Chapter 20

Quorum Systems

What happens if a single server is no longer powerful enough to service all your
customers? The obvious choice is to add more servers and to use the majority
approach (e.g. Paxos, Chapter to guarantee consistency. However, even
if you buy one million servers, a client still has to access more than half of
them per request! While you gain fault-tolerance, your efficiency can at most
be doubled. Do we have to give up on consistency?

Let us take a step back: We used majorities because majority sets always
overlap. But are majority sets the only sets that guarantee overlap? In this
chapter we study the theory behind overlapping sets, known as quorum systems.

Definition 20.1 (quorum, quorum system). Let V = {vy,...,v,} be a set of
nodes. A quorum @ C V is a subset of these nodes. A quorum system
S C 2V is a set of quorums s.t. every two quorums intersect, i.e., Q1 N Qo # ()

for all Q1,Q2 € S.
Remarks:

e When a quorum system is being used, a client selects a quorum, ac-
quires a lock (or ticket) on all nodes of the quorum, and when done
releases all locks again. The idea is that no matter which quorum is
chosen, its nodes will intersect with the nodes of every other quorum.

e What can happen if two quorums try to lock their nodes at the same
time?

e A quorum system S is called minimal if VQ1,Q2 € S: Q1 € Qo.

e The simplest quorum system imaginable consists of just one quorum,
which in turn just consists of one server. It is known as Singleton

(or primary copy).
e In the Majority quorum system, every quorum has | %] + 1 nodes.

e Can you think of other simple quorum systems?

66

20.1. LOAD AND WORK 67

20.1 Load and Work

Definition 20.2 (access strategy). An access strategy Z defines the proba-
bility Pz(Q) of accessing a quorum Q € S s.t. 3 o5 P7(Q) = 1.
Definition 20.3 (load).

e The load of access strategy Z on a node v; is Lz(vi) = Y gcs.,eq P2(Q)-
The load is the probability that v; € Q if Q is sampled from S.

e The load induced by access strategy Z on a quorum system S is the maz-
imal load induced by Z on any node in S, i.e., Lz(S) = maxy,,es Lz(v;).
e The load of a quorum system S is L(S) = ming Lz(S).
Definition 20.4 (work).
e The work of a quorum Q € S is the number of nodes in Q, W(Q) = |Q)|.

o The work induced by access strategy Z on a quorum system S is the
expected number of nodes accessed, i.e., Wz(S) =3 5cs Pz(Q) - W(Q).

e The work of a quorum system S is W(S) = ming Wz(S).

Remarks:

e Note that you cannot choose different access strategies Z for work and
load, you have to pick a single Z for both.

e Observe that for some access strategy Z the work Wz(S) can be
rewritten as > oc s ,cq P7(Q); we can then swap summation or-
der to get >, cv D gesweq P2(Q) = X ey Lz(v). In other words,
the work induced by Z is the sum of the individual loads induced on
the nodes.

o We illustrate the above concepts with a small example. Let V =
{v1,v2,v3,v4,05} and § = {Q1,Q2, @3, Qs}, With Q1 = {v1,v2},
Q2 = {v1,vs,v4}, Q3 = {va,v3,05}, Qs = {v2,v4,v5}. If we choose
the access strategy Z s.t. Pz(Q1) = 1/2 and Pz(Q2) = Pz(Q3) =
Pz(Q4) = 1/6, then the node with the highest load is vo with Lz (vs)
=1/2+1/6+1/6 =5/6, i.e., Lz(S) =5/6. Regarding work, we have
Wz(8)=1/2-24+1/6-3+1/6-3+1/6-3=5/2.

e Can you come up with a better access strategy for S?

e If every quorum @ in a quorum system S has the same number of
elements, S is called uniform.

e What is the minimum load a quorum system can have?

Primary Copy vs. Majority Singleton Majority
How many nodes need to be accessed? (Work) 1 ~n/2
What is the load of the busiest node? (Load) 1 ~1/2

Table 20.5: First comparison of the Singleton and Majority quorum systems.
Note that the Singleton quorum system can be a good choice when the failure
probability of every single node is > 1/2.

68 CHAPTER 20. QUORUM SYSTEMS

Theorem 20.6. Let S be a quorum system. Then L(S) > 1/v/n holds.

Proof. Let Q = {v1,...,v4} be a quorum of minimal size in S, with |Q| = gq.
Let Z be an access strategy for S. Every other quorum in S intersects in at
least one element with this quorum @. Each time a quorum is accessed, at least
one node in @ is accessed as well, yielding a lower bound of Lz(v;) > 1/q for
some v; € Q.

