
Chapter 21

Approximate Agreement

Imagine a cooling room where a group of nodes equipped with thermometers
are measuring the room’s temperature. Each node is located in a different part
of the room, and the thermometers are not perfectly accurate. Can the nodes
agree on the room’s temperature, even if some of the nodes are byzantine?

While byzantine agreement, as discussed in Chapter 17, offers an immediate
solution, it comes with certain limitations. For instance, the standard validity
definition (all-same validity, Definition 17.5) allows the output value to be a
corrupted value unless correct nodes measure precisely the same temperature.
On the other hand, Median Validity (Definition 17.6) would ensure that the
agreed-upon temperature is close to the median of the correct measurements.
This is, in fact, an excellent guarantee. However, for this chapter, a weaker
definition will suffice.

Definition 21.1 (Correct-Range Validity). Correct nodes’ outputs fall within
the range of correct nodes’ inputs.

Moreover, deterministic synchronous byzantine agreement algorithms, with
or without strong validity guarantees, are inherently slow. On top of that,
the synchronous model’s assumptions may be a bit too strong for a real-world
network, and asynchronous algorithms are randomized and complicated.

In this chapter, we will learn how to overcome these limitations by relaxing
the agreement property of byzantine agreement. That is, in the real world,
does it really matter if a node believes that the agreed-upon temperature is
25.1276�C and another node believes it is 25.1277�C? We will allow the nodes
to agree on a temperature up to a small error " > 0.

Definition 21.2 ("-Agreement). If two correct nodes output x and y, then
|x� y | ".

This defines an exciting variant of byzantine agreement, known as Approxi-
mate Agreement.

Definition 21.3 (Approximate Agreement). There are n nodes, of which f
might be byzantine. Every node holds an input value in R. For any predefined
" > 0, every correct node must output a value in R such that correct-range
validity and "-agreement hold.
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21.1 How many corruptions can we tolerate?
Theorem 21.4. Even in the synchronous model, there is no algorithm achieving
approximate agreement when n  3f .

Proof Sketch. Assume that there is an algorithm A that achieves approximate
agreement when n  3f . We partition the n nodes into three (non-empty) sets
of size at most f : V0, V1, and Vb. Nodes in set V0 are correct and have input
0, and, similarly, nodes in set V1 are correct and have input 1. The nodes in Vb

are corrupted, and, similarly to Theorem 17.11, they support the input value
of each correct node. This way, because of correct-range validity, nodes in V0

output 0, and nodes in V1 output 1, which breaks "-agreement for any " < 1.

Remarks:

• Can we show that this bound is tight in the synchronous model?

21.2 Synchronous Algorithm

Algorithm 21.5 Synchronous Approximate Agreement
1: Code for node v with input x.
2: I = dlog2(max_range/")e.
3: x0 = x.
4: for i in 1...I do

5: Send xi�1 to all nodes.
6: Add every received value to multiset Ri.
7: Ti = the multiset obtained by removing the lowest f values in Ri and the

highest f values in Ri.
8: xi = (minTi +maxTi)/2.
9: end for

10: Output xI .

Remarks:

• We will assume that the input space is bounded, i.e. the honest nodes’
inputs are stored as double variables. The variable max_range rep-
resents the size of the input space. Approximate agreement can also
be solved without this assumption: through a mechanism that allows
correct nodes to estimate the initial range.

• Ri and Ti are multisets, i.e., sets with repeated values.

• In every iteration i, the correct nodes’ goal is to compute values xi

that get closer and are within the range of correct values xi�1. This
way, after sufficiently many iterations, "-agreement is achieved.

Lemma 21.6. Assume n > 3f , and let X be a multiset of n � f values (in-
tuitively, representing the correct values). Let R denote a multiset containing
n� f + k values, with 0  k  f , such that |X \R| � n� 2f + k.
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Then, if a multiset T is obtained by removing the lowest f and the highest
f values in R, it satisfies T 6= ; and T ✓ [minX,maxX].

Proof. We first show that T is non-empty: |T | = |R|� 2f � n� 3f > 0.
We now focus on showing that T is included in [minX,maxX]. R contains

at most values f in addition to those in X\R. Only these f values may be lower
than minX or higher than maxX. Since T is obtained by removing the lowest
f and the highest f values from R, minX  minT and maxT  maxX.

