
Chapter 23

Clock Synchronization

“A man with a clock knows what time it is – a man with two is never
sure.” (Segal’s Law)

23.1 Time & Clocks
Definition 23.1 (Second). A second is the time that passes during 9,192,631,770
oscillation cycles of a caesium-133 atom.

Remarks:

• This definition is a bit simplified. The official definition is given by
the Bureau International des Poids et Mesures.

• Historically, a second was defined as one in 86,400 parts of a day,
dividing the day into 24 hours, 60 minutes and 60 seconds.

• Since the duration of a day depends on the unsteady rotation cycle
of the Earth, the novel oscillation-based definition has been adopted.
Leap seconds are used to keep time synchronized to Earth’s rotation.

Definition 23.2 (Wall-Clock Time). The wall-clock time t⇤ is the true time
(a perfectly accurate clock would show).

Definition 23.3 (Clock). A clock is a device that tracks and indicates time.

Remarks:

• A clock’s time t is a function of the wall-clock time t⇤, i.e., t = f(t⇤).
Ideally, t = t⇤, but in reality there are often errors.

Definition 23.4 (Clock Skew). The clock skew or clock error is the difference
between two clocks. In practice the clock skew is often modeled as t = (1+�)t⇤+
⇠(t⇤).
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Figure 23.8: Drift (left) and Jitter (right). On top is a square wave, the wall-
clock time t⇤.

Remarks:

• The importance of accurate timekeeping and clock synchronization
is reflected in the following statement by physicist Steven Jefferts:
“We’ve learned that every time we build a better clock, somebody
comes up with a use for it that you couldn’t have foreseen.”

Definition 23.5 (Drift). The drift � is the predictable clock error.

Remarks:

• Drift is relatively constant over time, but may change with supply
voltage, temperature and age of an oscillator.

• Stable clock sources, which offer a low drift, are generally preferred,
but also more expensive, larger and more power hungry, which is why
many consumer products feature inaccurate clocks.

Definition 23.6 (Parts Per Million). Clock drift is indicated in parts per mil-

lion (ppm). One ppm corresponds to a time error growth of one microsecond
per second.

Remarks:

• In PCs, the so-called real-time clock normally is a crystal oscillator
with a maximum drift between 5 and 100 ppm.

• Applications in signal processing, for instance GPS, need more accu-
rate clocks. Common drift values are 0.5 to 2 ppm.

Definition 23.7 (Jitter). The jitter ⇠ is the unpredictable, random noise of
the clock error.

Remarks:

• In other words, jitter is the irregularity of the clock. Unlike drift,
jitter can vary fast.

• Jitter captures all the errors that are not explained by drift. Fig-
ure 23.8 visualizes the concepts.
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23.2 Clock Synchronization Algorithm

How can the nodes of a distributed system remain synchronized? We first need
to specify the model more clearly.

Remarks:

• The system is modeled as an arbitrary connected graph G = (V,E),
where each node v is equipped with a clock Cv. A node v can only
communicate directly with its neighboring nodes. Every node w such
that {v, w} 2 E is called a neighbor of node v.

• The longest shortest path between any two nodes is called the diameter
of the network, denoted by D.

• The clock rates, i.e., the rate at which clock values change over time,
is always in the range [1� ", 1 + "] for some constant " ⌧ 1.

• Messages exchanged over any edge e 2 E is subject to a message delay,
which is always in the range [0, T ] for some upper bound T unknown
to the nodes.

• What about networks where message delays are fairly predictable?
In that case, the range [0, T ] can be considered the unpredictable
component of the message delay.

Algorithm 23.9 Clock synchronization algorithm (code for node v)
1: Increase clock Cv at local clock rate
2: upon clock value Cv reaches next integer value:
3: Send Cv to all neighboring nodes
4: end upon

5: upon receiving clock value Cw from node w:
6: if Cw > Cv then

7: Cv := Cw

8: Send Cv to all neighboring nodes
9: end if

10: end upon

Remarks:

• Algorithm 23.9 is quite simple: Periodically inform all neighboring
nodes about the current clock value, for example, when it reaches the
next integer value, where an integer increment represents the passing
of some specific amount of time. Whenever a node notices that it is
lagging behind, which must be the case when it receives a larger clock
value, it sets its clock value to the received value.