Furthermore, as () is minimal, at least ¢ nodes need to be accessed, yielding
W(S) > q. Thus, Wz(S) =3, cv Lz(v) > q, s0 Lz(v;) > q/n for some v; € V.
In other words, as each time g nodes are accessed, the load of the most accessed
node is at least ¢/n.

Combining both ideas leads to Lz(S) > max (1/q,q/n) = Lz(S) > 1/+/n.
Thus, L(S) > 1/y/n, as Z can be any access strategy. O

Remarks:

e Can we achieve this load?

20.2 Grid Quorum Systems

Definition 20.7 (Basic Grid quorum system). Assume \/n € N, and arrange
the n nodes in a square matrixz with side length of \/n, i.e., in a grid. The basic
Grid quorum system consists of \/n quorums, with each containing the full row
i and the full column i, for 1 <i < /n.

Figure 20.8: The basic version of the Grid quorum system, where each quorum
Q; with 1 < ¢ < /n uses row i and column 7. The size of each quorum is
2y/n — 1 and two quorums overlap in exactly two nodes. Thus, when the access
strategy Z is uniform (i.e., the probability of each quorum is 1/4/n), the work
is 24/n — 1, and the load of every node is in ©(1//n).

Remarks:

e Consider the right picture in Figure |20.8f The two quorums intersect
in two nodes. If both quorums were to be accessed at the same time,
it is not guaranteed that at least one quorum will lock all of its nodes,
as they could enter a deadlock!

e In the case of just two quorums, one could solve this by letting the
quorums just intersect in one node, see Figure However, already
with three quorums the same situation could occur again, progress is
not guaranteed!

20.2. GRID QUORUM SYSTEMS 69

Figure 20.9: There are other ways to choose quorums in the grid s.t. pairwise
different quorums only intersect in one node. The size of each quorum is between
Vvn and 24/n — 1, ie., the work is in ©(y/n). When the access strategy Z is
uniform, the load of every node is in ©(1/y/n).

e However, by deviating from the “access all at once” strategy, we can
guarantee progress if the nodes are totally ordered!

Algorithm 20.10 Sequential Locking Strategy for a Quorum @
1: Attempt to lock the nodes one by one, ordered by their identifiers
2: Should a node be already locked, release all locks and start over

Theorem 20.11. If each quorum is accessed by Algorithm [20.10, at least one
quorum will obtain a lock for all of its nodes.

Proof. We prove the theorem by contradiction. Assume no quorum can make
progress, i.e., for every quorum we have: At least one of its nodes is locked by
another quorum. Let v be the node with the highest identifier that is locked by
some quorum . Observe that @ already locked all of its nodes with a smaller
identifier than v, otherwise Q would have restarted. As all nodes with a higher
identifier than v are not locked, @ either has locked all of its nodes or can
make progress — a contradiction. As the set of nodes is finite, one quorum will
eventually be able to lock all of its nodes. O

Remarks:

e But now we are back to sequential accesses in a distributed system?
Let’s do it concurrently with the same idea, i.e., resolving conflicts by
the ordering of the nodes. Then, a quorum that locked the highest
identifier so far can always make progress!

Theorem 20.13. If the nodes and quorums use Algorithm |20.12, at least one

quorum will obtain a lock for all of its nodes.

70 CHAPTER 20. QUORUM SYSTEMS

Algorithm 20.12 Concurrent Locking Strategy for a Quorum @

Invariant: Let vg € @ be the highest identifier of a node locked by @ s.t. all
nodes v; € @ with v; < vg are locked by @ as well. Should @ not have any
lock, then vq is set to 0.

1: repeat

2: Attempt to lock all nodes of the quorum @

3 for each node v € @) that was not able to be locked by @ do
4 exchange vg and v with the quorum @’ that locked v

5 if vg > vgr then

6: Q' releases lock on v and @ acquires lock on v

7 end if

8 end for

9: until all nodes of the quorum @ are locked

Proof. The proof is analogous to the proof of Theorem Assume for con-
tradiction that no quorum can make progress. However, at least the quorum
with the highest vg can always make progress — a contradiction! As the set of
nodes is finite, at least one quorum will eventually be able to acquire a lock on
all of its nodes. O

Remarks:

e What if a quorum locks all of its nodes and then crashes? Is the
quorum system dead now? This issue can be prevented by, e.g., using
leases instead of locks: leases have a timeout, i.e., a lock is released
eventually. But what happens if a quorum is slow and its acquired
leases expire before it can acquire all leases?