Lemma 21.7. Let T and T 0 denote two multisets such that T \T 0 6= ;, and let
x = (minT +maxT )/2 and y = (minT 0

+maxT 0
)/2.

Then, |x� y|  (max(T [ T 0
)�min(T [ T 0

))/2.

Proof. We assume without loss of generality that y � x. Since T \ T 0 6= ;,
minT 0  maxT , which allows us to obtain the following:

y � x = (maxT 0
+minT 0

)/2� (maxT +minT )/2

 (maxT 0 �minT )/2  (max(T [ T 0
)�min(T [ T 0

))/2.

Lemma 21.8. Assume n > 3f . Let R and R0 denote two multisets of at most
n values such that |R\R0| � 2f +1. Compute T and T 0 by removing the lowest
f and the highest f values of R and R0 respectively. Then, T \ T 0 6= ;.

Proof. Let R\ = R \R0. Since R\ ✓ R, the multiset T\ obtained by removing
the lowest f and the highest f values of R\ satisfies T\ ✓ T . Similarly, T\ is
also included in T 0, and therefore T\ ✓ T \ T 0.

It remains to show that T\ is non-empty: |T\| = |R\|� 2f � 1.

Theorem 21.9. Algorithm 21.5 achieves approximate agreement tolerating f <
n/3 byzantine corruptions.

Proof. Let X0 denote the multiset containing the correct nodes’ input values,
and let Xi denote the multiset containing the values xi obtained by the correct
nodes in iteration i. We use induction on 0  i  I to show that Algorithm
21.5 provides the following properties: every correct node obtains a value xi 2
[minXi�1,maxXi�1], and maxXi �minXi  (maxX0 �minX0)/2i.

The base case is trivial: nodes set x0 to their inputs. For the induction step,
assume that the properties hold for i� 1, and we show that they also hold for i:

• Every correct node holds a value xi 2 [minXi�1,maxXi�1]: Since every
correct node holds a value xi�1 at the beginning of iteration i, every node
obtains a multiset Ri containing n � f values in Xi�1 (from the correct
nodes, as the network is synchronous), and at most f byzantine values.
Applying Lemma 21.6, we obtain that every correct node obtains a mul-
tiset Ti ✓ [minXi�1,maxXi�1], and a value xi 2 [minXi�1,maxXi�1].

• maxXi�minXi  (maxX0�minX0)/2i: Let xi and yi denote the values
obtained by two correct nodes v and u in iteration i. We use Lemma 21.7
to show that |xi � yi|  (maxXi�1 �minXi�1)/2.
Nodes v and u have obtained multisets Ri that intersect in 2f + 1 values:
they both contain the n� f � 2f +1 correct values in Xi�1. Lemma 21.8
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then ensures that the multisets Ti and T 0

i obtained by v and u respectively
intersect as well. We may then apply Lemma 21.7, which ensures that
|xi � yi|  (max(Ti [ T 0

i ) � min(Ti [ T 0

i ))/2. In addition, according to
Lemma 21.6, Ti, T 0

i ✓ [minXi�1,maxXi�1]. We can conclude that:

|xi � yi|  (maxXi�1 �minXi�1)/2  (maxX0 �minX0)/2
i.

We have obtained that, in every iteration, nodes hold values satisfying
correct-range validity. In addition, after dlog2((maxX0 � minX0)/")e  I
iterations, "-agreement is achieved, and the following iterations maintain it.
Therefore, Algorithm 21.5 achieves approximate agreement.

Remarks:

• What about asynchronous communication?

21.3 Asynchronous Algorithm

Algorithm 21.10 Asynchronous Approximate Agreement: Naive Attempt
1: Code for node v with input x.
2: I = dlog2(max_range/")e.
3: x0 = x.
4: for i in 1...I do

5: Send msgi(xi�1) to all nodes.
6: upon receiving msgi(yi�1) from u:
7: If this is the first message msgi from u, add yi�1 to Ri.
8: When Ri contains values from n� f nodes:
9: Ti = the multiset obtained by removing the lowest f values in Ri

and the highest f values in Ri.
10: xi = (minTi +maxTi)/2.
11: Start the next iteration.
12: end upon

13: end for

14: Output xI .

