Principles of Distributed Computing
Exercise 14: Sample Solution

1 Flow labeling schemes

Question 1 Check that \(R_k \) is reflexive, symmetric and transitive.

- reflexive: \(\text{flow}(x, x) = \infty \)
- symmetric: the graph is undirected, \(\text{flow}(x, y) = \text{flow}(y, x) \)
- transitive: consider a path \(p = (v_1, v_2, \ldots, v_m) \) from \(x \) to \(y \) in which \(v_1 = x \) and \(v_m = y \) and a path \(p' = (v'_1, v'_2, \ldots, v'_{m'}) \) from \(y \) to \(z \) in which \(v'_1 = y \) and \(v'_{m'} = z \). Let \(i \) be the largest subscript in \(p' \) such that \(v'_i \in p \). It is easy to check there is a path \(x \rightarrow v'_i \rightarrow z \) where \(x \rightarrow v'_i \) is a part of \(p \) and \(v'_i \rightarrow z \) is a part of \(p' \).

\(C_{k+1} \) is a refinement of \(C_k \).

Question 2

a) Add the depth of each vertex into the label. The depth of the tree is smaller than \(m \), so the added part is of size \(O(\log m) \). From the depth of two vertices and the distance between them, SepLevel can be computed.

b) Note that

\[
\text{flow}_G(v, w) = \text{SepLevel}_T(t(v), t(w)).
\]

The depth of \(T_G \) cannot exceed \(n \hat{\omega} \) and every level at most has \(n \) nodes, hence the total number of nodes in \(T_G \) is \(O(n^2 \hat{\omega}) \).

Question 3 Cancel all nodes of degree 2 in \(T_G \), and add appropriate edge weights (\(\tilde{T}_G \)).

Now, define \(\text{SepLevel}_T(x, y) \) as the weighted depth of \(z = lca(x, y) \), i.e. its weighted distance from the root. Obtain the SepLevel labeling scheme for weighted trees in the same way as in question 2. For \(\tilde{n} \)-node trees with maximum weight \(\tilde{\omega} \), the labeling size is \(O(\log \tilde{n} \log \tilde{\omega} + \log^2 \tilde{n}) \).

Again, for two nodes \(x, y \) in \(G \), the weighted separation level of the leaves \(t(x) \) and \(t(y) \) associated with \(x \) and \(y \) in the tree \(T_G \) is related to the flow between the two vertices as in Eq. (1).

Finally, note that as \(\tilde{T}_G \) has exactly \(\tilde{n} \) leaves, and every non-leaf node in it has at least two children, the total number of nodes in \(\tilde{T}_G \) is \(\tilde{n} \leq 2n - 1 \). The maximum edge weight in \(\tilde{T}_G \) is \(\tilde{\omega} \leq n\hat{\omega} \). We end up with the label size of \(O(\log \tilde{n} \log \tilde{\omega} + \log^2 \tilde{n}) \).

For more details, see [1] (Section 2).
References