
Distributed
 Computing

Prof. T. Roscoe, Prof. R. Wattenhofer

Computer Systems
— Solution to Assignment 9 —

1 Shared Coins

1.1 Adaptive Adversaries

a) This algorithm is similar to the King Algorithm. Validity holds since the nodes only update
their values to other nodes’ inputs. Agreement holds since we have more phases than crashing
nodes, which means that in some round j, the broadcasting node j is correct. In this round,
every node updates its value vj . Afterwards, the nodes never change their values again, and
so they all output vj .

b) We run the loop for λ iterations, rather than f +1. In each iteration, in the first round, the
nodes choose a random node k ∈ {1, . . . , n} using dice toss(). This node broadcasts vk.
Then, each node i updates its value to vk if it receives the value vk from node k. If in any
round the chosen node k does not crash, then every node updates its value to vk, and at the
end the algorithm outputs vk.

The probability the algorithm fails is thus upper bounded by the probability that we choose

a crashing node every round, which is
(
f
n

)λ
< 2−λ.

Algorithm 1 Altered synchronous consensus algorithm: Code for node i

1: vi ∈ R ◁ input
2: for j = 1, ..., λ do
3: k ← dice toss()

4: if you are node k then
5: broadcast vi
6: end if
7: if you receive vk from node k then
8: vi := vk
9: end if

10: end for
11: output vi

c) The answer of course depends on your algorithm. However, if your solution was the same as
ours, then no, it does not work.

In each iteration, the adaptive adversary can wait until the nodes choose a random node k,
learn k via the nodes’ communication, and crash node k before it can broadcast its value.
With this strategy, the nodes fail to reach consensus unless they choose f +1 separate kings
in at least f + 1 separate iterations. What we assumed when we designed the algorithm is
that there is a fixed set of potentially crashing nodes, in other words that before the nodes
begin running the algorithm, we can fix a set F of at most f nodes such that only the nodes
in F can crash while the algorithm runs. The adaptive adversary breaks this assumption.

Note: Adversaries which let us fix such a set F are called “static” in the literature, and it
is easier to design randomized algorithms against static adversaries. However, there do exist
randomized algorithms that handle adaptive adversaries effectively.

2

2 Quorum Systems

2.1 The Resilience of a Quorum System

a) No such quorum system exists. According to the definition of a quorum system, every two
quorums of a quorum system intersect, so at least one server is part of both quorums. The
fact that all servers of a particular quorum fail implies that in each other quorum at least
one server fails, namely the one which lies in the intersection. Therefore, it is not possible
to achieve a quorum anymore and the quorum system does not work anymore.

b) Just 1—as soon as 2 servers fail, no quorum survives.

c) Imagine a quorum system in which all quorums overlap exactly in one single node; i.e. each
element of the powerset of the remaining n − 1 nodes joined with this special node is a
quorum. This gives 2n−1 quorums.
Can there be more? No! Consider a set from the powerset of n servers. Its complement
cannot be a quorum as well, as they do not overlap. So, from each such couple, at most one
set can be part of the quorum system. This gives an upper bound of 2n/2 = 2n−1 quorums.

2.2 A Quorum System

111

100

011101
110

010

001

Figure 1: Quorum System

a) This quorum system consists of 7 quorums. As work is defined as the minimum expected
number of servers in an accessed quorum (over all access strategies), this system’s work is
3 (all strategies induce the same work on a system where all quorums are the same size).
Observe that all nodes are in precisely 3 quorums, so the uniform access strategy induces the
same load on all nodes. Since the quorum system is also 3-uniform, by exercise 3 it follows
that the uniform strategy is optimal; it’s load being 3/7.

b) The resilience is R(S) = 2. Proof: every node is in exactly 3 quorums, so 2 nodes can be
contained in at most 2 · 3 = 6 < 7 = |S| quorums, thus, if no more than 2 nodes fail, there
will be at least 1 quorum without a faulty node. If, on the other hand, for example, the
nodes 101, 010 and 111 fail, no quorum can be achieved; see also exercise 1a).

3

2.3 S-Uniform Quorum Systems

Definitions:
s-uniform: A quorum system S is s-uniform if every quorum in S has exactly s elements.
Balanced access strategy: An access strategy Z for a quorum system S is balanced if it
satisfies LZ(vi) = L for all vi ∈ V , for some value L.

Claim: An s-uniform quorum system S reaches an optimal load with a balanced access strategy,
if such a strategy exists.

a) In an s-uniform quorum system each quorum has exactly s elements, so independently of
which quorum is accessed, s servers have to work. Summed up over all servers we reach a
total load of s, which is the work of the quorum system. As the load induced by an access
strategy is defined as the maximum load on any server, the best strategy would be to evenly
distribute this work on all servers. If such a strategy exists, then it is therefore optimal.

b) Let V = {v1, v2, ..., vn} be the set of servers and S = {Q1, Q2, ..., Qm} an s-uniform quorum
system on V . Let Z be an access strategy, thus it holds that:

∑
Q∈S PZ(Q) = 1. Further-

more, let LZ(vi) =
∑

Q∈S;vi∈Q PZ(Q) be the load of server vi induced by Z.

Then it holds that:∑
vi∈V

LZ(vi) =
∑
vi∈V

∑
Q∈S;vi∈Q

PZ(Q) =
∑
Q∈S

∑
vi∈Q

PZ(Q)

=
∑
Q∈S

PZ(Q) · |Q| ∗
=

∑
Q∈S

PZ(Q) · s = s ·
∑
Q∈S

PZ(Q) = s

The transformation marked with an asterisk uses the uniformity of the quorum system.

To minimize the maximal load on any server, the optimal strategy would be to evenly dis-
tribute this load on all servers. Thus, if a balanced access strategy exists, this leads to an
optimal system load of s/n.

Note: A balanced access strategy does not always exist for example for the following 2-
uniform quorum system: V = {1, 2, 3}, S = {{1, 2}, {1, 3}}. We have min{LZ(2), LZ(3)} <
LZ(1) = 1 for any access strategy on this system.

4