Theorem 23.10. Algorithm 23.9 guarantees that the clock skew between any
two nodes at any time is at most (1 + ")DT +

2"
1�" .
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Proof. Assume that the largest clock skew is reached when some node has the
clock value Cmax at some (real) time t⇤. Let node v have the smallest clock
value Cv at that time, maximizing the clock skew. Let C 0

max < Cmax denote the
last clock value that was propagated from one of the (possibly multiple) nodes
with the largest clock value and reached node v at time t⇤ � � for some � � 0.
Since the message delay is at most T , we have that the time interval between
C 0

max and Cmax is upper bounded by DT + �.
Note that it further holds that

�  1

1� "
(23.1)

because at most this time passes before a node broadcasts the next clock value,
i.e., � > 1

1�" would imply that v must also receive C 0
max + 1, a contradiction to

the assumption that C 0
max is the last received value.

Since v sets its clock value to any received value that is larger than its own
clock value, we have that

Cv � C 0

max + (1� ")�. (23.2)

The largest clock value always increases at most at rate 1 + " during the
time interval between C 0

max and Cmax, which is upper bounded by DT + �, so
we also have that

Cmax  C 0

max + (1 + ")(DT + �). (23.3)

Combining these inequalities, we get

Cmax � Cv

(23.2),(23.3)
 (1 + ")DT + 2"�

(23.1)
 (1 + ")DT +

2"

1� "
.

23.3 Global Skew
Definition 23.11 (Global Skew). For any network of nodes running a specific
clock synchronization algorithm, the global skew is the maximum clock skew
between any two nodes.

Remarks:

• As shown in the previous section, we can bound the global skew to
⇡ DT . Can we do better?

• There is a well-known result that a global skew of DT/2 cannot be
prevented. However, we can prove a stronger lower bound on the
global skew if we add the following condition.

Definition 23.12 (Linear real-time envelope). A clock synchronization algo-
rithm, starting at time t = 0 is said to satisfy the linear real-time envelope

condition if the clock values of all nodes are in the range [(1 � ")t, (1 + ")t] at
all times t.
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Remarks:

• In order to prove lower bounds on clock skews, we examine clock values
in indistinguishable executions.

Definition 23.13 (Execution). An execution E of a clock synchronization
algorithm specifies the hardware rate of every node and the message delay of
every message sent during the execution.

Theorem 23.14. Any clock synchronization algorithm that satisfies the linear
real-time envelope condition must have a global skew of at least (1� 2")DT .

Proof. Let v0, v1 . . . , vD be a path connecting nodes v0 and vD at distance D.
We restrict our attention to nodes on this path. We prove this statement using
three indistinguishable executions.

• Execution E1: All clock rates are always 1� ". For all i 2 {1, . . . , D}, all
message delays from vi to vi�1 are T , and the message delays from vi�1

to vi are 0.

• Execution E2: All clock rates are always 1 + ". For all i 2 {1, . . . , D}, all
message delays from vi to vi�1 are 1�"

1+"T , and the message delays from
vi�1 to vi are 0.

• Execution E3: For all i 2 {0, . . . , D}, the clock rate of node vi is 1 +

" � 2"
D i until time t0 :=

DT
2" . After that, all clock rates are 1 � ". All

messages delays are adjusted so that the execution is indistinguishable
from execution E1 and E2.

Since all clocks in execution E2 run faster by a factor of 1+"
1�" compared to

execution E1, messages delays must be lower by a factor of 1�"
1+" for messages

to arrive at the same local times. Since this is the case, the executions are
indistinguishable. Note that nodes may not run their clocks more slowly (or
decrease their clock value if this is allowed), as otherwise they would violate the
linear real-time envelope condition in execution E1 because all clock rates are
always 1 � ". Similarly, the nodes may not increase their clock rates or clock
values as otherwise they might violate the same condition if the nodes are in
execution E2.

