
Chapter 18

Broadcast

A fundamental building block of distributed systems is the functionality to
broadcast a message, i.e., to send it to all other nodes.

18.1 Best-Effort Broadcast
Definition 18.1 (Accept). A message received by a node v is called accepted

if node v can consider this message for its computation.

Definition 18.2 (Best-Effort Broadcast). Best-effort broadcast ensures that
a message that is sent from a correct node u to another correct node v will
eventually be received and accepted by v.

Remarks:

• Note that best-effort broadcast is equivalent to the simple broadcast
primitive that we have used so far.

• In the following, we study more powerful broadcast primitives.

18.2 Broadcast with Totality
Definition 18.3 (Broadcast with Totality). Broadcast with totality ensures
that the nodes eventually agree on all accepted messages. That is, if a correct
node v considers message m as accepted, then every other correct node will
eventually consider message m as accepted.

Algorithm 18.4 Broadcast with totality (code for node u)
1: Sender only: Broadcast message msg(u)
2: upon receiving msg(v) from v and not broadcast msg(v) before:
3: Broadcast msg(v)
4: Accept msg(v)
5: end upon

Theorem 18.5. Algorithm 18.4 satisfies the following properties:

39

40 CHAPTER 18. BROADCAST

1. Validity: If a correct node broadcasts a message reliably, it will eventually
be accepted by every other correct node.

2. Weak integrity: If a correct node has not broadcast a message, it will not
be accepted by any other correct node.

3. Totality: If a correct node accepts a message, it will be eventually accepted
by every correct node.

This algorithm can tolerate f < n failures.

Proof. We start with the validity property. If a correct node broadcasts a mes-
sage msg(v), then every correct node will receive msg(v) eventually and accept
it.

The weak integrity property holds for the case of crash failures where nodes
only accept and broadcast messages that they received via broadcast.

The totality property holds because every correct node re-broadcasts any
message that it receives. Thus, all correct nodes eventually accept the same
messages.

Remarks:

• Algorithm 18.4 does not solve consensus according to Definition 16.1.
It only makes sure that all messages of correct nodes will be accepted
eventually. For correct nodes, this corresponds to sending and receiv-
ing messages in the asynchronous model (Model 16.15).

• The algorithm has a message overhead linear in the number of nodes
since every node again broadcasts every message.

• Note that byzantine nodes can issue arbitrarily many messages. This
may be a problem for protocols where each node is only allowed to
send one message (per round). Can we fix this, for instance with
sequence numbers?

Definition 18.6 (FIFO Broadcast). FIFO broadcast defines an order in
which the messages are accepted in the system. If a node u broadcasts mes-
sage m1 before m2, then any node v will accept message m1 before m2.

Algorithm 18.7 FIFO Broadcast (code for node u)
1: Broadcast own round r message msg(u, r)
2: upon receiving first message msg(v, r) from node v for round r or n � 2f

echo(w,msg(v, r)) messages:
3: Broadcast echo(u,msg(v, r))
4: end upon

5: upon receiving echo(w,msg(v, r)) from n� f nodes and node u accepted
msg(v, r � 1):

6: Accept msg(v, r)
7: end upon

18.3. RELIABLE BROADCAST 41

Theorem 18.8. Algorithm 18.7 satisfies the properties of Theorem 18.5. Addi-
tionally, Algorithm 18.7 makes sure that no two messages msg(v, r) and msg’(v, r)
are accepted from the same node. It can tolerate f < n/5 byzantine nodes or
f < n/2 crash failures.

Proof. We prove each property separately.
Validity : Assume that a correct node u has already FIFO broadcast a value

for round r � 1. Node u now broadcasts msg(v, r). Every correct node w
broadcasts echo(w,msg(v, r)) upon receiving u’s message. Thus, all correct
eventually receive n� f such echo messages and accept msg(v, r). In the crash-
failure model, nodes do not send bogus messages. In the byzantine-failure model,
note that no correct node w broadcasts echo(w,msg(v0, r)), for v0 6= v because
that requires n� 2f > f echo messages.

