Principles of Distributed Computing
Exercise 8: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

\[
M^{DISJ} = \begin{pmatrix}
\text{DISJ} & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
000 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
001 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
010 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
011 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
100 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
101 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
110 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
111 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

For the Bonus task you can see for instance this short article for a nice visual.

b) When \(k = 3\) a fooling set of size 4 for \(DISJ\) is, e.g.,

\[S_1 := \{(111,000),(110,001),(101,010),(100,011)\} .\]

Entries in \(M^{DISJ}\) corresponding to elements of \(S_1\) are marked dark gray. Note that a fooling set need not be on a diagonal of the matrix. E.g.

\[S_2 := \{(001,110),(010,001),(011,100),(100,010)\},\]

marked light gray in \(M^{DISJ}\).

c) If \(x_1 = x_2\), then we would have \((x_1,y_j) = (x_2,y_j)\) for \(j \in \{1,2\}\) and thus \(f(x_1,y_2) = f(x_2,y_2) = f(x_1,y_1) = f(x_1,y_2) = z\), contradicting the definition of a fooling set. Similarly for \(y_1 = y_2\).

d) \(S := \{(x,\overline{x}) \mid x \in \{0,1\}^k\}\) is a fooling set for \(DISJ\):

- For any \((x,y) \in S\), \(DISJ(x,y) = 1\), by our definition of \(S\).
- Now, consider any two distinct elements of \(S\): \((x_1,\overline{x_1})\) and \((x_2,\overline{x_2})\). Since \(x_1 \neq x_2\), either \(x_1\) has set bit which \(x_2\) does not, or \(x_2\) has some set bit which \(x_1\) does not (or both). Without loss of generality, \(x_1\) has some set bit which \(x_2\) does not, but then \(x_1\) and \(\overline{x_2}\) are not disjoint, meaning that \(DISJ(x_1,\overline{x_2}) = 0\).

The size of \(S\) is \(2^k\), so \(k\) is a lower bound for the \(CC(DISJ)\) by the result from the lecture.
2 Distinguishing Diameter 2 from 4

a) Note that $O(D) = O(1)$, since $D \leq 4$ holds for all graphs being considered.

- Choosing $v \in L$ takes time $O(1)$: use any leader election protocol from the lectures. E.g., the node with smallest ID in L can be elected as a leader. This leader node will be node v. Note that, during the leader election protocol, if after 4 rounds no messages are received, then a node can conclude that all nodes are in H, so checking whether $L \neq \emptyset$ does not need to be done separately.

- Computing a BFS tree from a vertex takes time $O(D) = O(1)$. Since $v \in L$, at most $|N_1(v)| \leq s$ executions of BFS are performed. These can be started one after each other and yield a total time complexity of $O(s)$.

- The comment states: computing a dominating set DOM takes time $O(D) = O(1)$.

- Since $|\text{DOM}| \leq \frac{n \log n}{s}$, the time complexity of computing all BFS trees from each vertex in DOM (one after each other) is $O \left(\frac{n \log n}{s} \right)$.

- Checking whether all trees have depth at most 2 can be done in $O(D) = O(1)$ as well: each node knows its depth in any of the computed trees. If its depth is 3 or 4, it floods “diameter is 4” to the graph. If a node gets such a message from several neighbors, it only forwards it to those from which it did not receive it yet. If any node did not receive message “diameter is 4” after 4 rounds, it decides that the diameter is 2. Otherwise, it decides that the diameter is 4. This decision will be consistent among all nodes.

- By adding all these runtimes, we conclude that the total time complexity of Algorithm 2-vs-4 is $O \left(s + \frac{n \log n}{s} \right)$.

b) By differentiating $s + \frac{n \log n}{s}$ as a function of s we can argue that $s + \frac{n \log n}{s}$ is minimal for $s = \sqrt{n \log n}$. Alternatively, one can use the fact that $a + b \geq 2\sqrt{ab}$, with equality if and only if $a = b$, to get that $s + \frac{n \log n}{s} \geq \sqrt{2s \frac{n \log n}{s}} = \sqrt{n \log n}$, with equality if and only if $s = \frac{n \log n}{s} \iff s = \sqrt{n \log n}$. For this value of s, we get a runtime of $O(\sqrt{n \log n})$.

c) Since in this case no BFS tree can have depth larger than 2, the algorithm will always return “diameter is 2”.

d) If $w = s$, the claim is immediate. Otherwise, using the triangle inequality we have that $d(s, w) + d(w, t) \geq 4 \iff 1 + d(w, t) \geq 4 \iff d(w, t) \geq 3$, so the BFS tree of w has depth at least 3. Therefore, Algorithm 2-vs-4 decides “diameter is 4”.

e) If the BFS started in v has depth at least 3, then we are done. Otherwise, we have $d(s, v) \leq 2$. Using d) we conclude that $d(s, v) = 2$. Let w be a node that connects s to v. Since $w \in N_1(v)$, Algorithm 2-vs-4 executes a BFS from w. Then, apply d) using that $w \in N_1(s)$.

f) Since DOM is a dominating set, it follows that the algorithm executes a BFS from a node $w \in \text{DOM} \cap N_1(s) \neq \emptyset$. Now apply d).

g) A careful look into the construction of family G reveals that we essentially showed an $\Omega(n/\log n)$ lower bound to distinguish diameter 2 from 3. Since the graphs considered here cannot have diameter 3, the studied algorithm does not contradict this lower bound. Suppose we had to decide between diameter 2 and 3 (instead of 2 and 4) and we try using this exact algorithm. Indeed, if the algorithm finds a BFS tree of depth greater than 2, then the diameter is 3. However, if all BFS trees found are diameter 2 or less, the diameter could still be 3.
h) Consider a clique with \(n \) nodes, where \(n \) should be large enough, and remove an arbitrary edge \((u, v)\) from it. Since \(d(u, v) = 2\), the graph has diameter 2. We have that \(L = \emptyset \) and that for any \(w \not\in \{u, v\} \) the set \(\{w\} \) is a dominating set. If one such \(\text{DOM} = \{w\} \) is selected in the algorithm, then Algorithm 2-vs-4 executes exactly one BFS (from \(w \)), which has depth 1, disproving the claim. Note that this proof works for all \(s \leq n - 2 \).