
Distributed
 Computing

FS 2019 Prof. Dr. Mohsen Ghaffari,
Prof. Dr. Roger Wattenhofer

Exam
Principles of Distributed Computing

Monday, August 12, 2019
09:00 – 12:00

Do not open or turn until told to by the supervisor!

The exam lasts 180 minutes, and there is a total of 180 points. The maximal number of points
for each question is indicated in parentheses. Your answers must be in English. Be sure to always
justify (prove) your answers. Algorithms can be specified in high-level pseudocode or as a verbal
description. You do not need to give every last detail, but the main aspects need to be there.
Big-O notation is acceptable when giving algorithmic complexities. Please write legibly. If we
cannot read your answers, we cannot grade them.

Please write down your name and Legi number (your student ID) in the following fields.

Name Legi-Nr.

Exercise Achieved Points Maximal Points

1 - Multiple Choice 22

2 - Leader Election 12

3 - Sorting Networks 16

4 - No 5-Clique 30

5 - Asynchronous Broadcast 28

6 - Scheduling 20

7 - All-to-All Communication 30

8 - 1-Bit Adjacency Labels 22

Total 180

1 Multiple Choice (22 points)

Evaluate each of the following statements in terms of correctness. Indicate whether a statement is
true or false by ticking the corresponding box. Each correct answer gives one point. Each wrong
answer and each unanswered question gives 0 points.

A) [3] Starting from the same initial rooted tree, we execute Arrow and Ivy for exactly 1 request,
from the same requesting node.

true false

The distance traveled by the find request is the same for Arrow and Ivy. 2 2

After the request is served, Arrow and Ivy always end up with the same
rooted tree.

2 2

After the request is served, Arrow and Ivy always end up with different
rooted trees.

2 2

B) [3] Consider the parent pointers of nodes in the Arrow algorithm during concurrent find requests.

true false

The parent pointers form a rooted tree at any moment, even during a
find operation.

2 2

During a request, the parent pointer changes for two nodes only: the
requesting node, and the node currently holding the token.

2 2

It is possible that at a given point in time, there are multiple nodes
which have a pointer to themselves.

2 2

C) [3] Consider the setting of distributed computing, with unique O(log n)-bit identifiers, where per
round each node can send one unbounded-size message to each of its neighbors.

true false

We can compute a maximal independent set of any graph with maximum
degree ∆ = O(1), in constant rounds.

2 2

We can compute an O(log n)-coloring of any graph with maximum degree
∆ = O(1), in constant rounds.

2 2

We can compute an O(log log n)-coloring of any graph with maximum
degree ∆ = O(1), in constant rounds.

2 2

2

D) [3] Consider the setting of distributed computing, with unique O(log n)-bit identifiers, where per
round each node can send one unbounded-size message to each of its neighbors.

true false

For any monotonically non-decreasing function T (n) ∈ N+, if there
is a T (n)-round algorithm for solving maximal independent set in n-
node graphs, then there is a T (n2)-round algorithm for solving maximal
matching in n-node graphs.

2 2

For any monotonically non-decreasing function T (n) ∈ N+, if there is a
T (n)-round algorithm for solving (∆+1) coloring in n-node graphs with
maximum degree at most ∆, then there is a T (n2)-round algorithm for
solving maximal independent set in n-node graphs.

2 2

For any monotonically non-decreasing function T (n) ∈ N+, if there is
a T (n)-round algorithm for solving maximal independent set in n-node
graphs, then there is a T (n2)-round algorithm for computing a (∆ + 1)
coloring in n-node graphs with maximum degree at most ∆.

2 2

E) [3] Consider the setting of distributed computing, with unique O(log n)-bit identifiers, where per
round each node can send one O(log n)-bit message to each of its neighbors.

true false

In any graph with constant diameter, we can compute a maximal forest
in constant rounds.

2 2

In any graph with constant maximum degree ∆ that is not a complete
graph or an odd cycle, we can compute a ∆-coloring in O(log n) rounds.

2 2

In any graph with constant maximum degree, we can determine whether
the graph is planar or not in O(

√
n) rounds.

2 2

In any graph with constant diameter, we can identify all of the cut-edges
in constant rounds.