Weak integrity : It is clear that weak integrity holds in the crash-failure
model. As far as the byzantine-failure model is concerned, assume for the
sake of contradiction that the correct node u never broadcast (v, r) but some
correct nodes accept this message. Let w be the first correct node that sent
echo(w,msg(v, r)). Since u never sent msg(v, r), w must have received n � 2f
echo messages. However, n�2f > f , which implies that there must be another
correct node that sent an echo message to w, which contradicts the assumption
that w is the first such node.

Totality : Assume that a correct node u accepts msg(v, r). Since u must have
received n�f echo messages and thus at least n�2f echo messages from correct
nodes, it follows that all correct nodes eventually receive at least n � 2f such
echo messages and broadcast an echo message themselves. Thus, all correct
nodes eventually receive at least n� f echo messages and accept msg(v, r).

It remains to show that at most one message will be accepted from some node
v in round r. In the crash-failure case, this property holds because all nodes
follow the algorithm and therefore send at most one message in a round. For
the byzantine-failure case, assume some correct node u has accepted msg(v, r)
in Line 6. This node must have received n� f echo messages for this message,
n� 2f of which were sent from the correct nodes. At least n� 2f � f = n� 3f
of those messages are sent for the first time by correct nodes. Now, assume for
contradiction that another correct node accepts msg’(v, r). Similarly, n � 3f
of those messages are sent for the first time by correct nodes. So, we have
n� 3f +n� 3f > n� f (for f < n/5) correct nodes sent echo that for the first
time, a contradiction.

18.3 Reliable Broadcast
Algorithm 18.4 has the valuable totality property: Regardless of whether or
not the sender is correct, if a node v accepts a value, all other nodes accept the
same value eventually. Algorithm 18.4, however, allows nodes to accept multiple
values. A broadcast algorithm is called a reliable broadcast algorithm if it also
has the (strong) integrity property:

Definition 18.9 (integrity). A broadcast algorithm has the integrity property
if every correct node delivers at most one message. The delivered message must
have been broadcast by a node.

42 CHAPTER 18. BROADCAST

Remarks:

• Since only one message is delivered, we also insist that this message
is the same across all nodes.

Definition 18.10 (Agreement). If correct nodes v and v0 accept messages m
and m0, respectively, then it must hold that m = m0.

Algorithm 18.11 Reliable Broadcast: Iteration i, Sender vS
1: Code for sender vS with input xS :
2: Send msg<i,vS>(xS) to everyone.
3:
4: Code for node v:
5: // Ignore any messages tagged with different values i, vS .
6: upon receiving msg<i,vS>(x) from vS :
7: If no echo<i,vS> message was sent in this instance:
8: Send echo<i,vS>(x) to everyone.
9: end upon

10:
11: upon receiving echo<i,vS>(x) from n� f distinct nodes or

ready<i,vS>(x) from f + 1 distinct nodes:
12: Send ready<i,vS>(x) to everyone.
13: end upon

14:
15: upon receiving ready<i,vS>(x) from 2f + 1 distinct nodes:
16: Accept msg<i,vS>(x).
17: end upon

Theorem 18.12. Algorithm 18.11 achieves the following properties, even when
f < n/3 of the nodes involved are byzantine:

• Validity: If the sender vS is correct, every correct node accepts msg<i,vS>(xS).

• Totality: If a correct node accepts msg<i,vS>(x), then every correct node
accepts msg<i,vS>(x) eventually

• Integrity: At most one message is accepted, and this message must have
been broadcast.

• Agreement: If a message is accepted, all correct nodes accept the same
message.

Remarks:

• The tag < i, vS > represents the instance’s identifier. This enables
nodes to distinguish which messages belong to which algorithm exe-
cution, which is helpful when running multiple instances of the algo-
rithm. Most often, for simplicity of presentation, the identifiers are
implicit.

18.4. EFFICIENT RELIABLE BROADCAST 43

• Messages with differents tag < i0, v0S > are ignored in an instance i
with sender vS . You can think of them as being stored in some queue
until instance i with sender vS is running.

Lemma 18.13. Assume that the sender vS is correct and has input xS. Then,
every correct node accepts msg<i,vS>(xS).