Execution E3 is indistinguishable by definition but it remains to show that
it is a valid execution, i.e., all message delays are in the range [0, T ]. All clock
rates are the same as in execution E1, so we only need to consider messages that
are sent and received before t0. Since the difference in the clock rates between
neighboring nodes is 2"

D , the maximum skew that is built up until time t0 is
DT
2" · 2"

D = T . For all i 2 {1, . . . , D}, vi�1’s clock runs faster than vi’s clock, so
the delays of messages from vi to vi�1 may decrease by at most T , which is fine
because it is T in execution E1. Similarly, the message delays from any node vi�1

to vi may increase by at most T , which is fine because they are 0 in execution
E1 (and E2). We conclude that the executions are all indistinguishable.

Without loss of generality, assume that Cv0 � CvD at time t0 in execution
E1. Node v0 reaches Cv0 already at time t0o :=

1�"
1+" t0 in execution E3, i.e.,

1�"
1+" t0 � t0 =

2"
1+" t0 =

DT
1+" sooner than node vD reaches clock value CvD . Since
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vD’s clock value increases at a rate of 1 � ", vD’s clock value at time t00 is
C 0

vD
:= CvD � (1� ")DT

1+" . Hence, it follows that the clock skew at time t00 is

Cv0 � C 0

vD = Cv0 �
✓
CvD � (1� ")

DT

1 + "

◆
� (1� 2")DT.

Remarks:

• Note that Algorithm 23.9 satisfies Definition 23.12. We conclude that
its global skew is nearly optimal.

23.4 Local Skew
Definition 23.15 (Local Skew). For any network of nodes running a specific
clock synchronization algorithm, the local skew is the maximum clock skew
between neighboring nodes.

Remarks:

• We showed in the previous section that the global skew can be bounded
by ⇥(DT ), incurring an average clock skew of ⇥(T ) on a path of length
D.

• One might reasonably assume that a local skew bound of ⇥(T ) is
possible. As we will prove now, it is not: The best possible synchro-
nization between neighboring nodes depends on the diameter of the
network !

• Let’s start with the local skew of Algorithm 23.9.

Lemma 23.16. Algorithm 23.9 has a local skew of ⇥(DT ).

Proof. We saw that a global skew of ⇥(DT ) can be built up on a path v0, v1, . . . , vD
of length D. If the message delay is now reduced to zero to all nodes except vD,
then all nodes will immediately increase their clock values to the largest clock
value. Since this includes also the neighbors of node vD, the clock skew between
vD and its neighbors is ⇥(DT ).

Remarks:

• Naturally, as soon as vD receives a message from its neighbors, the
clock skew will disappear. However, the clock skew may not be short-
lived: The clock skew can be s 2 O(DT ) for ⇥(DT/s) time!

• This may seem like a weakness of this particular algorithm but other
"reasonable" algorithm also have a bad local skew. For example, an
algorithm that averages between all neighbors is even worse! It has a
global skew of ⇥(D2T ) and a local skew of ⇥(DT ).

• We will now show that no algorithm can guarantee a local skew of
⇥(T ).
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• As before, the hardware clock rate is in the range [1 � ", 1 + "] for
every node v at all times. Let hv(t) denote the hardware clock rate
of node v at time t. Instead of changing clock values instantaneously,
any node v may adapt the clock rate at which its clock Cv advances.
Concretely, we introduce the constants ↵ and � such that for any node
v and time t it may increase its clock value at a rate of at least ↵ and
at most �.

• We will again use indistinguishable executions in our proof. Let tE
denote the time when execution E ends, and let CE

v (t) be the clock
value at node v in execution E at time t during the execution.

• Let d(v, w) be the distance between v and w. If d(v, w) > 1, then v
and w are not directly connected.