2 2

F) [3] Let P be a problem defined on synchronous networks. Let A be a deterministic algorithm
solving P , assuming all nodes have nonidentical identifiers and A’s time complexity is C(n) where
n is the number of nodes in the network.

true false

Algorithm A still works if there are only two nodes having the same
identifier and their distance is larger than 3C(n).

2 2

There always exists a randomized algorithm which can solve P in less
than C(n) rounds in expectation.

2 2

Algorithm A still works if we add more edges into this network. 2 2

3

G) [3] Assume two functions f, g : {0, 1}k ×{0, 1}k 7→ {0, 1}, and Alice has a k-bit string x and Bob
another k-bit string y. The communication complexities of computing f(x, y) and g(x, y) are cf
and cg respectively.

true false

If the goal of Alice and Bob is to compute h = g ⊕ f , then the commu-
nication complexity ch ≤ cf + cg.

2 2

If the goal of Alice and Bob is to compute h = g ⊕ f , then the commu-
nication complexity ch ≥ min{cf , cg}.

2 2

Suppose, apart from x, Alice also knows g(x, y), then the communication
complexity to compute f(x, y) must be smaller than cf .

2 2

4

Solutions

A) [3] Starting from the same initial rooted tree, we execute Arrow and Ivy for exactly 1 request,
from the same requesting node.

true false

The distance traveled by the find request is the same for Arrow and Ivy. X
Reason: Both algorithms operate on the same rooted tree, so the find
request goes through the same edges in the two cases.
After the request is served, Arrow and Ivy always end up with the same
rooted tree.

X

Reason: In general, the two algorithms behave very differently.

After the request is served, Arrow and Ivy always end up with different
rooted trees.

X

Reason: If the request was only 1 hop away, then the two algorithms
produce the same rooted tree.

B) [3] Consider the parent pointers of nodes in the Arrow algorithm during concurrent find requests.

true false

The parent pointers form a rooted tree at any moment, even during a
find operation.

X

Reason: When a find operation travels on an edge, the corresponding
nodes are not connected.
During a request, the parent pointer changes for two nodes only: the
requesting node, and the node currently holding the token.

X

Reason: The parent pointer of every node on the path between these two
nodes changes.
It is possible that at a given point in time, there are multiple nodes
which have a pointer to themselves.

X

Reason: There can indeed be multiple such nodes: the node currently
holding the token, and any number of nodes that have initiated a (yet
unfinished) find request.

C) [3] Consider the setting of distributed computing, with unique O(log n)-bit identifiers, where per
round each node can send one unbounded-size message to each of its neighbors.

true false

We can compute a maximal independent set of any graph with maximum
degree ∆ = O(1), in constant rounds.

X

Reason:

We can compute an O(log n)-coloring of any graph with maximum degree
∆ = O(1), in constant rounds.

X

Reason:

We can compute an O(log log n)-coloring of any graph with maximum
degree ∆ = O(1), in constant rounds.

X

Reason:

5

D) [3] Consider the setting of distributed computing, with unique O(log n)-bit identifiers, where per
round each node can send one unbounded-size message to each of its neighbors.

true false

For any monotonically non-decreasing function T (n) ∈ N+, if there
is a T (n)-round algorithm for solving maximal independent set in n-
node graphs, then there is a T (n2)-round algorithm for solving maximal
matching in n-node graphs.

X

Reason:

For any monotonically non-decreasing function T (n) ∈ N+, if there is a
T (n)-round algorithm for solving (∆+1) coloring in n-node graphs with
maximum degree at most ∆, then there is a T (n2)-round algorithm for
solving maximal independent set in n-node graphs.

X

Reason:

For any monotonically non-decreasing function T (n) ∈ N+, if there is
a T (n)-round algorithm for solving maximal independent set in n-node
graphs, then there is a T (n2)-round algorithm for computing a (∆ + 1)
coloring in n-node graphs with maximum degree at most ∆.

X

Reason:

E) [3] Consider the setting of distributed computing, with unique O(log n)-bit identifiers, where per
round each node can send one O(log n)-bit message to each of its neighbors.

true false

In any graph with constant diameter, we can compute a maximal forest
in constant rounds.

X

Reason:

In any graph with constant maximum degree ∆ that is not a complete
graph or an odd cycle, we can compute a ∆-coloring in O(log n) rounds.

X

Reason:
In any graph with constant maximum degree, we can determine whether
the graph is planar or not in O(

√
n) rounds.

