
Chapter 27

Internet Computer

Many fundamental aspects of distributed systems have been introduced and
discussed in previous chapters, many of which play an important role in various
real-world applications.

In this final chapter of the lecture, we study a platform where many of the
lecture topics come together, from broadcast and consensus all the way to state
replication, which was discussed in Chapter 15.

The topic of this chapter is the Internet Computer (IC), which constitutes a
"world computer" that extends the internet with smart contracts, providing a
tamper-proof execution environment with minimal trust assumptions.1 In this
chapter, we study some of the key protocols enabling this functionality despite
byzantine node behavior.

27.1 Canisters and Subnets
Definition 27.1 (Canister). A canister is a smart contract on the IC, bundling
contract logic (code) and contract state (storage). A canister exposes methods
that other canisters (and users) can call by sending a message to the canister.
When a canister processes a message, the canister may send messages to other
canisters and message execution may change the state of the canister.

Remarks:

• The IC runs state replication (Definition 15.8) for each canister.

• All canisters are hosted on dedicated individually untrusted nodes,
each running the Internet Computer Protocol (ICP).

Definition 27.2 (Subnet). A subnet is a set of nodes providing state replica-
tion for the canisters deployed on it.

1See https://internetcomputer.org/.

148

https://internetcomputer.org/

27.2. NETWORKING 149

Remarks:

• Each node in a subnet hosts all the canisters deployed on that subnet.
There are subnets with 80,000+ canisters and subnets with just a few
canisters.

• Subnets can be smaller or larger: most subnets have 13 nodes that
are spread across the Americas, Europe, and Asia. For applications
in need of a higher degree of decentralization, there are subnets with
up to 40 nodes.

• Nodes from one subnet communicate with nodes on other subnets to
deliver messages from canisters hosted on them.

• In any given subnet with n = 3f + 1 nodes, at most f nodes may
behave in a byzantine manner, cf. Theorem 17.12.

• There is one special subnet, which hosts the Network Nervous System
(NNS), i.e., the governance and management canisters responsible for
voting, storing node and subnet information, node provider remuner-
ation, protocol upgrades, subnet membership changes etc.

• All nodes of the IC query the NNS canisters to learn which subnet
they belong to, how to reach other nodes, and what protocol version
to run.

• The IC protocol consists of four layers: Networking, Consensus, Mes-
sage Routing, and Execution, described in the following sections.

27.2 Networking
Definition 27.3 (IC networking layer). The networking layer of the IC deliv-
ers messages within a subnet efficiently with bounded memory complexity.

Definition 27.4 (Memory complexity). The memory complexity of an algo-
rithm is the number of bits a correct nodes needs to store in the worst case.

Remarks:

• Byzantine fault tolerant (BFT) protocol descriptions often assume
networking primitives, such as best-effort and reliable broadcast.

• Practical protocols run "forever", and continuously produce messages.
Guaranteed eventual delivery of all of them can require unbounded
message storage for retransmission, or giving up liveness; both are
undesirable.

• Many (BFT) protocols do not need such strong networking primitives.

• Protocol messages can become obsolete as protocol executions are pro-
gressing; clients only need guaranteed delivery of non-obsolete, active
messages.

150 CHAPTER 27. INTERNET COMPUTER

• Practical implementations of BFT protocols often use checkpoints,
allowing them to purge obsolete messages periodically.

• The maximum number of active (non-aborted) artifacts is typically a
function of the checkpoint interval (for example, in consensus protocols
this can be measured in the number of blocks or rounds), and the
number of peers. The size of each message is bounded as well.

• When protocols (i) declare obsolete messages explicitly by aborting
their delivery, and (ii) keep the number of active (non-aborted) mes-
sages constant, then broadcast with bounded memory complexity can
be achieved.

Definition 27.5 (Abortable broadcast). Abortable broadcast offers two op-
erations: broadcast and abort. For BFT protocols among n nodes with a con-
stant C of active (non-aborted) messages at any point in time, it ensures the
following properties

• Abortable validity: If a correct node broadcasts a message m, then every
correct node eventually delivers m, unless the sender aborts m.

• Weak Integrity: If a node delivers a message m from a correct sender
s, then s has previously broadcast m (i.e., no tampering happened).

• Memory boundedness: The memory complexity of abortable broadcast
is O(n · C).

Remarks:

• In comparison with other broadcast primitives described in Chap-
ter 18,

– the validity property is omitted for aborted messages,

– weak integrity is guaranteed,

– totality and agreement are not guaranteed.

• The algorithms presented in Chapter 18 do not consider memory com-
plexity.

Remarks:

• Algorithm 27.7 is based on the slot table data structure. A slot table
is a numbered array of slots of capacity C, where C is the bound on
the number of active messages. Each slot has a version number and
either is marked as free or contains a message. Each node maintains a
send side slot table SS for the local active messages of the application
protocol using the abortable broadcast primitive. For the reception of
up to C messages from peers, the algorithm manages n�1 receive side
slot table RSs, one for each peer s 2 [1..n] except itself. In summary,
each node manages n slot tables.

