Principles of Distributed Computing

Exercise 13

1 Flow labeling schemes

In this exercise, we focus on flow labeling schemes. Let $G = \langle V, E, w \rangle$ be a weighted undirected graph where, for every edge $e \in E$, the weight $w(e)$ is integral and represents the capacity of the edge. For two vertices $u, v \in V$, the flow between them (in either direction), denoted $\text{flow}(u, v)$, can be defined as follows. Denote by G' the multigraph obtained by replacing each edge e in G with $w(e)$ parallel edges of capacity 1. A set of paths P in G' is edge-disjoint if each edge (with capacity 1) appears in no more than one path $p \in P$. Let $P_{u,v}$ be the collection of all sets P of edge-disjoint paths in G' between u and v. Then $\text{flow}(u, v) = \max_{P \in P_{u,v}} |P|$.

Consider the family $G(n, \hat{\omega})$ of undirected weighted connected n-vertex graphs with maximum integral capacity $\hat{\omega}$. We will find flow labeling schemes for this family. Given a graph $G = \langle V, E, w \rangle$ in this family and an integer $1 \leq k$, define the relation:

$$R_k = \{(x, y) \mid x, y \in V, \text{flow}(x, y) \geq k\}.$$

Question 1 Show that for every $k \geq 1$, the relation R_k induces a collection of equivalence classes on V, $C_k = \{C_{k1}, \ldots, C_{km}\}$, such that $C_i \cap C_j = \emptyset$ (if $i \neq j$) and $\bigcup_i C_i = V$. What is the relationship between C_k and C_{k+1}?

According to the solution of Question 1, given G, one can construct a tree T_G corresponding to its equivalence relations. The k’th level of T corresponds to the relation R_k. The tree is truncated at a node once the equivalence class associated with it is a singleton. For every vertex $v \in V$, denote by $t(v)$ the leaf in T_G associated with the singleton set $\{v\}$.

For two nodes x, y in a tree T rooted at r, we define the separation level of x and y, denoted $\text{SepLevel}_T(x, y)$, as the depth of $z = \text{lca}(x, y)$, the least common ancestor of x and y. I.e., $\text{SepLevel}_T(x, y) = \text{dist}_T(z, r)$, the distance from z to the root.

Question 2

a) Show that if there exists a labeling scheme for distance in trees with labeling size $L(\text{dist}, T)$, then there is a labeling scheme for separation level with labeling size $L(\text{SepLevel}, T) \leq L(\text{dist}, T) + \lceil \log m \rceil$ where m is the number of nodes in the tree.

b) Recall there is an $O(\log^2 m)$ labeling scheme for distance in unweighted trees of size m. Show that $L(\text{flow}, G(n, \hat{\omega})) = O(\log^2 (n\hat{\omega}))$.

Question 3 Assume there is an $O(\log^2 m + \log \omega \log m)$ labeling scheme for weighted distance in integer-weighted trees of size m with max. weight size ω.

Find a more careful design of the tree T_G which can improve the bound on the label size to $L(\text{flow}, G(n, \hat{\omega})) = O(\log n \log \hat{\omega} + \log^2 n)$. Hint: Consider the nodes of degree 2 in T_G.

1 As a convention, $\text{flow}(x, x) = \infty$.