X

Reason:

In any graph with constant diameter, we can identify all of the cut-edges
in constant rounds.

X

Reason:

F) [3] Let P be a problem defined on synchronous networks. Let A be a deterministic algorithm
solving P , assuming all nodes have nonidentical identifiers and A’s time complexity is C(n) where
n is the number of nodes in the network.

true false

Algorithm A still works if there are only two nodes having the same
identifier and their distance is larger than 3C(n).

X

Reason: Consider P = output different numbers

There always exists a randomized algorithm which can solve P in less
than C(n) rounds in expectation.

X

Reason: Not every problem has a more efficient randomized algorithm

Algorithm A still works if we add more edges into this network. X
Reason: Some algorithm works only for trees, but not general graphs. We
can make a tree to become a general graph by adding edges.

6

G) [3] Assume two functions f, g : {0, 1}k ×{0, 1}k 7→ {0, 1}, and Alice has a k-bit string x and Bob
another k-bit string y. The communication complexities of computing f(x, y) and g(x, y) are cf
and cg respectively.

true false

If the goal of Alice and Bob is to compute h = g ⊕ f , then the commu-
nication complexity ch ≤ cf + cg.

X

Reason: We can first compute g and f .

If the goal of Alice and Bob is to compute h = g ⊕ f , then the commu-
nication complexity ch ≥ min{cf , cg}.

X

Reason: Consider the case f = g.

Suppose, apart from x, Alice also knows g(x, y), then the communication
complexity to compute f(x, y) must be smaller than cf .

X

Reason: If g = g(x) and f = f(y)

7

2 Leader Election (12 points)

We are given an undirected tree, where each node has a unique ID, in the asynchronous model.
There is no distinguished root node. We want to elect a leader among the nodes, such that all
nodes learn the ID of this leader. Consider the following algorithm.

1: A node v with d(v) = 1 sends a message to its neighbor, where d(v) is the degree of node v.
2: A node v with d(v) > 1 waits until it receives d(v)− 1 messages from its neighbors:
3: Then node v sends a message to the remaining neighbor that has not yet sent a message
4: If a node v receives d(v) messages, then v broadcasts its own ID and becomes the leader.

A) [6] When and why does this algorithm fail?

B) [6] Fix the algorithm. You do not need to prove its correctness.

8

Solutions

A) In a simple tree with 2 nodes, both would declare themselves as leaders, if both send their
message before receiving the message from the other. This also happens when two adjacent
nodes send their messages of line 3 around the same time. Then they both satisfy the
condition of line 4 and become the leader.

B) Use the same algorithm as above with the following changes. First, nodes send messages
containing the largest ID they have seen so far. Note that this message is sent once. When a
node receives messages from all of its neighbors, it recognizes that all nodes have participated
and therefore whatever ID is the largest for this node so far is the largest ID in the network.
So it propagates the maximum ID, which is the leader’s ID.

9

3 Sorting Networks (16 points)

A) [8] We can represent an n-input sorting network with c comparators as a list of c pairs of
integers, each integer in {1, . . . , n}. If two pairs contain the same integer, the order of the
corresponding comparators in the network is determined by the order of the pairs in the
list. Given this representation, describe a simple algorithm for determining the depth of the
sorting network.

B) [8] Suppose that we have 2n elements a1, a2, . . . , a2n and wish to partition them into the
n smallest and the n largest. Prove that we can do this in constant additional depth after
separately having sorted a1, a2, . . . , an respectively an+1, an+2, . . . , a2n.

10

Solutions

A) Create an array with n element, A[n] and initialize it with 0s. Traverse the list of pairs once
and fill the array as follows: let (i, j) be the pair, then A[i] = A[j] = max{A[i], A[j]} + 1.
Once you have traversed the list of pairs, return the largest value of the array which is the
depth of the comparison network. The time complexity of traversing the list is O(c) because
c is the number of pairs and the time complexity of searching the array for the largest value
is O(n). Thus, in total the running time of the algorithms is O(n + c).

