
Distributed
 Computing

FS 2025 Prof. R. Wattenhofer

Principles of Distributed Computing

Sample Solution to Exercise 1

1 Vertex Coloring

If the nodes omit the “undecided” messages, then each node sends exactly two messages to each
neighbor, one in the first round and one after assigning a color.

a) To express the worst-case message complexity in terms of n, we have to think of a graph that
maximizes the number of neighbors of each node: any ∆-regular graph on n vertices suffices.
Then, as each node sends two messages to each of its neighbours, the message complexity is
2n∆ ≤ 2n(n− 1) in the worst case.

b) There are 4 messages sent over each edge: two in the first round and two after assigning a
color. Hence, the total number of messages is 4m.

2 TDMA

a) The resulting coloring is depicted in Figure 1. Note that the clique of size 3 needs at least
3 colors. Hence, our solution is optimal.

1 2

3

2

1 2

1 2

1

2

Figure 1: The slots for the wireless network

b) We will use additional edges to model the new interferences. Two neighbors of a node are
not able to send messages at the same time if they have different colors. Therefore, for every
node, we will add an edge between every two neighbors of that node.

The resulting coloring is depicted in Figure 2. There are multiple cliques of size 4 in the new
graph; any of these needs at least 4 colors. Hence, our solution is optimal.

1 2

34

3

4 2 1

4

3

Figure 2: The slots for the wireless network with improved communication. The additional con-
straints are shown in blue.

c) Every pair of lectures that is selected by a student cannot take place at the same time. Thus,
they cannot be colored with the same color. This leads us to the solution shown in Figure 3.
The graph can be colored with 3 colors.

P

S U

G C

1 2

3

1 2

Figure 3: The resulting graph with P being shorthand for Principles of Distributed Computing,
S for Statistical Learning Theory, U for Ubiquitous Computing, G for Graph Theory, and C for
Cryptography. Note that 3 colors are sufficient.

3 Coloring Trees

a) The log-star algorithm for the ring is basically identical to the algorithm for trees. Nodes
do not have a parent in the ring, therefore we simply define the left neighbor of any node to
be its “parent”. Given this definition, we can run the normal log-star algorithm. Using the
same argument as for trees, it can be shown that no two neighboring nodes choose the same
color. Note that we can omit the “shift” step, as all “children” (i.e., the right neighbor)
always have the same color.

b) We build the algorithm step by step. The shape of the algorithm is similar to the solution of
the previous task, consisting of a 6-color phase and a Reduction phase, going from 6 colors
to three colors.

What happens when the nodes do not know n? Firstly, let’s note the main challenge
arising when n is unknown. In the log-star algorithm, the nodes precompute the number
of iterations sufficient to 6-color the graph. Computing this sufficient number of iterations
(O(log⋆ n)) relies on the knowledge of an upper bound of n (if not n itself). Hence, the
natural question is When can nodes stop the 6-colors phase and start the Reduction phase?.
Note that, in order to preserve the sublinear round complexity of the log-star algorithm,
nodes must make this decision without communicating with everybody else.

2

When can a node stop the 6-color phase? We can start reasoning from the following
claim: A node can stop computing new colors in the 6-colors phase when obtaining a color
in R. Is this claim correct?

Well, almost. Let u and v denote two nodes and assume that u is v’s left neighbor. Consider
the following examples:

• Node u obtains a color, say, 2 ∈ R (10 in binary), while node v’s color is 16 (10000 in
binary). Then, node v compute its new color in the next round as 2 · 1 + 0 = 2, which
is the same color as u’s, who does not change its color anymore!

• Node v obtains a color, say 1 ∈ R, while node u’s color is 17 (10001 in binary). If
the color of node u’s left neighbor is 16 (10000 in binary). Then, node u computes it’s
new color as 2 · 0 + 1 = 1, which is the same color as v’s, who doesn’t change its color
anymore!

So, we can overcome this issue with the help of two additional colors, ℓ and r! If node v
obtains a color in R in some round, it stops the 6-colors phase. Then, node v will check its
neighbors: if its left neighbor has obtained a color in R, then v sets its color to ℓ, meaning
“My left neighbor is done, therefore I stop this phase to avoid conflicts”. Similarly, if its
right neighbor has obtained a color in R, then v sets its color to r, with the meaning “My
right neighbor is done, therefore I stop this phase to avoid conflicts”.

Hence, when a node v gets a color in R∪ {ℓ, r}, it will stop the 6-color phase.