27.2. NETWORKING 151

Algorithm 27.7 Abortable Broadcast.
Data:

C: capacity for active messages;
V 0: send-side version number;
SS[1..C] : send-side slots with fields version and msg
RSs[1..C]: receive-side slots with fields version and msg for peers s 2 [1..n]

1: upon broadcast(m):
2: if @k 2 [1..C] s.t. SS[k].msg = m then

3: i := min{k 2 [1..C] | SS[k].msg = none}
4: V := V + 1

5: SS[i] := {version = V,msg = m}
6: for each peer s 2 [1..n] do

7: send_authenticated(s, i, V , m)
8: end for

9: end if

10: end upon

11:
12: upon abort(m):
13: i := min{k 2 [1, C] | SS[k].msg = m}
14: V := V + 1

15: SS[i] := {version = V,msg = none}
16: end upon

17:
18: upon receiving(s, slot, v,m):
19: if slot  C and v > RSs[slot].version then

20: RSs[slot] := {version = v,msg = m}
21: deliver {s, m}
22: end if

23: end upon

24:
25: upon periodic subnet timer expiry:
26: for each peer s 2 [1..n] do

27: for i := 1 to C do

28: if SS[i].msg 6= none then

29: send_authenticated(s, i, SS[i].version, SS[i].msg)
30: end if

31: end for

32: end for

33: end upon

152 CHAPTER 27. INTERNET COMPUTER

Figure 27.6: (left) The core challenge of traditional broadcast primitives imple-
mented on the networking layer is reacting to backpressure, either due to slow
or faulty peers or communication channels or the behavior of malicious peers.
Slowing down the application (BFT protocol above), buffering indefinitely, and
dropping messages are all unacceptable. (right) Abortable broadcast overcomes
these drawbacks and can be implemented efficiently with bounds on memory
and delivery guarantees.

• When the application protocol triggers a broadcast, the algorithm
finds a free slot in the send side slot table (guaranteed to exist, by the
condition on C), increments the version, and writes the message with
the version in the free slot. Then it sends a single message to all peers
on an authenticated unreliable channel (e.g., a signed message over
UDP), announcing a new message in the slot where the version has
been updated. When the client aborts a message, the corresponding
slot is marked as free.

• For simplicity, we conceptually assume unbounded version numbers;
in practice, using 64-bit numbers suffices to avoid rolling over.

• Abortions do not have to be explicitly announced to peers, as they
will eventually be overwritten by new messages.

• When a message is received from a peer, the receiver compares the
received version with the existing version in the specified slot number
 C, and, if newer, delivers the message to the client.

• Figure 27.8 depicts this process with an example: Messages A through
E were delivered from node i to node j. Message D (slot 4, version
6) as well as messages B and E were deleted, and message F was
created. Message F was placed in slot number 4, and so an update
message with the new message and version number 9 is sent to node
j (and all other peers).

• Since the messages are sent over an unreliable channel, they may get
lost. The sender thus periodically retransmits all messages in its send
side slot table.

Theorem 27.9. Algorithm 27.7 implements abortable broadcast.

Proof. The crucial observation is that the size of each slot table is bounded
to at most C slots. Line 2 and 18 maintain this invariant for the send and

27.3. CONSENSUS 153

msgA, v2

none, v5

msgC, v4

msgF, v9

none, v8

1
2
3
4

C

msgA, v2

msgB, v3

msgC, v4

msgD, v6

msgE, v7

1

2
3
4

C
Node i’s

send-side slot table
Node j’s

receive-side slot table
for peer i

slot 4
msgF

v9

Update
message

Figure 27.8: Slot table data structure. Peers synchronize the view of each other’s
message set in an eventually consistent protocol, with strict bounds.

receive side, respectively, and thus each of the n slot tables (one for the send
side and n � 1 for the receive side) contain at most C messages and version
numbers. As a consequence, only the latest version of each slot is retransmitted
to all peers periodically. This suffices to achieve the abortable guaranteed de-
livery property 27.5, while keeping the memory usage of the algorithm bounded
(achieving 27.5). The integrity property 27.5 is achieved thanks to the authen-
ticated channel.

Remarks:

• Totality (see Definition 18.3) for m, can be achieved by adding m to
the send slot table upon delivery.

• Without additional mechanisms, this will make the communication
complexity measuring the total number of bits sent around quadratic
in the number of nodes, i.e., ⇥(n2 · |m|), where |m| denotes the size of
message m, while ⌦(n · |m|) suffices.

27.3 Consensus
Definition 27.10 (IC consensus layer). The consensus layer on the IC val-
idates messages and determines an order for processing at every node in the
subnet.

Remarks:

• For all nodes to transition to the same state, they must process exactly
the same set of messages in the same order.

• The IC consensus algorithm guarantees the standard agreement and
termination properties of Definition 16.1 under the assumption that
at most f < n/3 nodes are byzantine.

154 CHAPTER 27. INTERNET COMPUTER

• The agreement property (if two correct nodes decide, they decide on
the same set of messages) holds in the asynchronous communication
model, whereas the termination property (every correct node eventu-
ally decides) holds if there are periods where all messages arrive within
a bounded time, i.e., termination requires a partially synchronous
communication model.

• The algorithm does not need to know this upper bound on message
delays as it can increase its estimate if the current estimate turns out
to be too small (because it takes longer for messages to arrive). For
the sake of simplicity, we assume that the upper bound on the message
delay is known and is 1.