B) To partition the n smallest from the n largest elements, given the two sorted sequences, it
is enough to compare each element just once. Specifically, we compare the pairs (a1, a2n),
(a2, a2n−1), . . . , (an, an+1). The reason is the following: Since the sequences are sorted, there
is an element ai, i ≤ n, such that every element after that in the first sequence belongs
to the n largest elements. Thus, the n − i elements of the first sequence belong to the n
largest elements. But then, the first n− i elements of the second sequence also belong to the
n smallest elements. And since ai is the smallest element of the first list and is still larger
that an+i which is the larger element of the second list, the comparison network described
above will swap all the elements below ai and above an+i, and hence will return a correct
division of the n largest and n smallest elements.

11

4 No 5-Clique (30 points)

Consider the setting of distributed computing where n processors, with unique O(log n)-bit
identifiers, are connected as a network G = (V,E) and can exchange messages in synchronous
rounds. Per round, each node can send an unbounded size message to each of its neighbors in G.
Initially, each node knows only its neighbors, the network size n, and its maximum degree ∆.

The objective is to compute a maximal set of edges E′ ⊆ E that does not include a 5-node
complete graph K5. That is, for any set of 5 nodes, the edge-set E′ should have at most 9
connections among these 5 nodes. Moreover, we should not be able to add any edge to E′ without
violating this property. At the end, each node should know which of its edges are in E′.

A) [15] Suppose that G has maximum degree ∆ = O(1). Devise a deterministic distributed
algorithm that, in O(log∗ n) rounds, computes a maximal set of edges E′ ⊆ E that does not
include a 5-node complete graph K5.

B) [15] Suppose that the maximum degree ∆ can be arbitrarily large (up to n − 1). Devise
a deterministic distributed algorithm that, in as few rounds as possible as a function of n,
computes a maximal set of edges E′ ⊆ E that does not include a 5-node complete graph K5.
Any algorithm with a round complexity exceeding O(n0.1) receives zero points.

12

Solutions

A) We start by finding an edge coloring where any two edges of the same color have distance
at least 3, as follows. Let L(G) denote the line graph of the input graph G, i.e., the vertex
set of L(G) consists of the edges of G and there is an edge between two vertices of L(G) if
the corresponding edges in G share an endpoint. Consider L(G)2, the graph obtained from
L(G) by taking the vertices of L(G) and connecting any two vertices that have distance
at most 2 in L(G) by an edge. Now by applying Linial’s algorithm in L(G)2, we obtain a
proper coloring of the vertices of L(G)2 with O(∆′2) colors, where ∆′ denotes the maximum
degree of L(G)2. Such a coloring corresponds to a coloring of the vertices in L(G) where
nodes of the same color have distance at least 3, and hence to an edge coloring of G where
edges of the same color have distance at least 3. In G, we can simulate the execution of
Linial’s algorithm in L(G)2 by making each node v in G responsible for all edges in G (i.e.,
all vertices in L(G)2) of which v is the endpoint with the larger identifier. Since distances in
L(G)2 differ only by a constant factor from the corresponding distances in G, the simulation
of Linial’s algorithm in G incurs only a constant-factor overhead in the runtime compared
to the execution in L(G)2. We will ignore this constant factor in the following. Note also
that the number of nodes of L(G)2 is at most n2 (where n denotes the number of nodes of
G), and that since ∆ = O(1), we have ∆′ = O(1), by the construction of L(G)2. Hence the
runtime incurred so far is O(log∗ n) (for Linial’s algorithm), and the number of colors in our
edge coloring is constant.

Now, we iterate through the color classes, one by one, and for each color class, we process
all edges of that color in parallel. Set E′ = ∅. When we process an edge e, we include it
into the set E′ if it does not complete a K5 (i.e., if there is no set of 5 vertices including
both endpoints of e such that each of the 10 possible edges between these vertices except e
is already present in E′), and we do not include it otherwise. This concludes the description
of the algorithm.

In the following, we argue that the algorithm is correct. Since, in a K5, any two edges have
distance at most 2, and no two edges of distance at most 2 are processed in parallel, we
have the following: The set E′ does not contain a K5 since if E′ contained a K5, then one
of the 10 edges of that K5 must have been processed strictly after the other 9 edges and,
by the construction of our algorithm, would not have been added to E′. Furthermore, E′ is
maximal as the construction of our algorithm ensures that the only case in which an edge e
is not added to E′ is when E′ already contains 9 edges which, together with e, would form
a K5.