Proof. First, since vS is correct, no correct node sends echo<i,vS>(y) for any
value y 6= xS , and hence no correct node sends ready<i,vS>(y) for any y 6= xS .
Therefore, no correct node accepts y 6= xS .

Every node eventually receives msg<i,vS>(xS) from the correct sender, and
therefore every correct node eventually sends echo<i,vS>(xS). It follows that
every correct node eventually receives n�f messages echo<i,vS>(xS) and hence
sends ready<i,vS>(xS). Finally, every correct node eventually receives n � f
messages ready<i,vS>(xS) and accepts msg<i,vS>(xS).

Lemma 18.14. If a correct node v sends ready<i,vS>(x), then no correct node
sends ready<i,vS>(y) for y 6= x.

Proof. Without loss of generality, assume that v and u are the first correct
nodes that send ready<i,vS>(x) and ready<i,vS>(y) respectively. Then, v has
received echo<i,vS>(x) from n � f nodes, while u has received echo<i,vS>(y)
from n � f nodes. Then, there are (n � f) + (n � f) � n > f nodes, hence
at least one correct node, that sent multiple echo messages for different values,
which contradicts the algorithm.

Lemma 18.15. If correct nodes v and u accept msg<i,vS>(x) and msg<i,vS>(y)
respectively, then x = y.

Proof. Since v has accepted msg<i,vS>(x), at least one correct node has sent
ready<i,vS>(x). Then, no correct node has sent ready<i,vS>(y) for y 6= x,
according to Lemma 18.14. Therefore, if u accepts msg<i,vS>(y), x = y.

Lemma 18.16. If a correct node v accepts msg<i,vS>(x), then every correct
node accepts msg<i,vS>(x) eventually.

Proof. By Lemma 18.15, no correct node accepts msg<i,vS>(y) with y 6= x.
Node v has received 2f+1 messages ready<i,vS>(x), hence at least f+1 mes-

sages ready<i,vS>(x) coming from correct nodes. All correct nodes eventually
receive these f + 1 messages ready<i,vS>(x). As Lemma 18.14 guarantees that
no correct node sends ready<i,vS>(y) for y 6= x, it follows that every correct
node sends ready<i,vS>(x) eventually. These messages are delivered eventually,
and therefore all correct nodes accept the same msg<i,vS>(x).

18.4 Efficient Reliable Broadcast
How "expensive" is Algorithm 18.11 in terms of the size |m| of the message m
that is broadcast?

Definition 18.17 (Communication complexity). The communication complex-
ity of an algorithm is the number of bits that all correct nodes together send in
the worst case.

44 CHAPTER 18. BROADCAST

Theorem 18.18. Algorithm 18.11 has a communication complexity of O(n2|m|).

Proof. Every correct node other than the source node broadcasts the message
m of size |m| exactly once in an echo and a ready message. The source node
further broadcasts m in the first step. The total communication complexity is
therefore n|m|+ 2n2|m| 2 O(n2|m|).

Remarks:

• Each node needs to receive the full message m. Moreover, it can be
shown that reliably broadcasting a single bit incurs a communication
complexity of ⌦(n2

), so the best possible bound is n|m|+ ⌦(n2
).

• In real-world systems, it often holds that |m| � n. Can we construct
a more efficient reliable broadcast algorithm for this case? Yes, using
a coding-based mechanism!

Definition 18.19 (Erasure code). A (n, k)-erasure code is a code that trans-
forms a message of k symbols (of some given alphabet) into a message with
n > k symbols such that the original message can be recovered from a subset of
the n symbols.

Remarks:

• We consider optimal erasure codes, which have the property that any
subset of k symbols is sufficient to reconstruct the original message.

• When using an optimal erasure code, it is possible to split a message of
size L � k into n fragments of approximate size L/k each (consisting
of one or more symbols). A fragment may be slightly larger, e.g.,
padding the original message to a size that is evenly divisible by k.