• The algorithm makes use of sophisticated cryptographic tooling.

Definition 27.11 (BLS signature scheme). The BLS signature scheme is a
signature scheme, which consists of a key generation, signature generation, and
signature verification algorithm with the following properties:

• For a given key and message, there is only one valid signature.

• BLS signatures can be aggregated, which means that multiple signatures
on the same message can be combined into a compact multi-signature of
the same size as a single signature.

Remarks:

• Each node of the IC has a private key for the BLS signature scheme.

• Additionally, the algorithm uses a BLS threshold signature scheme (see
Definition 19.21) with the property that any f + 1 out of n signature
shares can be combined deterministically into the same signature.

• The algorithm needs a source of unpredictable randomness.

Definition 27.12 (Random beacon). The random beacon is a sequence of
random (256-bit) numbers with the property that every consensus round yields
the next number, which is unpredictable given the previous numbers.

Remarks:

• The numbers are constructed using the BLS threshold signature
scheme: Given a number b known to all nodes, the next number b0

is obtained by having each node broadcast its signature share of b
and then constructing the unique and deterministic signature for b by
combining f + 1 received signature shares.

• Note that the f malicious nodes cannot precompute this sequence
because f + 1 signature shares are required to determine the next
number (and f signature shares do not provide any information about
the signature).

Definition 27.13 (Block). A block on the IC is a batch of canister messages,
each message targeting a specific canister on the same subnet.

27.3. CONSENSUS 155

Remarks:

• There is an empty, hard-coded genesis block. Each other block has a
unique predecessor block.

• A non-genesis block is valid if its messages are valid (in particular,
they must target canisters on this subnet and be signed correctly),
and if their predecessor is valid.

• Additional block metadata and more extended validity conditions are
defined later in this chapter when required for higher layer function-
ality.

Definition 27.14 (Block height). Each block is associated with a non-negative
number, called its block height. The genesis block has block height 0 and the
block height of every other block is the block height of its predecessor block +1.

Remarks:

• Every node maintains a directed tree of blocks rooted at the genesis
block.

Remarks:

• It is implicitly assumed that all messages are signed and that any
message that does not bear a valid signature is silently dropped. This
rule also applies to signature shares, which are verified in the same
manner as regular signatures and discarded if they are invalid.

• The algorithm pseudocode and proof use broadcast and reliable broad-
cast for simplicity. To use abortable broadcast instead of broadcast,
a checkpointing procedure must be introduced. Checkpoints are pro-
duced at certain heights and consist of the state at this point as well
as all the necessary key material. Messages for lower heights than the
current checkpoint are aborted. This alone is not sufficient to bound
the number of active (non-aborted) messages. To ensure the total-
ity and agreement properties of reliable broadcast, all valid received
blocks must be forwarded to peers and a mechanism to prevent equiv-
ocation (a block maker proposing two or more distinct blocks for the
same height) is required.

Definition 27.16 (Epoch). An epoch on the IC is a time period during which
the nodes of a subnet execute the consensus algorithm to agree on at least one
block for a specific block height.

Remarks:

• In other words, the consensus algorithm is executed exactly once per
epoch. Each epoch lasts multiple communication rounds. As we will
see, it is possible that there are multiple blocks in the same epoch h.

• For each epoch, a block maker is chosen using the random beacon: The
random beacon bh of epoch h is used as the seed of a pseudo-random
function to determine a random permutation of the n nodes for this
epoch. The permutation defines a unique rank r 2 {0, . . . , n � 1} for
every node.

156 CHAPTER 27. INTERNET COMPUTER

Algorithm 27.15 IC Consensus: Actions at node vi for epoch h

1: ri := rank(i, beacon(h))
2: if � 2ri + " time passed and tree_height() < h then

3: B := build_block(h)
4: Reliable-broadcast block(B, i, h)
5: end if

6:
7: upon receiving block(B, j, h) for the first time:
8: rj := rank(j,beacon(h))
9: if � 2rj + " time passed and tree_height() < h and is_valid(B)

then

10: nB
i := notarization_share(B)

11: nchi := nchi +1 // Count the number of different notarization shares
12: idB := H(B) // A block hash is used as the identifier
13: Broadcast notarization_share(idB , nB

i , h)
14: end if

15: end upon

16:
17: upon receiving notarization_share(idB , nB

j , h) for the first time:
18: NB

i := notarization_shares(idB)
19: NB

i := NB
i [{nB

j }
20: if |Ni| � n� f and B received but not in tree then

21: add_to_tree(B) // The height is now at least h
22: if nchi = 1 then

23: FB
i := finalization_share(B)

24: Broadcast finalization_share(idB , FB
i , h)

25: end if

26: bh+1
i := beacon_share(beacon(h))

27: Broadcast random_beacon_share(bh+1
i , h+ 1)

28: end if

29: end upon

30:
31: upon receiving finalization_share(idB , fB

j , h) for the first time:
32: FB

i := finalization_shares(idB)
33: FB

i := FB
i [{fB

j }
34: if |FB

i | � n� f and B in tree then

35: finalize(h,B) // End all epochs  h
36: end if

37: end upon

38:
39: upon receiving random_beacon_share(bh+1

j , h+ 1) for the first time:
40: RBh+1 := RBh [{bh+1

j }
41: if |RBh+1| = f + 1 then

42: build_beacon(RBh+1, h+ 1) // Start epoch h+ 1

43: end if

44: end upon

27.3. CONSENSUS 157

• A node with rank r 2 {0, . . . , n�1} is allowed to make a proposal after
2r + " time from the start of the epoch, where " > 0 is an arbitrarily
small constant.