Remarks:

• Does Algorithm 21.10 achieve approximate agreement when f < n/3?
No.

Counterexample: Assume n = 4 and f = 1. Nodes v0, v1, v2 are
correct and have inputs 0, 1, 1 respectively. The fourth node vb is
byzantine. In every iteration, the byzantine node vb sends �1 to v0,
and nothing to v1 and v2. We delay any message v2 sends to v0.
Hence, in the first iteration, v0 obtains R1 = {�1, 0, 1} and therefore
computes x1 = 0. On the other hand, both v1 and v2 obtain R0

1 =

{0, 1, 1}, and therefore compute x1 = 1. Each correct node maintains
its input value, and correct values never get "-close for any " < 1.
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• What about f < n/4? Also no.
Counterexample: Assume n = 5 and f = 1. Nodes v0, v1, v2, v3
are correct and have inputs 0, 0, 1, 1 respectively. The fifth node vb is
byzantine. In every iteration, nodes vb sends �1 to v0 and v1, and 2

to v2 and v3. The messages v0 sends to v2 and v3 are delayed, and,
similarly, the messages v3 sends to v0 and v1 are delayed. Hence, in
the first iteration, both v0 and v1 obtain R1 = {�1, 0, 0, 1}, while
v2 and v3 obtain R0

1 = {0, 1, 1, 2}. Hence, just like in the previous
counterexample, correct nodes maintain their input values.

• Does Algorithm 21.10 achieve approximate agreement when f < n/5?
Yes. "-agreement holds now: the multisets Ri pair-wise intersect in
2f+1 values, which enables us to apply Lemma 21.8 and Lemma 21.7.

• To break "-agreement when f < n/4, the byzantine nodes send incon-
sistent values. Is there any way we could prevent this?

Algorithm 21.11 Aynchronous Approximate Agreement: Second Attempt
1: Code for node v with input x.
2: I = dlog2(max_range/")e.
3: x0 = x.
4: for i in 1...I do

5: Send xi�1 to all nodes via Algorithm 18.11 (in the instance for iteration
i, with sender v).

6: upon accepting msg<i,u>(yi�1) from u via Algorithm 18.11 (that is, in
the instance of iteration i with sender u):

7: Add yi�1 to Ri.
8: When Ri contains values from n� f nodes:
9: Ti = the multiset obtained by removing the lowest f values in Ri

and the highest f values in Ri.
10: xi = (minTi +maxTi)/2.
11: Start the next iteration.
12: end upon

13: end for

14: Output xI .

Remarks:

• Does Algorithm 21.11 achieve approximate agreement secure against
f < n/4 corruptions? Yes.
Byzantine nodes cannot send inconsistent values anymore. Even when
f < n/4, nodes obtain multisets Ri that pair-wise intersect in at least
2f + 1 values. This allows us to prove that "-agreement holds with
the help of Lemma 21.8 and Lemma 21.7.

• Does Algorithm 21.11 achieve approximate agreement secure against
f < n/3 corruptions? Unfortunately not.
Counterexample: Assume n = 4 and f = 1. Nodes v0, v1, v2 are
correct and have inputs 0, 1, 1 respectively. The fourth node vb is
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byzantine. In every iteration, the byzantine node vb sends �1 via
Algorithm 18.11. Node v0 is the first correct node to receive this
value. For nodes v1 and v2, this value is delayed. Hence, although vb
sends its value via Algorithm 18.11, v1 and v2 will not receive it fast
enough.
We similarly delay any message v2 sends to v0, even though it is
sent via Algorithm 18.11. Hence, in the first iteration, v0 obtains
R1 = {�1, 0, 1} and therefore computes x1 = 0. On the other hand,
both v1 and v2 obtain R0

1 = {0, 1, 1}, and therefore compute their new
values as x1 = 1. In each of the following iterations, the correct nodes
will compute their new values identically.

• The main issue behind our attempts so far is that, if f = dn/3e�1, the
multisets Ti do not necessarily pair-wise intersect. This may prevent
the correct values from converging. Having more values in common in
the multisets Ri would help us, as suggested by Lemma 21.8.

