
Distributed
 Computing

FS 2025 Prof. R. Wattenhofer

Principles of Distributed Computing
Exercise 11

1 GNNs for Algorithmic Problems

Recall from the lecture that we can define a GNN in terms of two functions:

av
(t) = aggregate ({{hu

(t−1) |u ∈ N(v)}})

and
hv

(t) = update (hv
(t−1), av

(t)) ,

where Aggregate has to be permutation-invariant. In this question your task is to give concrete
implementations of Aggregate and Update to solve certain tasks.

a) Give Aggregate and Update functions to implement a shortest path algorithm (for un-
weighted undirected graphs) from one source node to all other nodes. We represent the

source node s by setting h
(0)
s = 0 and h

(0)
v = ∞ for v ∈ V \ {s}. After n − 1 steps of the

GNN, the state h
(n−1)
v of every node v ∈ V should be its shortest path distance to s.

b) Prove that it is impossible to solve the vertex cover problem with a GNN on a graph where

h
(0)
v = 0 for all v ∈ V (all states are initialized to the same value)?

c) Give an example of a tree where a GNN is not able to compute a minimal vertex cover on.

d) Implement the functions Aggregate and Update to compute a minimal (not necessarily
minimum) vertex cover for trees with an initial three-coloring (the initial state of a
node is either 0, 1 or 2, corresponding to its color). You can decide how you want to represent

nodes that are part of the vertex cover and those that are not in h
(k)
v after k iterations. How

many iterations k do you need?

2 The Weisfeiler-Lehman Test for Trees

The goal of this question is proving that WL is an exact isomorphism test for trees. For the first
parts, we use G(V,E) to denote a general undirected graph.

a) Give an example of a graph G for which WL requires Ω(|V |) rounds to finish; i.e. for the
color classes to not refine anymore.

For the following parts, we will assume that the number of rounds t that WL is run for is provided
as input to the algorithm, rather than iteratively increasing t until the color partition converges.
For a node v ∈ V , define the k-hop neighborhood of v in G to be the induced subgraph of G
consisting of all nodes at distance at most k from v.

b) Given the computed label s
(t)
v of some node v ∈ V , show that this information does not

suffice to uniquely identify the t-hop neighborhood of v in G up to isomorphism. Formally,
show that there exists a value of t such that there are two graphs G1(V1, E1), G2(V2, E2) and

two nodes v1 ∈ V1, v2 ∈ V2 such that s
(t)
v1 = s

(t)
v2 , but the t-hop neighborhoods of v1 in G1

and v2 in G2 are non-isomorphic.

Now, assume graph G is a tree. For a node v ∈ V , define the rooted k-hop neighborhood of v in
G to be the induced subtree of G consisting of all nodes at distance at most k from v, rooted at v.
Formally, a rooted tree is a pair (G, r), where G is a tree and r ∈ V is the designated root of G.

c) Give an example of two non-isomorphic rooted trees (G1, r1) and (G2, r2) such that the
non-rooted trees G1 and G2 are isomorphic.

d) Given the computed label s
(t)
v of some node v ∈ V , show that this information uniquely

identifies the rooted t-hop neighborhood of v in G up to rooted tree isomorphism. Formally,

show that given two graphs G1, G2 and two nodes v1 ∈ V1, v2 ∈ V2 it holds that s
(t)
v1 = s

(t)
v2

if and only if the rooted t-hop neighborhoods of v1 in G1 and of v2 in G2 are isomorphic as
trees rooted at v1 and v2.

e) Show that if t ≥ ∆, where ∆ is the diameter of G, then for any v ∈ V the value s
(t)
v uniquely

identifies the tree G up to isomorphism. Moreover, show that if t ≥ ∆/2 then there is a

node v ∈ V such that s
(t)
v uniquely identifies the tree up to isomorphism.

For the remaining parts, the number t of rounds will be the least number of rounds required for
the color classes to stabilize. The precise WL implementation we are targeting is in Algorithm 1,
including the stopping condition and returned values. Pay particular attention to the comment
next to the returned values.

Algorithm 1 State Refinement/Weisfeiler-Lehman (WL)

1: t← 0
2: for v ∈ V do
3: s

(0)
v ← 0

4: end for
5: do
6: t← t+ 1
7: for v ∈ V do
8: s

(t)
v ← relabel(s

(t−1)
v , {{s(t−1)

u | u ∈ N(v)}})
9: end for

10: while (s
(t)
v)v∈V and (s

(t−1)
v)v∈V induce different partitions.

11: return {{s(t)v | v ∈ V }} ▷ t− 1 is more usual here, but some proofs become more difficult.

f) Show that there are infinitely many trees for which t < ∆/2.

g) Show that given the multiset {{s(k)v | v ∈ V }} for some k ≥ t, then the multiset {{s(k+1)
v | v ∈ V }}

is uniquely determined.

h) Show that two trees are isomorphic if and only if the multisets returned by WL when ran
on the two trees are the same. Hint: use parts e) and g).

2

	GNNs for Algorithmic Problems
	The Weisfeiler-Lehman Test for Trees