• When node vi receives a block B for epoch h from some node vj and
at least the required amount of time has passed based on vj ’s rank
and there is no block at height h already, then vi checks the validity
of the block and generates a so-called notarization share nB

i for block
B using its BLS signing key and broadcasts it. A notarization share
by node vi means that vi validated the block, i.e., the block is a valid
continuation of a notarized predecessor block from epoch h � 1, and
is an endorsement of this block for epoch h.

• Once the set NB
i contains n�f notarization shares, the shares can be

combined into a (compact) multi-signature, proving the notarization
of the block, which is to be understood as “the whole subnet considers
block B valid for epoch h”. Subsequently the block is added to the
tree. In other words, the tree contains all notarized (and thus valid)
blocks a node is aware of.

• If this is the only block for which vi has ever broadcast a notarization
share, vi broadcasts a so-called finalization share, which is simply
another BLS signature on block B. A finalization share from a correct
node vi says that vi guarantees that it never endorsed any block for
epoch h other than B.

• If at least n�f finalization shares are received, the epoch h is marked
as finalized. The function finalize not only finalizes epoch h with B
being the unique block of this epoch but it also recursively finalizes
all epochs h0 < h, defining the unique predecessor of B0 of B as the
finalized block of epoch h � 1 and so on. At this stage, the node no
longer responds to messages of any epoch h0  h.

• The next epoch is started when f + 1 signature shares for the next
random beacon are locally available.2

Remarks:

• Figure 27.17 shows an example block tree. There may be multiple
(notarized) blocks generated in the same epoch; however, there can
only be one finalized block for a certain epoch h. Since there is only
one block for this epoch and each block has only one predecessor, the
blocks for all epochs lower than h can be finalized as well. Any forks
at block heights lower than h can be discarded.

Lemma 27.18. For every epoch h, if correct nodes v and v0 finalize blocks B
and B0, then B = B0.

Proof. Assume for the sake of contradiction that B 6= B0 and that f⇤  f
nodes did not behave according to the protocol. Since v finalized B, it must

2Note that the random beacon is actually constructed at the beginning of the epoch on
the IC. The random beacon is constructed at the end of the epoch here for ease of exposition.

158 CHAPTER 27. INTERNET COMPUTER

F

30

35 373634

333231

31

34

Figure 27.17: A possible block tree with forks in epochs 31 and 34. Since a
block was finalized in epoch 36, all its predecessors are implicitly finalized as
well.

have received n�f finalization shares and therefore a set S of at least n�f�f⇤

finalization shares from correct nodes. The same argument applies for block B0,
i.e., v0 must have received a set S0 of at least n� f � f⇤ finalization shares from
correct nodes.

The union of S and S0 can be at most the set of all nodes that behaved
correctly, i.e., |S [S0|  n � f⇤. Moreover, a correct node only sends the
finalization share for at most one block, which implies that S and S0 must be
disjoint. We get that

n� f⇤ � |S [S0| = |S|+ |S0| � 2(n� f � f⇤
),

which implies that 3f � 2f + f⇤ � n, a contradiction.

Lemma 27.19. For every epoch h, at least one block is notarized.

Proof. Let w be the lowest ranked correct node of epoch h. Let rw be its rank.
After 2rw + " time, w will broadcast its constructed block unless it has already
notarized a block before. In either case, reliable broadcast ensures that all
correct nodes will eventually receive some block that is endorsed by all correct
nodes, which implies that v must eventually receive at least n� f notarization
shares for this block, which it can then notarize.

Lemma 27.20. For every epoch h, every correct node will eventually transition
to epoch h+ 1.

Proof. When node vi notarizes a block, it broadcasts its random beacon share
(bh+1

i , h+1). According to Lemma 27.19, every correct node eventually notarizes
a block for epoch h, which implies that every correct node eventually receives at
least f + 1 random beacon shares, at which point it builds the random beacon
for epoch h+ 1, triggering the start of epoch h+ 1.

Lemma 27.21. If there is a period of synchronicity of duration at least 3 from
the start of an epoch and the rank-0 block maker in this epoch is correct, the
epoch will be finalized.

Proof. Consider epoch h starting at some time t. We assume that all messages
arrive within 1 time unit in the time interval [t, t+3]. The correct rank-0 block

27.4. MESSAGE ROUTING 159

maker broadcasts a block B at time t, which every correct node receives by
time t+1. At this point in time, each correct node broadcasts its corresponding
notarization share and these shares arrive at all correct nodes by time t+2. Since
each correct node receives at least n�f notarization shares and no correct may
have notarized any other block at time t + 2 (no other block can be notarized
before time t+2+ "), every correct node broadcasts a finalization share. Thus,
each correct node receives at least n � f finalization shares by time t + 3 and
finalizes the epoch.

27.4 Message Routing
Definition 27.22 (IC message routing layer). The message routing layer

of the IC ensures that messages from consensus reach their destination canister
and provides authenticated information to the users.