• If only v0 could tell v1 and v2 to wait a bit longer for vb’s value... The
value sent by vb cannot be delayed forever for the other nodes.

• We just need to convince nodes to wait long enough. But what does
long enough mean? The so-called Witness Technique can help us.

21.3.1 The Witness Technique

Algorithm 21.12 The Witness Technique: Iteration i
1: Code for node v with input x.
2: Let R = ;, S = ;, W = ;.
3: Send x to all the nodes via Algorithm 18.11 (in the instance for iteration i,

with sender v).
4: upon accepting msgi,u(y) from u via Algorithm 18.11 (in the instance for

iteration i with sender u):
5: Add y to R and u to S.
6: The first time when |S| � n� f holds:
7: Send waiti(S) to all the nodes.
8: end upon

9: upon receiving waiti(S0
) from u such that |S0| � n� f :

10: When S0 ✓ S, add u to W .
11: The first time when |W | � n� f :
12: Output R.
13: end upon

Remarks:

• Once a node accepts values from n � f distinct nodes via Algorithm
18.11, it will report the set of senders S: “I got values from these
nodes, therefore you can wait for them as well”.

• When a node v receives such a set S0 from u, v checks if it has obtained
values from the nodes in S0 as well. If this is the case, v marks u as
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a witness. Otherwise, v will keep waiting, and it will receive more
values via Algorithm 18.11 (so eventually v can mark u as a witness)
or more sets S0. Once v marks n � f nodes as witnesses, v can stop
waiting for values and output R.

• Waiting for n � f witnesses will ensure that v and any node u have
at least one correct witness in common. This correct witness has
convinced v and u to wait for the same n � f values. Hence, their
multisets Ti will intersect, which leads to convergence.

Lemma 21.13. Assume that a correct node v has output R in Algorithm 21.12.
Then, R contains at least n�f+k values, with 0  k  f , out of which n�2f+k
are sent by correct nodes.

Proof. Node v adds to R any value received via Algorithm 18.11. As outputting
R requires that |W | � n � f , we obtain that |S| � n � f , i.e., R contains the
values that v received from n� f + k nodes (with 0  k  f). Out of these, at
most f will be sent by byzantine nodes, while the remaining are sent by correct
nodes (which Algorithm 18.11 ensures to be received correctly).

Lemma 21.14. Let v and u denote two correct nodes, and assume they output
R and R0 respectively. Then, |R \R0| � n� f .

Proof. Since v and u have obtained outputs, the termination condition of Al-
gorithm 21.12 ensures that they have obtained sets W and resp. W 0 such that
|W |, |W 0| � n � f . Then, v and u have f + 1 common witnesses: |W \W 0| �
(n� f) + (n� f)� n = n� 2f > f . At least one of these common witnesses is
a correct node w.

Node w has sent the same set Sw to both v and u. Both v and u have
consistently received all the values sent by the n� f nodes in Sw via Algorithm
18.11 and added them to R and R0 respectively. Therefore, |R\R0| � n�f .

Lemma 21.15. Every correct node v eventually outputs R.

Proof. It is sufficient to show that v eventually obtains |W | � n� f , i.e., marks
n � f nodes as witnesses. In the following, we show that node v marks all
correct nodes as witnesses (unless |W | � n � f already holds). Every node
receives n� f values via Algorithm 18.11 eventually (as there are n� f correct
nodes). Hence, every correct node sends its set S eventually. Node v eventually
receives the set S0 from a correct node u, and v eventually obtains outputs in
the instances of Algorithm 18.11 having nodes in S0 as senders. Therefore, v
eventually adds u to W . Since this applies to every correct node, it eventually
holds that |W | � n� f .

21.3.2 Optimal-Resilience Asynchronous Algorithm

Theorem 21.17. Algorithm 21.16 achieves asynchronous approximate agree-
ment secure against f < n/3 byzantine corruptions.

Proof. The proof is similar to that of Theorem 21.9. We use X0 to denote the
multiset containing the correct nodes’ input values, and Xi to denote the multi-
set containing the values xi obtained by the correct nodes in iteration i. Using
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Algorithm 21.16 Aynchronous Approximate Agreement
1: Code for node v with input x.
2: I = dlog2(max_range/")e.
3: x0 = x.
4: for i in 1...I do

5: Send xi�1 to all nodes via Algorithm 21.12 (in the unique instance corre-
sponding to iteration i).