20.3 Fault Tolerance

Definition 20.14 (resilience). If any f nodes from a quorum system S can fail
s.t. there is still a quorum @Q € S without failed nodes, then S is f-resilient.
The largest such f is the resilience R(S).

Theorem 20.15. Let S be a Grid quorum system where each of the n quorums
consists of a full row and a full column. S has a resilience of \/n — 1.

Proof. If all y/n nodes on the diagonal of the grid fail, then every quorum will
have at least one failed node. Should less than y/n nodes fail, then there is a
row and a column without failed nodes. O

Remarks:

e The Grid quorum system in Theorem is different from the Basic
Grid quorum system described in Definition In each quorum in
the Basic Grid quorum system the row and column index are identical,
while in the Grid quorum system of Theorem [20.15|this is not the case.

Definition 20.16 (failure probability). Assume that every node works with a
fized probability p (in the following we assume concrete values, e.g. p > 1/2

20.3. FAULT TOLERANCE 71

or p > 2/3). The failure probability F,(S) of a quorum system S is the
probability that at least one node of every quorum fails.

Remarks:
e The asymptotic failure probability is F,(S) for n — co.

Facts 20.17. A version of a Chernoff bound states the following:

Let x1,...,x, be independent Bernoulli-distributed random wvariables with
Pr[z; = 1] = p; and Prjz; = 0] = 1 — p; = ¢;, then for X := Z?Zl r; and
pi=E[X] =" p; the following holds:

forall0 <d<1: PriX <(1-90)u] < o—h87/2

Theorem 20.18. The asymptotic failure probability of the Majority quorum
system is 0, for p > 1/2.

Proof. In a Majority quorum system each quorum contains exactly 5] + 1

nodes and each subset of nodes with cardinality || + 1 forms a quorum. If
only | % | nodes work, then the Majority quorum system fails. Otherwise there
is at least one quorum available. In order to calculate the failure probability we

define the following random variables:

~J 1, if node i works, happens with probability p
T 0, if node i fails, happens with probability ¢ =1 —p
and X := Z?:l x;, with u = np, whereas X corresponds to the number of
working nodes. To estimate the probability that the number of working nodes
is less than | §] 4+ 1 we will make use of the Chernoff inequality from above. By
setting § =1 — % we obtain Fp(S) = Pr[X < [5]] < Pr[X < 3] = Pr[X <
(L —=0)ul.

Withé =1- ﬁ we have 0 < § < 1/2 due to 1/2 < p < 1. Thus, we can use
the Chernoff bound and get Fp(S) < e #0°/2 ¢ ¢~ (), O

Theorem 20.19. The asymptotic failure probability of the Grid quorum system
is 1 forp < 1.

Proof. Consider the n = d - d nodes to be arranged in a d x d grid. A quorum
always contains one full row. In this estimation we will make use of the Bernoulli
inequality which states that for all n € Ny > —1: (1 +2)™ > 1 + na.

The system fails, if in each row at least one node fails (which happens with
probability 1 — p? for a particular row, as all nodes work with probability p?).
Therefore we can bound the failure probability from below as follows:

F,(8) > Prlat least one failure per row] = (1 —p9)? > 1 —dp? — 1. O
n—oo

Remarks:

e Now we have a quorum system with optimal load (the Grid) and one
with fault-tolerance (Majority), but what if we want both?

Definition 20.20 (B-Grid quorum system). Consider n = dhr nodes, arranged
in a rectangular grid with h - r rows and d columns. Each group of r rows is a
band, and r elements in a column restricted to a band are called a mini-column.
A quorum consists of one mini-column in every band and one element from
each mini-column of one band; thus every quorum has d+ hr — 1 elements. The
B-Grid quorum system consists of all such quorums.

72 CHAPTER 20. QUORUM SYSTEMS

mini-column

}7%

Figure 20.21: A B-Grid quorum system with n = 100 nodes, d = 10 columns,
h-r =10 rows, h = 5 bands, and r = 2. The depicted quorum has a d+hr—1 =
10+ 5-2—1 =19 nodes. If the access strategy Z is chosen uniformly, then we
have a work of d+hr —1 and a load of % By setting d = /n and r = Ind,
we obtain a work of © (y/n) and a load of © (1/y/n).