There is still one detail that needs to be addressed in this phase: the additional colors ℓ
and r essentially segment the ring into rooted trees (more precisely, directed paths). Node
v computes its color based on its left neighbor’s color. If this is ℓ, then v acts as a root: it
computes its new color based on an arbitrary color.

We present the formal code of the updated 6-colors phase below. For simplicity, each node
will use the subroutine presented in Algorithm 1 for computing a new color (lines 5–8 of the
6-color Algorithm in the lecture notes).

Algorithm 1 new color(cℓ, cv)

1: interpret cℓ and cv as bit-strings
2: let i be the index of the rightmost bit b where cv and cℓ differ
3: return cv = 2i+ b

We now present the updated “(6, ℓ, r)-Coloring” phase.

Algorithm 2 (6, ℓ, r)-Coloring Phase

1: send cv to both neighbors
2: while cv /∈ R ∪ {ℓ, r} do
3: if cℓ ∈ R then
4: cv := ℓ;
5: else if cr ∈ R then
6: cv := r;
7: else if cℓ = ℓ then
8: cv = new color(arbitrary color, cv) (“root”)
9: else

10: cv = new color(cℓ, cv)
11: send cv to both neighbors

The round complexity of this algorithm is O(log∗ n). We need to show that the coloring is
proper, i.e. two neighbors cannot obtain the same color c. Assuming that this is the case,
the case when c ∈ R is covered by the analysis of the log-star algorithm from the lecture.
The cases when c = ℓ and c = r contradict the description of the algorithm.

Starting the reduction phase. Let us continue with the following claim: Once v obtains
a color in R∪ {ℓ, r}, it can immediately start the Reduction phase. Is this claim true?

3

Well, no. Let us say that a node ends up with color ℓ, and enters the Reduction phase
immediately. This node may end up setting its color to, say, 2, while its right neighbor, still
acting as a root in the 6-Colors phase, also sets its color to 2 in the same round.

To avoid this challenge, when exiting the 6-Colors phase, each node waits until its neighbors
obtain colors in R ∪ {ℓ, r} as well.

From 6 + 2 to 3 colors. At this point, the nodes can reduce the colors from R ∪ {ℓ, r}
to {0, 1, 2}. Algorithm 3 presents outlines the Reduction phase. Note that since every node
has two neighbors, there is always a color available in {0, 1, 2}.

Algorithm 3 Reduction Phase

1: wait until both neighbors’ colors are in R∪ {ℓ, r}
2: while cv /∈ {0, 1, 2} do
3: if my turn() then
4: choose smallest available color cv ∈ {0, 1, 2}
5: send cv to both neighbors

There is still a question left: When is it my turn() to pick a color in {0, 1, 2}? Since adjacent
nodes may start reducing at different times, the approach of the lecture’s log-star algorithm
may fail. That is, if we simply iterate through the colors (e.g. nodes with color ℓ go first, then
nodes with color r, afterwards nodes with color 5 etc.), a node and its neighbor, although
they end up with different colors in the 6-colors phase, might choose a color in {0, 1, 2} at
the same time. They might even choose the same color! To avoid this, we will use the
round number: since the nodes operate synchronously, they have the same round number at
any time, even if they are in different phases of the algorithm. We will define the subroutine
my turn() as follows.

Algorithm 4 my turn(round number, cv)

1: x := (round number mod 5) + 3
2: if (cv = x) then
3: return true

4: else if x = 6 and cv = l then
5: return true

6: else if x = 7 and cv = r then
7: return true

8: else
9: return false

Putting it all together. Algorithm 5, presented below, is the final solution.

4

Algorithm 5 Synchronous 3-Coloring on Ring

1: send cv to both neighbors
2: while cv /∈ R ∪ {ℓ, r} do
3: if cℓ ∈ R then
4: cv := ℓ;
5: else if cr ∈ R then
6: cv := r;
7: else if cℓ = ℓ then
8: cv = new color(arbitrary color, cv) (root)
9: else

10: cv = new color(cℓ, cv)
11: send cv to both neighbors
12: wait until both neighbors’ colors are in R∪ {ℓ, r}
13: while cv /∈ {0, 1, 2} do
14: if my turn(round number, cv) then
15: choose smallest available color cv ∈ {0, 1, 2}
16: send cv to both neighbors

new color(cℓ, cv)

1: interpret cℓ and cv as bit-strings
2: let i be the index of the rightmost bit b where cv and cℓ differ
3: return cv = 2i+ b

my turn(round number, cv)

1: x := (round number mod 5) + 3;
2: return (cv = x) or (x = 6 and cv = l) or (x = 7 and cv = r)

5

