragments from at least f + 1 other nodes that broadcast their fragments. Because
we assume all-or-nothing broadcast, the other correct nodes will also eventually receive the
fragments broadcast by these nodes, and thus also accept m.

Weak integrity is also preserved. It is easy to see that in the absence of byzantine nodes, if
the correct vs does not send and message in iteration i, then no correct node will accept any
message in iteration i.

b) The totality property is violated. To see this, consider a case in which a node v accept
msg<i,vs>(m) as consequence of receiving f + 1 echoed fragments. Since we no longer
require the broadcast operation to be all-or-nothing, the nodes that broadcast the f + 1
fragment could have failed while broadcasting, leading to some correct node u receiving only
1 < f + 1 fragment. Hence, our proof of totality no longer works. Note that validity and
weak integrity still hold under the crash failure model, as shown in a).

c) For this algorithm to work without all-or-nothing broadcast, we need to restore the totality
property. To do so, we change the algorithm into Algorithm 4. The change is that now, a
node accepts a message not when it has |F | = f +1 fragments, but when it has |F | = 2f +1
fragments. This means that we now need n > 3f , since otherwise n − f < 2f + 1, and the
correct node never receive 2f + 1 fragments if f nodes crash immediately. Suppose some
correct node has accepted a message in Algorithm 4. By increasing the message accepting
threshold to 2f+1 fragments, we have made sure that this node has accepted a message after
receiving at least (2f+1)−f = f+1 fragments from correct nodes. Because these nodes are
correct, eventually, all nodes receive f+1 echoed fragments. Each correct node consequently
broadcasts its fragment, which ensures that every correct node receives n−f ≥ 2f+1 correct
fragments, and accepts a message.

6

Algorithm 4 Efficient Broadcast: Iteration i, Sender vS . We use an (n, f + 1)-erasure code.

1: Code for sender vS with input xS :
2: (f1, . . . , fn) := get fragments(xS)
3: for j ∈ {1, . . . , n} do
4: Send msg<i,vS>(fj) to vj
5: end for
6:

7: Code for node vj :
8: F := {}
9: upon receiving msg<i,vS>(fj) from the sender vS :

10: if not broadcast echo<i,vS>(fj) before then
11: Broadcast echo<i,vS>(fj)
12: end if
13: end upon
14:

15: upon receiving echo<i,vS>(fk) from any node vk:
16: F := F ∪ {(k, fk)}
17: if |F | = f + 1 then
18: m := recover message(F)
19: (f1, . . . , fn) := get fragments(m)
20: if not broadcast echo<i,vS>(fj) before then
21: Broadcast echo<i,vS>(fj)
22: end if
23: end if
24: if |F | = 2f + 1 then
25: Accept msg<i,vS>(m), where m is the message recovered when |F | = f + 1.
26: end if
27: end upon

7