Theorem 20.22. The asymptotic failure probability of the B-Grid quorum sys-
tem is 0, for p > %

Proof. Suppose n = dhr and the elements are arranged in a grid with d columns
and h - r rows. The B-Grid quorum system does fail if in each band a complete
mini-column fails, because then it is not possible to choose a band where in each
mini-column an element is still working. It also fails if in a band an element in
each mini-column fails. If none of those cases holds, then the B-Grid system
does not fail. Those events may not be independent of each other, but with the
help of the union bound, we can upper bound the failure probability with the
following equation:

F,(S) < Prlin every band a complete mini-column fails]

+ Pr[in a band at least one element of every m.-col. fails]

< (d(1—=p)")" + (1 —p")?

We use d = \/n,7 =Ind, and 0 < 1 — p < 1/3. Using n'*? = z'*" we have
d(1—p)" <d-d™ 1/3 ~ @91, and hence for large enough d the whole first term
is bounded from above by d=%1" < 1/d? = 1/n.

Regarding the second term, we have p > 2/3, and h = d/Ind < d. Hence
we can bound the term from above by d(1 — d™?/3)? ~ d(1 — d~9*)¢. Using
(14+t/n)™ < et, we get (again, for large enough d) an upper bound of d(1 —
d=04d = (1 — d*6 /d)d < d-e4"° = q(=4"°/Imd)+1 « 4=2 — 1 /p. In total, we
have F,(S) € O(1/n). O

Chapter Notes

Historically, a quorum is the minimum number of members of a deliberative
body necessary to conduct the business of that group. Their use has inspired the
introduction of quorum systems in computer science since the late 1970s/early
1980s. Early work focused on Majority quorum systems |[Lam78| [Gif79, [Tho79],

BIBLIOGRAPHY 73

Singleton Majority Grid B-Grid*

Work 1 ~n/2 O (v/n) O (v/n)
Load 1 ~1/2 ©(1/yn) ©(1/ym)
Resilience 0 ~n/2 O (v/n) O (v/n)
F. Prob.** 1-p — 0 —1 — 0

Table 20.23: Overview of the different quorum systems regarding resilience,
work, load, and their asymptotic failure probability. The best entries in each
row are set in bold.

* Setting d = v/n and r = Ind.

** Assuming prob. ¢ = 1 — p is constant but significantly less than 1/2.

with the notion of minimality introduced shortly after [GB85]. The Grid quo-
rum system was first considered in [Mae85|, with the B-Grid being introduced
in [NW94|. The latter article and [PW95] also initiated the study of load and
resilience.

Quorum systems have also been extended to cope with nodes dynamically
leaving and joining, see, e.g., the dynamic paths quorum system in [NWO05].

For a further overview on quorum systems, we refer to the book by Vukoli¢
[Vuk12] and the article by Merideth and Reiter [MR10].

This chapter was written in collaboration with Klaus-Tycho Forster.

Bibliography

[GB85] Hector Garcia-Molina and Daniel Barbara. How to assign votes in a
distributed system. J. ACM, 32(4):841-860, 1985.

[Gif79] David K. Gifford. Weighted voting for replicated data. In Michael D.
Schroeder and Anita K. Jones, editors, Proceedings of the Seventh Sym-
posium on Operating System Principles, SOSP 1979, Asilomar Confer-
ence Grounds, Pacific Grove, California, USA, 10-12, December 1979,
pages 150-162. ACM, 1979.

[Lam78| Leslie Lamport. The implementation of reliable distributed multipro-
cess systems. Computer Networks, 2:95-114, 1978.

[Mae85] Mamoru Maekawa. A square root N algorithm for mutual exclusion
in decentralized systems. ACM Trans. Comput. Syst., 3(2):145-159,
1985.

[MR10] Michael G. Merideth and Michael K. Reiter. Selected results from the
latest decade of quorum systems research. In Bernadette Charron-Bost,
Fernando Pedone, and André Schiper, editors, Replication: Theory and
Practice, volume 5959 of Lecture Notes in Computer Science, pages
185-206. Springer, 2010.

[NW94] Moni Naor and Avishai Wool. The load, capacity and availability of
quorum systems. In 85th Annual Symposium on Foundations of Com-
puter Science, Santa Fe, New Mexico, USA, 20-22 November 199/,
pages 214-225. IEEE Computer Society, 1994.

74 CHAPTER 20. QUORUM SYSTEMS

[NWO05] Moni Naor and Udi Wieder. Scalable and dynamic quorum systems.
Distributed Computing, 17(4):311-322, 2005.

[PW95] David Peleg and Avishai Wool. The availability of quorum systems.
Inf. Comput., 123(2):210-223, 1995.

[Tho79] Robert H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. Database Syst.,
4(2):180-209, 1979.

[Vuk12] Marko Vukolic. Quorum Systems: With Applications to Storage and
Consensus. Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool Publishers, 2012.