Lemma 23.17. Given any clock synchronization algorithm and any two nodes
v and w, if all clock rates are 1 and all message delays are T/2 in an execution
E of duration 1+"/2

" d(v, w)T , then there is an execution Ē, starting at the same
time as E and with a duration of 1

"d(v, w)T such that CE
v (tE) = C Ē

v (tĒ) and
CE

w(tĒ) = C Ē
w(tĒ).

Proof. Execution Ē is defined as follows. The hardware clock rate of any node
u is

hu(t) =

(
1 +

"
2

⇣
1� d(v,u)

d(v,w)

⌘
if d(v, u)  d(v, w)

1 else

Message delays are adjusted in such a way that, at each node, each send and
receive event in execution Ē happens at the same hardware clock time as in
execution E . Since all events happen at the same local times, the executions are
indistinguishable!

However, it remains to show that Ē is actually a valid execution. The hard-
ware clock rates are in the range [1, 1+ "/2] ⇢ [1� ", 1+ "], which is fine. What
about the message delays? The hardware clocks of neighboring nodes drift apart
at a rate of at most "

2d(v,w) . Since the duration of Ē is 1
"d(v, w)T , events are

"spread apart" by at most "
2d(v,w)

1
"d(v, w)T = T/2. Since messages delays are

always T/2 in E , messages delays are in the range [0, T ] in Ē .
Node v’s clock runs 1+ "

2 times faster in Ē but Ē is 1+ "
2 times shorter than

E . Since E and Ē are indistinguishable, it follows that CE
v (tE) = C Ē

v (tĒ). Node
w’s clock runs at a clock rate of 1 in both executions. Since the executions are
indistinguishable, it follows that CE

w(tĒ) = C Ē
w(tĒ).

Remarks:

• It is important to read the clock conditions carefully: CE
v (tE) = C Ē

v (tĒ)
means that the value of node v’s clock at the end of execution E and
at the end of execution Ē are the same, even though Ē is shorter! On
the other hand, CE

w(tĒ) = C Ē
w(tĒ) means that w has the same time at

time tĒ in both E and Ē .

• So, the clock skew between v and w at time tĒ is greater in execution
Ē than in execution E .
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Definition 23.18 (Extended execution). Given an execution E ending at time
tE , we can define hardware clock rates and message delays in the interval [tE , tE0 ].
This extension is called an extended execution E 0 with duration tE0 � tE .
Execution E 0 inherits the state of all nodes and all messages sent in E that did
not reach their destination until time tE .

Theorem 23.19. Let b :=
l
4(��↵)(1+"/2)

↵"

m
. No clock synchronization algorithm

can prevent a local skew of

blogb Dc+ 2

4
↵T 2 ⌦(T logD)

on any graph G of diameter D.

Proof. Let D0 := bblogb Dc  D. For any k 2 N, 0  k  logb D
0, we claim that

there are two nodes vk and wk at distance d(vk, wk) = D0/bk such that

C Ēk
vk (tĒk

)� C Ēk
wk

(tĒk
) � k + 2

4
↵d(vk, wk)T (23.4)

at the end of some execution Ēk. Note that when setting k := logb D
0, which

means that d(vk, wk) = 1, we get the claimed bound on the local skew of
blogb Dc+2

4 ↵T . So, it remains to prove the claim!
Consider any two nodes v0 and w0 at distance d(v0, w0) = D0. Execution E0

has a duration of 1+"/2
" D0T . All message delays are T/2 and all hardware clock

rates are 1. Without loss of generality, we can assume that CE0
v0 (tE0) � CE0

w0
(tE0).

According to Lemma 23.17, there is an execution Ē0 of duration 1
"D

0T that
makes v0’s clock run faster but the executions are indistinguishable until time
tĒ0

. Since C Ē0
v (tĒ0

) = CE0
v (tE0) � CE0

w0
(tE0) and w0’s clock must increase by at

least ↵(tE0 � tĒ0
) = ↵D0T/2 between tĒ0

and tE0 , the clock skew at time tĒ0

must be at least ↵D0T/2 =
0+2
4 ↵d(v0, w0)T .