Remarks:

• A canister is hosted and executed on exactly one subnet, i.e., the set
of all canisters is partitioned across all subnets.

• Each canister can be viewed as a state machine where the inputs are
request messages from users or other canisters and the outputs are
the response messages. Both input and output messages are stored
in queues. The canister code describes the state transition when pro-
cessing messages.

• Each subnet contains a set of canisters and sends/receives messages
from users and other subnets, i.e., each subnet can be viewed as a
state machine.

• All subnets together form the IC state machine.

• In this section we will first look at the state machine formed by a
single subnet, with canisters processing user messages only, and then
consider the interaction across subnets as well.

Definition 27.23 (Ingress message status). An ingress message from a user to a
canister can be in status UNKNOWN (starting state), RECEIVED (nodes agree to have
received it), PROCESSING (message execution has started), REPLIED (response
has been computed successfully) and REJECTED (system or canister decided not
to continue working on this message). Messages from users, as well as their
status and response are stored in the ingress history.

Remarks:

• A message transitions from one status to the next until it is REPLIED
or transitions to REJECTED from any earlier status directly.

• Users can query the ingress history of the subnet to learn about the
status of their message.

• In a crash-recovery model without Byzantine behavior, users trust any
node to report on the status and ingress history correctly.

160 CHAPTER 27. INTERNET COMPUTER

Definition 27.24 (Replicated system state, certificate). The replicated sys-

tem state of each subnet at a given height can be represented as a Merkle tree
with the state of the canisters, the input and output queues, the ingress history
and the current subnet time as leaves. A state certificate for h is a (n � f)-
out-of-n threshold-signature of the Merkle tree root hash. The highest height for
which a node has a valid state certificate is called certified height.

Remarks:

• It is essential that all of this state be updated in a completely deter-
ministic fashion so that all nodes maintain exactly the same state.

• After the message execution phase for a given height h, the message
routing layer will initiate the process to certify the state for h by
sending out threshold signature shares.

• Hashing the whole replicated system state is an expensive operation, it
could take longer than the time allocated for the execution per height,
therefore a subset of the state is hashed in practice.

• The node does not wait for all certification shares to arrive but con-
tinues with the next round after triggering the certification process.
Therefore, the certified height can be below the height for which a
node currently executes messages. This also implies that the certified
height can be different for every node in a subnet and does not change
deterministically like the replicated state.

• The certified state is used in several ways in the IC:

– Output authentication. Users rely on the certified state to verify
responses whose hashes are stored as Merkle tree leaves in the
certified state. The Merkle proof consists of the hashes to verify
the path to the root and the root signature.

– Preventing and detecting non-determinism. Consensus guaran-
tees that each replica processes inputs in the same order. Since
each replica processes these inputs deterministically, each replica
should obtain the same state. However, the IC is designed with
an extra layer of robustness to prevent and detect any (acciden-
tal) non-deterministic computation, should it arise. To this end,
the certified height is added to consensus blocks and a node con-
siders a block valid only if the node’s certified height exceeds the
certified height in the block.

– Execution and consensus speed. The certified state is also used
to coordinate the execution and consensus layers: If consensus
is running ahead of execution (whose progress is determined by
the last height with certified state), consensus will be "throttled".
That is, if the difference between the finalized height and the cer-
tified height exceeds a threshold, then the time until which con-
sensus waits before creating and notarizing blocks is increased.

To achieve the functionalities described above, the block payload and the
validity conditions used in consensus are extended.

27.4. MESSAGE ROUTING 161

Definition 27.25 (Block payload). A block payload comprises

• messages: set of messages to canisters on this subnet

• certified_height: state certificate for this height exists

Definition 27.26 (Extended Block Validity). A node considers a block valid if

• none of the payload messages occur in predecessor blocks,

• a block’s certified height is at least the previous block’s certified height and
at most the node’s certified height,

• all messages are signed correctly.

Remarks:

• To create a valid block B in build_block(), a node’s consensus layer

– Selects a set of ingress messages that have not occurred in any
of the predecessor blocks

– Calls message routing’s create_payload function (see Lines 16–
18 of Algorithm 27.27) to obtain the ingress history and the cer-
tified height.

• To decide if a block from another node is valid, the consensus layer
can check first the locally available predecessor blocks. To verify the
message routing parts of the block, is_payload_valid (see Lines 20–
22 of Algorithm 27.27) is called, which verifies that the certified height
is not above the height for which the node has a valid full certified
state signature and that the ingress messages do not show up in the
ingress history already.

• Once block B has been finalized, blocks below B.certified_height
and expired ingress messages are no longer needed to determine block
validity and can be discarded.

Remarks:

• The message routing layer inserts messages from blocks in one of mul-
tiple input queues, one per canister.

• For each block height, the execution layer will consume some of the
messages in the input queues and update the ingress history and the
replicated state of the relevant canisters.

• All message routing steps in process_payload() and
is_payload_valid() must be fully deterministic. Therefore,
execution time is not measured in seconds, but in low-level machine
language instructions.

• The execution of a message may fail. For ingress messages, the ingress
history is updated to status REJECTED in this case. If a response to
the message has been generated successfully, the ingress history status
is set to REPLIED, allowing the user to collect the response.