What is left is to determine the runtime of our algorithm. Finding the edge coloring can be
done in O(log∗ n) rounds, as argued above, and iterating through the color classes can be
done in O(1) rounds as we have a constant number of colors and processing an edge e only
requires to check whether adding e would complete a K5 which only depends on edges in
distance at most 2 from e and hence can be performed in constant time. Thus, the total
runtime is O(log∗ n) rounds.

B) We will use the terminology and notation of part A). We would also like to use the same
process as in A) for deciding whether to add an edge to our set E′, but unfortunately finding
an edge coloring as above would require too many colors to yield a good runtime. Hence,
we instead start by finding a (2O(

√
log n log log n), 2O(

√
log n log log n)) strong-diameter network

decomposition of L(G)2. Using Theorem 1.36 from the lecture notes and applying our
knowledge about simulating algorithms in G and the number of nodes of L(G)2 from part

A), this can be done in 2O(
√

log n log log n) rounds.

Now, as in part A), we iterate through the color classes, processing clusters of the same color
in parallel. When we process a cluster, a selected node v (e.g., the node with maximum
identifier; in L(G)2 one can assume that a node has a unique identifier by concatenating
the IDs of the endpoints of the edge in G it corresponds to) in that cluster aggregates all
information about the cluster and the cluster’s 2-hop neighborhood. Then, v internally (i.e.,
in 0 rounds) iterates through the edges one by one and, as in part A), includes an edge into
the set E′ if and only if it does not complete a K5. Finally v informs everyone in its cluster

13

about the decision which edges are added to E′. Now the same arguments as in part A)
show that the algorithm is correct.

For the runtime, observe that v can aggregate the cluster information (and also dissem-

inate its decisions) in 2O(
√

log n log log n) rounds as this is the diameter of the cluster. As

we iterate through 2O(
√

log n log log n) color classes, we obtain a runtime of 2O(
√

log n log log n) ·
2O(
√

log n log log n) = 2O(
√

log n log log n) for the part of the algorithm after finding the network
decomposition. Together with the time for finding the network decomposition, we obtain a
total runtime of 2O(

√
log n log log n) rounds.

It is also possible to construct an algorithm based on a network composition of G2 instead
of L(G)2 with the same runtime.

14

5 Asynchronous Broadcast (28 points)

In this exercise, we study the Broadcast/Echo algorithm in the asynchronous model. Consider the
algorithm on the following graph, with node s as the source node:

s

For convenience, we provide copies of this graph at many of the subquestions below; you can
use these to sketch your answers.

A) [3] What is the maximal running time of the Broadcast algorithm in this graph?

s

B) [5] Consider the tree obtained from a Broadcast algorithm. What is the minimum number
of leaf nodes in such a tree? What is the maximum number of leaf nodes?

s

s

15

C) [4] Let us call a node v of the graph a closing node if there exists an execution of the
asynchronous Broadcast algorithm (from s) where v is the last node to receive a broadcast
message. Which of the nodes in the graph are closing nodes?

s

D) [6] Assume that before starting the broadcast, each node already knows who its neighbors
are. We now decide to also run an Echo algorithm after the Broadcast: whenever a node has
realized that it is a leaf node, it starts the Echo phase immediately. What is the maximal
running time of this Broadcast/Echo algorithm?

s

For questions E) and F), assume that we know that the running time of a Broadcast algorithm
was at least 4.3 time units.

E) [4] What is the maximal possible running time of an Echo algorithm following the Broadcast
in this case?

s

F) [6] What is the number of different spanning trees that we can possibly obtain from such a
Broadcast?

16

Solutions

A) The maximal running time of Broadcast is the radius of the tree from node s, which is 5.

B) The following broadcast tree is one of the options to get the maximal number of 7 leaves:

s c1 c2

c3

If in the Broadcast algorithm, every message on the edges of this spanning tree is delivered
in essentially 0 time, and all other messages travel for 1 time unit, then indeed becomes the
broadcast tree. Nodes c1, c2 and c3 can never be leaves, since they are the only connection
from s to specific nodes of the graph. Furthermore, at most one of the two neighbors of c3

can be a leaf node. Finally, in both the left-side and right-side cycle, there can be at most
2 leaves in any spanning tree. Thus, the maximal number of leaves is indeed 7 altogether.