• The basic idea is to set k := f+1 and encode n fragments of size L/(f+
1), n being the number of nodes in the subnet. The sender can send
each node a different fragment, which the receiving nodes broadcast.
Each node can then reconstruct the message m when receiving f + 1

different and valid fragments.

• Note that at least f + 1 fragments must be required, otherwise the f
malicious nodes could fabricate any message themselves.

• Each fragment must be a valid encoding. How can we ensure that
malicious nodes do not send random data instead of valid fragments?

Definition 18.20 (Merkle tree). A Merkle tree is a tree in which every leaf
is labeled with the hash of a data block, and every inner node is labeled with the
hash of the labels of its children.

18.4. EFFICIENT RELIABLE BROADCAST 45

Remarks:

• The n fragments are placed at the leaves. For example, if there are
4 fragments f1, . . . , f4, we would get the Merkle tree depicted in Fig-
ure 18.21, where h1 := H(H(f1)|H(f2)), h2 := H(H(f3)|H(f4)), and
h0 := H(h1|h2). The operator | denotes the concatenation of the two
given hash values.

• A proof consists of all the hashes required to recompute h0 given a
fragment. For example, given f2 in Figure 18.21, the hashes h(f1) and
h2 are needed. Note that a hash is required per level of the tree, i.e.,
the number of hashes is logarithmic in the number of fragments.

h0

h1 h2

f2f1 f3 f4

Figure 18.21: A Merkle tree for 4 fragments f1, . . . , f4 is shown. It holds that
hi := H(H(f2i�1)|H(f2i)) for i = 1, 2 and h0 := H(h1|h2).

Remarks:

• Algorithm 18.22 uses Algorithm 18.11 to first agree on the Merkle root
hash h0 of the message. The validity of received fragment is verified
against the reliably broadcast root hash h0.

• If the recovered message is not consistent with the broadcast root
hash, it is safe not to deliver anything because all correct nodes that
recover the message must reach the same conclusion.

Theorem 18.23. Algorithm 18.22 implements reliable broadcast tolerating f <
n/3 byzantine nodes in the asynchronous communication model.

Proof. Let v be a correct node that delivers m. Since n� f > n� 2f = f + 1,
m 6= ?, and root_hash 6= ?, v must have successfully reconstructed the message
and all fragments beforehand and broadcast its fragment. Since |F | = n � f ,
v must have received fragments from at least n � 2f correct nodes. These
n � 2f correct nodes have broadcast their fragments, which implies that all
correct nodes eventually receive at least n � 2f = f + 1 fragments. According
to the algorithm, all correct nodes then reconstruct the message m successfully
(because v reconstructed it successfully) and broadcast their fragments as well
if they have not already done so earlier. Hence it follows that all correct nodes
eventually broadcast their fragments and, since there are at least n� f correct

46 CHAPTER 18. BROADCAST

Algorithm 18.22 Executed at node vi. The algorithm uses a (n, f + 1)-
erasure code. Initially, root_hash = ?, F = {}, and m = ?.
1: (f1, . . . , fn) := get_fragments(m)
2: h0 := get_merkle_root_hash((f1, . . . , fn))
3: Execute Algorithm 18.11 for message root_hash := h0

4: for vj 2 V do

5: Pj := get_merkle_proof((f1, . . . , fn), j)
6: Send (fj , Pj) to vj
7: end for

8:
9: upon receiving (fj , Pj) and root_hash 6= ?:

10: if valid(fj , Pj , root_hash) then

11: F := F [{fj}
12: if i = j and not broadcast (fi, Pi) before then

13: Broadcast (fi, Pi)
14: end if

15: end if

16: end upon

17:
18: if |F | = f + 1 and m = ? then

19: m := recover_message(F)
20: (f1, . . . , fn) := get_fragments(m)
21: h0 := get_merkle_root_hash((f1, . . . , fn))
22: if h0 = root_hash then

23: if not broadcast (fi, Pi) before then

24: Pi := get_merkle_proof((f1, . . . , fn), i)
25: Broadcast (fi, Pi)
26: end if

27: else

28: root_hash := ?
29: end if

30: end if

31:
32: if |F | = n� f and m 6= ? and root_hash 6= ? and not delivered then

33: deliver(m)

34: end if

18.4. EFFICIENT RELIABLE BROADCAST 47

nodes, |F | = n � f , root_hash 6= ?, and m 6= ? holds eventually, causing all
correct nodes to deliver the message m.