162 CHAPTER 27. INTERNET COMPUTER

Algorithm 27.27 Message Routing: Processing ingress messages
1: upon process_payload(payload) called:
2: state.height := state.height+ 1

3: insert_into_input_queues(payload, state)
4: for m 2 payload do

5: state.ingress_history[m] := RECEIVED

6: end for

7: while execution time left do

8: m := pop_from_input_queues(state)
9: state.ingress_history[m] := PROCESSING

10: execute(m, state)
11: end while

12: prune_ingress_history(state)
13: trigger_certify_state(state) //sets certified_height eventually
14: end upon

15:
16: upon create_payload() called:
17: return (state.ingress_history, certified_height)
18: end upon

19:
20: upon is_payload_valid(B) called:
21: return B.certified_height  certified_height and

B.ingress_payload \ ingress_history = ;
22: end upon

• prune_ingress_history removes every message m from the ingress
history if the message status is a terminal state and the message ex-
piry is at least GRACE_PERIOD in the past, i.e., cur_time �
m.expiry > GRACE_PERIOD. The grace period gives users
enough time to fetch the status and response of their messages and
enables bounding the period a message occupies memory in the sys-
tem.

• The creation and collection of threshold signature shares on the per-
height certified state is started by trigger_certify_state. When
the full signature of a state height greater than certified_height has
been collected, certified_height is updated. Note that the next final-
ized block may be submitted to message routing before a full signature
on the current state has been collected.

• The consensus layer is decoupled from the message routing and ex-
ecution layers in the sense that only messages from finalized blocks
of the chain reach message routing and execution. Temporary block
tree branches are pruned before their payloads are passed to message
routing and execution. This is in contrast to other blockchains that
execute blocks speculatively, before ordering and validating them.

To let the canister state machines interact with each other, regardless of
whether they reside on the same or different subnets, queues and streams are

27.4. MESSAGE ROUTING 163

introduced and the Consensus and Message routing layer are extended to process
messages from other subnets.

Definition 27.28 (Canister queues and streams). For each canister C there
is a separate input queue for each other canister C 0 from which C receives
messages and there is one queue for user-generated messages to C. For each
canister C 00 for which C creates messages there is an output queue. Messages
for other subnets are ordered into streams, one for each subnet that canisters
communicate with.

Remarks:

• C 0 and C 00 may reside on the same or on different subnets.

• process_payload in Algorithm 27.27 is adapted as follow:

– The ingress history is only modified for messages from users.
– In addition to responses to user messages, message execution may

create new messages to the same or other canisters, which are put
in the corresponding output queues. If a canister needs to wait
for their responses, the status remains PROCESSING.

– After the execution loop the message routing layer takes the mes-
sages in the output queues, organizes them into subnet-to-subnet
streams and exchanges them with nodes in other subnets.

– Communication across subnets is referred to as xnet (cross-net)
communication, taking place at the end of processing the pay-
load.

– Creating and validating payload of Consensus and Message rout-
ing can be extended to include messages from canisters on other
subnets (xnet messages).

– When exchanging messages with other subnets, individual mes-
sage signatures are constructed and verified with the Merkle tree
paths and the certification signature of the Merkle tree root hash.
For xnet communication a node sends and receives a selection of
messages to and from nodes on other subnets, respectively. Since
all the signatures are based on a threshold of n� f , a malicious
node cannot convince a correct node to accept an invalid mes-
sage. This fact is also used when checking subnet signatures for
messages from other subnet.

– is_payload_valid(B, previous_xnet) requires the xnet mes-
sages since B.certified_height to be available to check if no xnet
messages have been skipped in the stream.

• create_payload and is_payload_valid are modified to also re-
turn and check xnet messages, respectively. The function
is_payload_valid(B, previous_xnet) requires the xnet messages
since B.certified_height to be available to check if no xnet messages
have been skipped in the stream. This input needs to be provided by
Consensus.

• The whole message routing process taking place for each finalized
block is visualized in Figure 27.29.

164 CHAPTER 27. INTERNET COMPUTER

c2

Consensus

c1

u u u

c1

u

c2 c2 c2 c2

c2 c2

c1 c1 c1 c1

XnetUser

Xnet from
subnet n

c3 c4 c3

c5 c5

Stream to
subnet 1

Stream to
subnet 2

c1 c3 u

u

c1

c2

c3

c4 c4

c5 c5

c4 c4

directly induct messages to
canisters on same subnet

Figure 27.29: Routing messages through the IC protocol stack. Messages for
canisters, issued by users or canisters on other subnets, are validated and ordered
by consensus. Subsequently, messages are put into the input queues of their
destination canisters. Messages created by canisters are put into output queues
from where they are either transferred to their respective input queues on the
same subnet (bypassing consensus) or sent as part of streams to their target
subnet.

27.5 Execution Environment
Definition 27.30 (IC execution environment layer). The execution environ-

ment layer of the IC schedules and processes canister messages.

Definition 27.31 (Request, response). Methods exposed by canisters can be
called by other canisters (and users) by sending a request message. After ex-
ecuting the method with the request message, the method then provides a re-

sponse message to the caller, which the caller can process. When processing
a message (either a request or a response), a canister can change its state and
issue further calls to itself or other canisters.