For the induction step, we assume that the claim is true for k, i.e., Inequal-
ity 23.4 holds for some nodes vk and wk at time tĒk

. We will now extend the
execution for a duration of 1+"/2

"
d(vk,wk)

b T . For messages that did not arrive
before tĒk

, we simply define that they all arrive immediately at the start of the
extended execution. As before, the hardware clock rate of all nodes is 1 and
message delays are T/2 for messages sent after tĒk

. During the extended exe-
cution, vk increases its clock at least at rate ↵, whereas wk increases its clock
at most at rate � for the entire duration of the extended execution. Thus, the
clock skew is reduced by at most (� � ↵) 1+"/2

"
d(vk,wk)

b T  ↵
4 d(vk, wk)T , i.e.,

the clock skew at the end of the extended execution, at time tEk+1 , is at least
k+1
4 ↵d(vk, wk)T .

Applying the pidgeonhole principle, there must be nodes vk+1 and wk+1 at
distance d(vk+1, wk+1) = d(vk, wk)/b for which it holds that the clock skew at
time tEk+1 is at least k+1

4 ↵d(vk+1, wk+1)T .
We can now use Lemma 23.17 again: There is an extended execution Ēk+1
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of duration 1
"
d(vk,wk)

b T =
1
"d(vk+1, wk+1)T such that

C Ēk
vk (tĒk+1

) = CEk+1
vk (tEk+1)

� CEk+1
wk

(tEk+1) +
k + 1

4
↵d(vk+1, wk+1)T

� C Ēk
wk

(tĒk+1
) + ↵(tEk+1 � tĒk+1

) +
k + 1

4
↵d(vk+1, wk+1)T

= C Ēk
wk

(tĒk+1
) +

↵

2
d(vk+1, wk+1)T +

k + 1

4
↵d(vk+1, wk+1)T

= C Ēk
wk

(tĒk+1
) +

(k + 1) + 2

4
↵d(vk+1, wk+1)T,

which proves the claim.

Remarks:

• The lower bound uses a fixed upper bound � on the rate at which
the clock value can be increased. Note that b ! 1 if � ! 1, that
is, the local skew bound becomes ⌦(T ) when nodes are allowed to
increase their clocks at arbitrarily high rates, including instantaneous
increases by any amount. A more complex proof exists that shows that
the lower bound of ⌦(T logD) holds even for an unbounded maximum
clock rate.

• Note that these are worst-case bounds. In practice, clock drift and
message delays may not be the worst possible. Typically the speed of
hardware clocks changes at a comparatively slow pace and the mes-
sage transmission times follow a benign probability distribution. If we
assume this, better protocols do exist, in theory as well as in practice.

Chapter Notes

It has been known for a long time that the global clock skew is ⇥(DT ) [LL84,
ST87]. The problem of synchronizing the clocks of nearby nodes was intro-
duced by Fan and Lynch in [LF04]; they proved a surprising lower bound of
⌦(T logD/ log logD) for the local skew. The first algorithm providing a non-
trivial local skew of O(T

p
D) was given in [LW06]. Later, matching upper and

lower bounds of ⇥(T logD) were proven in [LLW10]. The problem has also been
studied in a dynamic setting [KLO09, KLLO10] or when a fraction of nodes ex-
perience byzantine faults and the other nodes have to recover from faulty initial
state (i.e., self-stabilizing) [DD06, DW04]. The self-stabilizing byzantine case
has been solved with asymptotically optimal skew [KL18].

Clock synchronization is a well-studied problem in practice, for instance
regarding the global clock skew in sensor networks, e.g. [EGE02, GKS03,
MKSL04, PSJ04]. One more recent line of work is focussing on the problem
of minimizing the local clock skew [BvRW07, SW09, LSW09, FW10, FZTS11].

This chapter was written in collaboration with Thomas Locher.
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