Network Decompositions

Exercise 1: Explain how given a (C,D) network decomposition of graph G, a maximal independent set can be computed in $O(CD)$ rounds.

Exercise 2: We here see that the $(O(\log n), O(\log n))$ network decomposition that we discussed in the class has the nearly best possible parameters. In particular, it is known that there are n-node graphs that have girth\(^1\) $\Omega(\log n / \log \log n)$ and chromatic number $\Omega(\log n)$ [AS04, Erd59]. Use this fact to argue that on these graphs, an $(o(\log n), o(\log n / \log \log n))$ network decomposition does not exist.

Exercise 3: Given an n-node undirected graph $G = (V,E)$, we define a $d(n)$-diameter ordering of G to be a one-to-one labeling $f : V \to \{1, 2, \ldots, n\}$ of vertices such that for any path $P = v_1, v_2, \ldots, v_p$ on which the labels $f(v_i)$ are monotonically increasing, any two nodes $v_i, v_j \in P$ have $\text{dist}_G(v_i, v_j) \leq d(n)$.

Use the existence of $(O(\log n), O(\log n))$ network decompositions, proved in the class, to argue that each n-node graph has an $O(\log^2 n)$-diameter ordering.

References

\(^1\)Recall that the girth of a graph is the length of its shortest cycle.