Remarks:

• Only a single message is processed at a time per canister. Thus mes-
sage execution is sequential and never parallel per canister.

• Different canisters can process messages in parallel.

• Whenever a canister issues a downstream request, the execution of the
upstream call is effectively suspended until the response arrives, but
the canister is allowed to process other messages (both other requests
and responses).

• Multiple messages from different calls can be interleaved and have no
reliable execution ordering.

• In case of traps or panics, the state changes are reverted.

27.5. EXECUTION ENVIRONMENT 165

• Message delivery between canisters is asynchronous. Successfully de-
livered requests are received in the order in which they were sent.

• It is important for many applications to have a message expiry mecha-
nism. This facilitates user-side decisions on whether another message
may be submitted, without risking to have both of them executed.
E.g., if a message for a transfer of 100$ to another user has expired,
the user can resubmit a transfer and will not be debited twice.

To achieve unique execution before expiry, the block payload and validity as
well as message routing and execution must be modified.

Definition 27.32 (Block time and validity, subnet time). A block payload con-
tains time, representing the timestamp at block creation. Block validity is ex-
tended to also comprise the following conditions.

• The block’s time is higher than the previous block’s time and at most the
node’s current local system time,

• the expiry time of all ingress messages exceeds the time in the block, and

• the expiry time of all ingress messages is at most max_expiry_interval
greater than the time in the block.

A subnet’s time at height h is defined as the time in block from round h.

Remarks:

• To create a valid block B in build_block(), the consensus layer of a
node sets B.time to its current local system time.

• As long as all nodes are synchronized well, this guarantees correct
nodes can create and validate blocks from other correct nodes.

• In practice it happens that node providers do not set up their nodes
correctly which prevents them from synchronizing properly and thus
from participating in consensus (less than 1% of the nodes were ever
affected by this).

• Time is added to the replicated system state at every height and cer-
tified. Thus each subnet has its own time.

• Execution of an ingress message is only started if the current subnet
time is below the ingress message’s expiry.

Theorem 27.33 (Unique execution before expiry). Every ingress message with
an expiry field will either enter the state PROCESSING in Algorithm 27.27 exactly
once before its expiry time with respect to the subnet’s time or it will never be
processed. Subnet-signed responses guarantee that subnet time is strictly mono-
tonic and that the reported ingress history status transitions have occurred at
f + 1 or more correct nodes.

166 CHAPTER 27. INTERNET COMPUTER

Proof. Correct nodes adhere to the block validity conditions and only create and
notarize blocks with a higher timestamp than previous blocks. Since 2f +1 no-
tary shares are necessary for a full notarization, at least f+1 honest nodes must
be involved in a successful notarization and thus only blocks with monotonically
increasing time will be notarized. Any finalized block has been notarized by n�f
nodes, hence it holds for any subnet with at most f byzantine nodes that the
subnet time is strictly monotonic. By the same argument, only ingress messages
with expiry time in the future are in finalized blocks and an ingress message
can appear at most once in blocks. To this end, the consensus layer checks the
ingress_payload in all the notarized predecessor blocks with time above the
newest block time minus max_expiry_interval. Thus, a correct node will not
create or notarize a block that contains duplicate ingress messages.

After its expiry, the message cannot make it into the processing state because
time is checked again before execution is started on correct nodes.

2f + 1 signatures are necessary to certify the replicated system state, so up
to f byzantine nodes cannot make users or other nodes turn back the subnet
time or believe an ingress message is in a different state than f+1 correct nodes
considered valid at some point.

Remarks:

• This theorem is important for applications with asset transfers. For
example, a user wants to be sure that if they issue a message for a
transfer of some tokens to another user, it will not be executed twice
(e.g., with a replay attack or if the user accidentally submits it to the
IC again). If a message has not shown up in the ingress history by
the time it expires, the user knows it will never be executed and can
create a new message to try again. In other systems this could lead
to deadlocks or multiple unintended transfers.

• Since the expiry time of all ingress messages is at most a constant time
interval of max_expiry_interval in the future, the time a message
occupies space in the ingress history is bounded.

• There is no guarantee how much the subnet time deviates from the
wall-clock time of the rest of the world, since finalization is only guar-
anteed in bursts of synchrony.

• In practice this does not pose a problem, as the user-experienced end-
to-end latency for so-called update calls, i.e., calls that go through
consensus and potentially change the state of some canister(s), is 1-4s
and the current subnet time can be obtained together with a threshold
signature of the subnet in less than 200ms.

• Having the subnet time in blocks and a notion of message expiry makes
it possible to deduplicate ingress messages without having to keep the
whole blockchain forever.

27.6 One Key to Rule Them All
To bring all the different parts together, we will now follow the full lifecycle of
a message. When a user submits a valid request message m for a canister to

27.6. ONE KEY TO RULE THEM ALL 167

the IC, the networking layer broadcast it to the nodes of the subnet that hosts
the canister. As a next step, it reaches the consensus layer, where the next
blockmaker will include it in its block if the message signature and expiry check
pass and there is still space in the block. If enough peers in the subnet validate
the block successfully, then it will be notarized and eventually finalized. At this
point, the finalized block’s payload, including the message m is passed on to the
message routing layer.