The number of leaves is minimized if the broadcast tree is (almost) a very long path, as
shown below:

s

u

Again, this broadcast tree is achievable if messages on these edges are very fast, and very
slow on all other edges. The number of leaves in this tree is 2 (not counting s). Any other
broadcast tree must also have at least 2 leaves, because both the uppermost node u and at
least one of the nodes in the right-side cycle is always a leaf.

Note: if we apply the graph-theoretic definition of leaf (node of degree 1), the root node s
is also a leaf, and thus the correct answer is 3.

C) As discussed before, nodes c1, c2 and c3 can never be leaves of the broadcast tree, so they
cannot be closing nodes either. All other nodes can indeed be the last ones to receive a
broadcast message. For a specific node v, this is easiest to show if we select a broadcast
tree where v is a leaf, deliver all messages (except for the one to v) in essentially 0 time,
and deliver the final broadcast messages to v very slowly. Note that if we also consider the
definition for s, then s also qualifies as a closing node, since e.g. in the leaf-minimal tree of
exercise B), it receives a broadcast message from c1, which might arrive very late. Therefore,
all nodes except for c1, c2 and c3 are closing nodes.

D) In our Broadcast algorithm, a node realizes that it is a leaf when it has received a broadcast
message from all of its neighbors. In case of maximal running time, the Echo phase happens
as slowly as possible in the broadcast tree developed, taking 1 time unit to travel on each
edge. The total running time of Broadcast/Echo is determined by a leaf node v of the
broadcast tree which only begins the Echo process after t1 time units, and is at a distance
of t2 from s in the broadcast tree; such a node v then ensures that the total running time
can indeed be at least t1 + t2. We consider different cases based on this leaf node v whose
Echo message is (one of) the last ones to arrive to s.

17

s

u

r1 r2

r3c2

For node u, Broadcast takes at most 5 time units, and the longest path to s is 7 edges, so
u could cause a total running time of 12 at most. For all other nodes in the left-side cycle
or the middle part of the graph, this sum is even smaller than 12. This only leaves the
right-hand cycle to discuss. As for node r1 (or r3 symmetrically), there are two cases. If r1

is a leaf connected to c2 in the broadcast tree, then it receives its last broadcast message
after at most 5 time units, and has a path of length 9 to s. If r1 is a leaf connected to r2 in
the broadcast tree, then it receives its last broadcast message after at most 3 time units, and
has a path of length 11 to s. This adds up to 14 in both cases. Finally, node r2 is reached
by all broadcast messages after 4 time units, and its maximal distance to s in the broadcast
tree is 10, which also adds up to 14.

Therefore, the maximal running time of Broadcast/Echo is 14. It is achieved e.g. if the
leaf-minimal tree of exercise B) is developed in 3 time units, and node r3 sends its Echo
message to s in 11 time units.

E) As node u is the only node that has a distance larger than 4 from s, this means that u is the
node which was only reached after (at least) 4.3 time units. This also implies that any node
at distance d from u is reached only after at least 4.3−d time units. On the other hand,
the distance of each node from s is an upper bound on the time when they receive the first
message. Thus, for the nodes in the middle part of the graph, we have the following bounds
on the time when they receive the first broadcast message:

s

[4.3, 5]

[3.3, 4][2.3, 3]

[2.3, 3]

[1.3, 2]

[1.3, 2]

[0.3, 1]

Note that if a node w only has two neighbors w1 and w2, and the upper bound on the
reaching time of w1 is smaller by 1 than the lower bound on the reaching time of w2, then w
will certainly obtain its first broadcast message from w1. Hence, the thick edges in the figure
are certainly contained in our broadcast tree, and furthermore, the tree contains exactly one
of the dashed edges. This shows that in the broadcast tree, the maximal distance of u from
s is at most 7. Also, due to the thick edge (c1, c2), any node in the right-side cycle has a
distance of at most 7 from s. Therefore, the maximal running time of Echo is 7 time units.

F) As discussed before, there are two possible spanning tree variants in the middle part of the
graph (corresponding to the two dashed edges). At both sides of the graph, there are 4
possible spanning trees, corresponding to the 4 edges we can omit from the tree; note that
all 4 of these trees are indeed obtainable in a broadcast, even with our restriction that the
right-hand neighbor of s can only be reached after 0.3 time units at earliest. Altogether,
any combination of these forms a valid broadcast tree, so the number of possible broadcast
trees is 2 · 4 · 4 = 32.