6: upon obtaining output Ri:
7: Ti = the multiset obtained by removing the lowest f values in Ri and

the highest f values in Ri.
8: xi = (minTi +maxTi)/2.
9: Start the next iteration.

10: end upon

11: end for

12: Output xI .

induction on 0  i  I, one can show that Algorithm 21.16 provides the follow-
ing properties: every correct node obtains a value xi 2 [minXi�1,maxXi�1],
and maxXi �minXi  (maxX0 �minX0)/2i. This will then imply that Al-
gorithm 21.16 achieves approximate agreement.

The base case i = 0 is trivial: nodes initialize x0 to their inputs. For the
induction step, assume that the properties hold for i�1, and we show that they
also hold for i:

• Every correct node holds a value xi 2 [minXi�1,maxXi�1]: Lemma 21.15
ensures that every correct node obtains a multiset Ri via Algorithm 21.12.
Lemma 21.13 enables us to apply Lemma 21.6, and obtain that every
correct node obtains a multiset Ti ✓ [minXi�1,maxXi�1], and a value
xi 2 [minXi�1,maxXi�1].

• maxXi�minXi  (maxX0�minX0)/2i: Let xi and yi denote the values
obtained by two correct nodes v and u in iteration i. We use Lemma 21.7
to show that |xi � yi|  (maxXi�1 �minXi�1)/2.
Nodes v and u have obtained multisets Ri and resp. R0

i that intersect in
n�f values, according to Lemma 21.14. Then, we may apply Lemma 21.8
and obtain that the multisets Ti and T 0

i have a non-empty intersection.
Then, Lemma 21.7 ensures that |xi�yi|  (max(Ti[T 0

i )�min(Ti[T 0

i ))/2.
In addition, according to Lemma 21.6, Ti, T 0

i ✓ [minXi�1,maxXi�1].
This enables us to conclude that:

|xi � yi|  (maxXi�1 �minXi�1)/2  (maxX0 �minX0)/2
i.

Chapter Notes
While approximate agreement provides weaker guarantees in comparison to
byzantine agreement, it comes with many advantages: fast synchronous al-
gorithms, and simple deterministic solutions in the asynchronous model. In
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fact, many real-world scenarios that involve floating-point values are inher-
ently prone to small errors. Notable examples include clock synchronization
[HSSD84, LMS85, WL88], and robot coordination techniques, such as line-
gathering algorithms [BPBT10].

Approximate agreement was introduced in 1986 by Dolev, Lynch, Pinter,
Stark and Weihl [DLP+86]. In this paper, they show how Approximate Agree-
ment can be achieved when f < n/5 in an asynchronous network, and up to the
optimal threshold f < n/3 when the network is synchronous. Later, Abraham,
Amit, and Dolev [AAD05] have shown that the condition f < n/3 is sufficient
in the asynchronous model as well, and have proposed the Witness Technique.

The literature has considered various extensions of approximate agreement,
which address a wider range of scenarios. Some of these are multidimen-
sional approximate agreement, introduced by Mendes, Herlihy, Vaidya, and Garg
[MH13, VG13]. In this variant, each node holds a vector in RD as input, and
the correct parties try to converge to "-close (in terms of Euclidean distance)
outputs in RD that lie in the convex hull of their inputs.

Considering higher dimensions also turns out to be relevant in several prac-
tical applications, including scenarios where robots need to converge to close
locations in a 2 or 3-dimensional space [PBRT11], in distributed voting where
the preferences are described by assigning weights, or in optimization problems,
and maybe most prominently in machine learning [EMGG+20, SV16]: in feder-
ated machine learning, n parties (e.g., companies, hospitals) want to (or, must)
keep their training data private, but they agree to improve their model based on
the data of other parties. So each party runs its own machine learning model,
and learns with its own data. From time to time, the parties exchange their
learning parameters (in particular gradients, which are vectors). The parties try
to approximately agree on a gradient, while being resilient to Byzantine faults.
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