Remarks:

• The following theorem shows that the communication complexity is
indeed much better for |m| � n! Let H denote the size of a hash in
the Merkle tree.

Theorem 18.24. Algorithm 18.22 has a communication complexity of 3|m|n+
O(n2

log(n)H) in the asynchronous communication model.

Proof. The initial reliable broadcast has a communication complexity of O(n2H).
For a message of size |m|, the fragment size is v/(f + 1) 3|m|/n. A Merkle
proof consists of approximately log(n) hashes of size H each. The n messages
from the sender thus require n · (3|m|/n+ log(n)H) 2 3|m|+O(n log(n)H) bits
to be sent. Subsequently, every node broadcasts its fragment, together with the
Merkle proof, at most once, which requires at most n(n�1)·(3|m|/n+log(n)H) 2
3|m|(n�1)+O(n2

log(n)H) bits (not counting the fragments that the nodes send
to themselves. Thus, the total communication complexity is upper bounded by
3|m|n+O(n2

log(n)H).

Remarks:

• The communication complexity is asymptotically optimal for |m| 2
⌦(n log(n)H).

• If the sender is correct and messages arrive within constant time, the
algorithm terminates in constant time.

• However, the overhead factor for large messages is 3. Can we do
better?

Theorem 18.26. Algorithm 18.25 implements reliable broadcast tolerating f <
n/3 byzantine nodes in the asynchronous communication model.

Proof. Let v be a correct node that delivers m. Exactly as for Algorithm 18.22,
v must have successfully reconstructed the message and there can only be one
such message because the root hash is reliably broadcast first.

Node v adds all nodes from which it received a fragment to R. For any node
w 2 R it holds that w either sent its own fragment or v’s fragment. However,
the latter case also implies that w must have its own fragment. Since v sends
fragments to every node not in R, every correct node will eventually get its
fragment, which it will then broadcast. Thus, every correct node will eventually
get at least n� f fragments, reconstruct m, and deliver it.

Theorem 18.27. Algorithm 18.25 has a communication complexity of 2|m|n+
O(n2

log(n)H) in the asynchronous communication model.

Proof. As before, the initial reliable broadcast has a communication complexity
of O(n2H), whereas the transmission of all Merkle proofs requires O(n2

log(n)H)

bits to be sent. For a message of size |m|, the fragment size is |m|/(2f + 1)
3
2 |m|/n. The initial sender first sends a fragment, including the corresponding

48 CHAPTER 18. BROADCAST

Algorithm 18.25 Executed at node vi. The algorithm uses a (n, 2f + 1)-
erasure code. Initially, root_hash = ?, F = R = {}, and m = ?.
1: (f1, . . . , fn) := get_fragments(m)
2: h0 := get_merkle_root_hash((f1, . . . , fn))
3: Execute Algorithm 18.11 for message root_hash := h0

4: for vj 2 V do

5: Pj := get_merkle_proof((f1, . . . , fn), j)
6: Send (fj , Pj) to vj
7: end for

8:
9: upon receiving (fj , Pj) and root_hash 6= ?:

10: if valid(fj , Pj , root_hash) then

11: F := F [{fj}; R := R [{vj}
12: if i = j and not broadcast (fi, Pi) before then

13: Broadcast (fi, Pi)
14: end if

15: end if

16: end upon

17:
18: if |F | = 2f + 1 and m = ? then

19: m := recover_message(F)
20: (f1, . . . , fn) := get_fragments(m)
21: h0 := get_merkle_root_hash((f1, . . . , fn))
22: if h0 = root_hash then

23: for vj 2 V \R do

24: Pj := get_merkle_proof((f1, . . . , fn), j)
25: Send (fj , Pj) to vj
26: end for

27: else

28: root_hash := ?
29: end if

30: end if

31:
32: if |F | = n� f and m 6= ? and root_hash 6= ? and not delivered then

33: deliver(m)