18

6 Scheduling (20 points)

Consider the setting of distributed computing where n processors, with unique O(log n)-bit
identifiers, are connected as a network G = (V,E) and can exchange messages in synchronous
rounds. Per round, each node can send an unbounded size message to each of its neighbors in G.
Initially, each node knows only its neighbors, the network size n, and its maximum degree ∆.

We define a K-day schedule to be an assignment of multiple days from {1, 2, . . . ,K} to each
of the nodes. A good K-day schedule is one in which each node has at least log n days that are
assigned to it but not to any of its neighbors.

Devise and analyze a randomized algorithm that computes a good K-day schedule for K =
100∆ log2 n, with probability at least 1− 1/n. Each node should know its own assigned dates. An
algorithm that needs more than O(log log n) rounds receives zero points.

19

Solutions
There is actually a very fast algorithm for this problem: each node simply chooses each day with
probability 1/(2∆). With the runtime of this algorithm obviously being 0 rounds, in the following
we argue about its correctness.

Consider an arbitrary node v. Let us call a day d excellent if v selects d, but none of v’s
neighbors selects d. For each day d, the probability that d is excellent is at least

1/(2∆) · (1− 1/(2∆))
∆ ≥ 1/(2∆) · 1/2 = 1/(4∆) .

Hence, for each collection of 100∆ log n days, the probability that there is no excellent day in this
collection is at most

(1− 1/(4∆))100∆ log n ≤ (e−1/(4∆))100∆ log n ≤ 1/(n25) .

By bucketizing our 100∆ log2 n days into log n buckets of 100∆ log n days each and applying a
union bound, we obtain that the probability that there is a bucket that does not contain an
excellent day is at most

(log n)/(n25) ≤ 1/(n24) .

Thus, also the probability that there are fewer than log n excellent days is upper bounded by
1/(n24). By union bounding over all nodes, we obtain that the probability that there is a node
that has fewer than log n days that are assigned to it but not to any of its neighbors is at most

n/(n24) = 1/(n23) .

Hence, the computed K-day schedule is good with probability at least

1− 1/(n23) ≥ 1− 1/n ,

which concludes the analysis.
Note that by applying a Chernoff Bound one can get rid of some of the above calculations.

20

7 All-to-All Communication (30 points)

Consider the setting of distributed computing with all-to-all communication, where n nodes,
which have identifiers in {1, 2, . . . , n}, can communicate in synchronous rounds. Per round each
node can send O(log n) bits to each other node. Suppose that these nodes are given a graph
G = (V,E), where V = {1, 2, . . . , n}, in a distributed fashion where each node v ∈ V knows its
neighbors in G.

A) [20] Devise a deterministic distributed algorithm that, in O(log n) rounds of all-to-all com-
munication, identifies the connected components of G. Each connected component should
have one leader (a node in that component) and each node should know the identifier of its
component leader.

B) [10] Suppose that G is connected. Devise a deterministic distributed algorithm that, in
O(1) rounds of all-to-all communication, identifies all cut-edges of G, that is, any edge e ∈ E
such that G \ {e} is disconnected. You can assume that you are already given an arbitrary
spanning tree T ⊆ G, in a distributed fashion, where each node v knows its neighbors in T .

21

Solutions

A) First, we find a coordinator c, e.g. the node with smallest ID. In the beginning, each
node forms its own component. Assume that in every step, each node knows the ID of
its components leader, as well as the IDs of the leaders for all its neighbors. One step
proceeds as follows: Every node v selects one of its neighbors u, that belongs to a different
component, and sends the information about this edge (u, v) to the coordinator c. With all
the information from these messages, c now merges all components that are connected by an
edge. It then informs the nodes about the ID of their new leader. Lastly, every node informs
their neighbors about the ID of its new leader. In every step, except for the components
that are already maximal, every new component contains at least two components from the
previous step. Thus, this process takes O(log n) rounds.