As a first step, the current subnet time is set to the block’s time stamp, m
is added to its target canister’s ingress queue and an entry for m with status
RECEIVED is added to the ingress history. At some point m will be scheduled
to be processed by its canister. This may happen during the same execution
round, or in one of the following execution rounds. If m’s expiry is below the
current subnet time, then the ingress history entry for m is set to REJECTED,
otherwise it is set to PROCESSING and m’s execution starts. As part of the
execution, messages to other canisters on the same or different subnets may be
produced. These messages are added to the output queue of the canister. If
the destination canister is on the same subnet, then the messages will be moved
to the corresponding input queue next. For a destination canister on another
subnet, all output queues for the same destination subnet are combined into
a stream at the end of the execution round and the nodes create a threshold
signature for the hash of this round’s replicated state, which includes the ingress
history, the streams and the time. Thus, the user can ask the IC for a message’s
status and obtain a signed response that can be trusted. Once a message for
a canister on another subnet has made it into the other subnet’s block and
a certified reply has been generated and sent back after successful processing,
then the original sender canister will execute the reply message and eventually
complete m’s execution. At this point in time, the ingress history entry will
be changed to contain the response and the status is set to REPLIED. Once the
certification for this round has been created successfully, the user can learn the
response.

In order to verify the threshold signature, the user needs to use the right
public keys. To make this easy for the user, there is one IC master key that never
changes. The nodes in the NNS subnet have shares of the corresponding private
key. These shares are periodically rotated with a distributed protocol. When
creating a new subnet, the NNS nodes generate key material for the new subnet
nodes and create a certificate for the new subnet’s public key. Subsequently,
the certified state of each subnet is signed with this public key for each height.
Hence, the complete verification process for the certified state of a given subnet
consists of first verifying the NNS certificate for the subnet’s public key followed
by the verification of the signature of the replicated state. Since the creation
of these threshold signatures requires 2f + 1 out of n signature shares, this
guarantees that at least f + 1 honest nodes have participated in each state
transition.

In summary, a single public key suffices to verify responses from the Internet
Computer, in stark contrast to other blockchain platforms such as Bitcoin, where
a full verification of all previous transactions is required to ensure that the
considered transaction is valid.

168 CHAPTER 27. INTERNET COMPUTER

Chapter Notes

The IC’s distributed nature and its replication are mostly abstracted away from
the canister developers and users. Users can use their browsers to interact
with canisters thanks to a translation mechanism on so-called gateway nodes.3
The IC strives to provide latency and throughput similar to a traditional web
application, to the extent possible for a globally distributed platform with strong
security guarantees. Experiments and measurements are described on the IC
wiki.4

The IC consensus protocol is described in more detail in [CDH+22] to-
gether with proofs for the communication complexity under several models with
adapted protocol variants. With the current implementation and parametriza-
tion, around 2 blocks are produced per second. The IC dashboard5 shows the
block rate of each subnet as well as a myriad of other metrics.

To enable a protocol to be safe under asynchrony, all primitives must support
this model, in particular also the (re)generation of threshold signature keys.
[Gro21] describes how nodes can agree on BLS keys without requiring synchrony.
This is an expensive process and is therefore executed only every 500 rounds for
most subnets.

The canister execution and runtime environment of the IC is presented in
[ABBK+23]. This paper describes the deterministic scheduling algorithm to pick
the next message to be executed as well as the resource consumption accounting
and memory subsystem, including experiments illustrating the performance of
the system.

Developing a correct protocol and implementation for a complex system such
as the IC is a difficult endeavor. Bugs sneak in easily both in the protocol design
phase as well as in the implementation and during maintenance. [BDK+23]
illustrates how model checking at runtime can be implemented to catch a variety
of bugs.

This chapter was written in collaboration with Yvonne-Anne Pignolet and
Thomas Locher.

Bibliography
[ABBK+23] Maksym Arutyunyan, Andriy Berestovskyy, Adam Bratschi-Kaye,

Ulan Degenbaev, Manu Drijvers, Islam El-Ashi, Stefan Kaestle,
Roman Kashitsyn, Maciej Kot, Yvonne-Anne Pignolet, et al. De-
centralized and stateful serverless computing on the internet com-
puter blockchain. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, 2023.

[BDK+23] David Basin, Daniel Stefan Dietiker, Srđan Krstić, Yvonne-Anne
Pignolet, Martin Raszyk, Joshua Schneider, and Arshavir Ter-
Gabrielyan. Monitoring the internet computer. In International
Symposium on Formal Methods, pages 383–402. Springer, 2023.

3https://internetcomputer.org/how-it-works/boundary-nodes/
4https://wiki.internetcomputer.org/wiki/Internet_Computer_performance
5See https://dashboard.internetcomputer.org/.

https://internetcomputer.org/how-it-works/boundary-nodes/
https://wiki.internetcomputer.org/wiki/Internet_Computer_performance
https://dashboard.internetcomputer.org/

BIBLIOGRAPHY 169

[CDH+22] Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pig-
nolet, Victor Shoup, and Dominic Williams. Internet computer
consensus. In Proceedings of the 2022 ACM Symposium on Prin-
ciples of Distributed Computing, pages 81–91, 2022.

[Gro21] Jens Groth. Non-interactive distributed key generation and key
resharing. Cryptology ePrint Archive, 2021.