34: end if

18.4. EFFICIENT RELIABLE BROADCAST 49

Merkle proof, to all other nodes, which requires (n � 1)|m| + O(Hn log(n))
bits. Every node broadcasts its fragment plus Merkle proof to all other nodes.
Moreover, every node broadcasts w’s fragment plus Merkle proof for every w 2
V \R. Since |R| = 2f+1, it holds that |V \R| < n/3 and thus the communication
complexity is upper bounded by

(n� 1)|m|+ n · (n� 1)|m|+ n · n
3
|m|+O(n2

log(n)H)

<
4

3
n2|m|+O(n2

log(n)H)

=
4

3
n2 3

2

|m|
n

+O(n2
log(n)H)

= 2|m|n+O(n2
log(n)H)

Remarks:

• Can we do better? Yes! There is a more complex algorithm that has
a communication complexity of 3

2 |m|n + O(n2
log(n)H). This algo-

rithm encodes fragments into mini-fragments (i.e., it uses two layers
of erasure coding!) to reduce the overhead further.

• It can be shown that any reliable broadcast algorithm that terminates
in an optimal two rounds if the initial sender is correct and that is
somewhat balanced (in that the initial sender does not send a dis-
proportionate amount of data) has a communication complexity of at
least 3

2 |m|n. Proving tight bounds that hold more generally is an open
problem!

Definition 18.28 (Atomic Broadcast). Atomic broadcast makes sure that
all messages are accepted in the same order by every node. That is, for any pair
of nodes u, v, and for any two messages m1 and m2, node u accepts m1 before
m2 if and only if node v accepts m1 before m2.

Remarks:

• Definition 18.28 is equivalent to Definition 15.8, i.e., atomic broadcast
can be used to implement state replication. It is therefore harder to
implement atomic broadcast than reliable broadcast.

Chapter Notes
Broadcast has been studied since the mid 1980s [BT85]. Bracha published
the first reliable broadcast protocol, Algorithm 18.11, in 1987 [Bra87]. In the
same year, it was shown how to replace signed communication with a broadcast
primitive to obtain an equivalent non-authenticated algorithm [ST87]. In 2001,
modular definitions for several broadcast problems, including reliable, atomic,
and secure causal broadcast, were presented including protocols that implement
these broadcast variants [CKPS01].

50 CHAPTER 18. BROADCAST

After the publication of Bracha’s algorithm, it took 18 years until Cachin
and Tessaro presented a reliable broadcast algorithm based on erasure cod-
ing [CT05], which brought the overhead down from a factor of n to 3. It took
almost exactly as long until this bound was improved, first to an overhead factor
of 2 [Loc24], and then to 1.5 [LS24]. While it has been shown that any "weakly
balanced" reliable broadcast algorithm (where the sender sender sends o(n|m|)
bits) and the algorithm terminates in 2 or 3 rounds if the sender is honest, has
a communication complexity of at least 1.5n|m| [Loc24], it is an open problem
whether a better bound is possible in general.

This chapter was written in collaboration with Thomas Locher.

Bibliography
[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. In-

formation and Computation, 75(2):130–143, 1987.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broad-
cast protocols. Journal of the ACM (JACM), 32(4):824–840, 1985.

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup.
Secure and efficient asynchronous broadcast protocols. In Annual
International Cryptology Conference, pages 524–541. Springer, 2001.

[CT05] Christian Cachin and Stefano Tessaro. Asynchronous verifiable infor-
mation dispersal. In 24th IEEE Symposium on Reliable Distributed
Systems (SRDS’05), pages 191–201. IEEE, 2005.

[Loc24] Thomas Locher. Byzantine reliable broadcast with low communica-
tion and time complexity. arXiv preprint arXiv:2404.08070, 2024.

[LS24] Thomas Locher and Victor Shoup. Minicast: Minimizing the commu-
nication complexity of reliable broadcast. Cryptology ePrint Archive,
2024.

[ST87] T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts
to derive simple fault-tolerant algorithms. Distributed Computing,
2(2):80–94, Jun 1987.