B) First, we observe the following: A spanning tree has exactly n− 1 edges, and every cut edge
of G must be contained in T . Our goal will be that all nodes learn T . Assume that we have
a leader node l, e.g. the node with the smallest ID, and note that we can find such a node l
in 1 round. Further assume that we have one node “responsible” for each tree edge, e.g. the
endpoint with smaller ID. Let rv be the number of such edges that a node v is responsible
for and note that

∑
v rv = n−1. Each node now sends rv to the leader l. Using these values,

l creates a routing scheme, by assigning rv distinct nodes to each v. So lets say v receives
the nodes {u1, . . . , urv}. Now, v sends the first edge e1 it is responsible for to u1, the second
e2 to u2 and so on. From now on, lets say that ui is the representative of ei. This will result
in a state where every node holds (at most) one edge of T , and in one more round, every
node can learn all edges of T .

Now, for every tree edge e we can determine if e is a cut-edge as follows: If a node is incident
to some edge e′ whose addition to T creates a cycle containing e, we know that e is not a
cut edge. If no such edge e′ exists, e must be a cut edge. In a distributed fashion, we can
perform the above, by having each node v that notices that some edge e is not a cut edge,
inform the representative u of v. If a representative u receives no such information, then its
edge e must be a cut edge.

22

8 1-Bit Adjacency Labels (22 points)

We want to label nodes for determining adjacency (whether two nodes are neighbors) based only
on their node labels. Each label is exactly 1 bit, i.e. every node is labeled with either 0 or 1.
Clearly, many nodes will have the same label. Assume there are no queries asking whether a node
is adjacent to itself. If we can obtain one graph from another by shuffling node ID’s, the graphs
are considered identical.

A) [10] Determine the largest k, such that there is a 1-bit adjacency labeling scheme for all
graphs with k nodes.

B) [10] Consider graphs with exactly 10 nodes. Give a 1-bit adjacency labeling scheme such
that you can label as many graphs as possible. How many different graphs with 10 nodes
can you label?

C) [2] How many graphs with exactly 20 nodes can you label (using the same labeling scheme
as in B)?

23

Solutions
For a given labeling scheme, by a(x, y) = 1 (respectively a(x, y) = 0) we denote that nodes

with labels x and y are connected (respectively not connected).

A) With a labeling scheme such that a(1, 1) = 1 and a(0, 0) = 0 we can label all 2 graphs with
k = 2 nodes.

Suppose for contradiction that all graphs with k = 3 nodes can be labeled with some scheme.
In any graph with 3 nodes, at least 2 have to have the same label. Without loss of generality,
assume two nodes in a fully connected graph have the label 1. Then, a(1, 1) = 1. Hence, in
a graph with no edges, at least two nodes have the label 0. Hence, a(0, 0) = 0.

Suppose a(1, 0) = 1. Then, any node being labeled with a 1 would mean at least two
edges are present, making it impossible to label the graph with exactly one edge. Suppose
a(1, 0) = 0. Then, any node being labeled with a 0 would mean at least two edges are absent,
making it impossible to label the graph with exactly two edges.

Hence, k = 2 is the biggest number, such that there is a labeling scheme for all graphs of
size k.

B) Note that given a labeling scheme and a labeling of nodes, the associated graph can be
determined. Suppose for contradiction there are two different (label-able) graphs with the
same number of nodes labeled by a 1 (and the same number labeled by a 0). Shuffle the
nodes so that the graphs are labeled identically. Since the graphs are different, there is a
pair of nodes with labels x, y such that a(x, y) = 1 in one graph, and a(x, y) = 0 in the
other, a contradiction. Hence, for any labeling scheme, each number m = 0, . . . , 10 of nodes
labeled with a 1 can correspond to at most one graph that can be labeled.

Suppose for contradiction that each m = 0, . . . , 10 corresponds to a different graph. Then,
m = 0 corresponds to a different graph than m = 1, so a(0, 0) 6= a(1, 0). Analogously for
m = 9, 10 we conclude a(1, 1) 6= a(1, 0). Hence, a(0, 0) = a(1, 1), and graphs corresponding
to m = 0, 10 must be the same, a contradiction.

Hence, at most 10 different graphs can be labeled.

Let a(1, 1) = 1, a(0, 0) = 0, a(1, 0) = 1. Increasing m from 0 up to 9 increases the number of
edges, producing different graphs. (m = 9, 10 correspond to the same graph since a(1, 1) =
a(1, 0)). Hence, 10 graphs can be labeled.

C) Substituting m = 0, . . . , 20 in the point B), we obtain 20 graphs that can be labeled.

24

