
Distributed
 Computing

FS 2025 Prof. R. Wattenhofer

Principles of Distributed Computing

Sample Solution to Exercise 9

1 Self-Stabilizing (∆ + 1)-Coloring

a) Every node u holds an integer cu between 1 and ∆ + 1 such that ∀v ∈ N(u) : cv ̸= cu.

b) Yes. Let u and v denote the left node and resp. the right node having initial color 3. Node
u updates its color to 2, while node v can only update its color to 4.

Fun fact. Self-stabilizing algorithms are designed under different types of schedulers, com-
monly known in the literature as daemons. When a node wants to make a change in its state
(i.e. if it needs to change its color), it gets enabled. The daemon may allow all enabled
nodes to make a change at all times, or it may only allow a subset (so that every active node
makes a step eventually). A distributed daemon may hence not allow both nodes u and v to
make at the same time: it could be that node v is allowed to make a step first and hence it
updates its color to 4, and afterwards node u maintains color 3.

Our particular input configuration leads to a stable configuration regardless of the type of
daemon: either u or v are eventually allowed to make a change, or they are allowed to do so
simultaneously. In both cases, the result is a proper coloring.

c) No (unless we assume a central daemon), the algorithm is not a self-stabilizing (∆ + 1)-
coloring algorithm. As a counterexample, we consider the graph and initial configuration
below. We assume no transient faults occur from this point on.

The nodes having initial colors 3 may simultaneously switch to color 4. In the following
round, they may simultaneously switch to color 3 again, and afterwards they may simulta-
neously switch to color 4, and so on. A legitimate configuration is never reached.

To fix this issue, we need to prevent neighboring nodes from updating their color at the
same time. A central daemon prevents this by default as it only selects one enabled node to
make a move at a time. In the general case, we could assume hardcoded IDs (that cannot
be corrupted) and give priority to the node with a higher ID. Alternatively, we could use
randomness.

2 Self-stabilizing Spanning Tree

a) It will be sufficient to prove this lower bound assuming that nodes hold hardcoded IDs, and
that no transient faults occur. We assume that there is a deterministic algorithm A that
correctly defines a spanning tree in o(D) rounds in this setting. Hence, there is a D0 such
that, for any graph of diameter D ≥ D0, A takes at most k ≤ ⌊D/2⌋ − 1 rounds.

To reach a contradiction, we first run A on a cycle C2D := (v0, v1, . . . v2D−1) of 2D ≥ 2D0

nodes, with root v0. After k rounds, the nodes variables’ pvi must define a spanning tree.
This will be a path containing all edges in C2D except for one edge (vi, vi+1 mod 2D).

Our goal is now to define a path P containing all edges of C2D except for one edge e =
(vj , vj+1 mod 2D) so that nodes vi and vi+1 mod 2D cannot distinguish between C2D and P .
Hence, we need to choose an edge e that is outside the k-neighborhoods of vi and vi+1. Note
that these two k-neighborhood form a path of at most 2k+1 < D edges out of the 2D edges
of the cycle, hence such an edge e exists.

Hence, when running A on such a path P = (vj , vj+1 mod 2D, . . . , vj−1 mod 2D), nodes vi
and vi+1 mod 2D) behave identically to our run on C2D within the first k rounds: they end
up with the same variables pvi and pvi+1

.Therefore the edge (vi, vi+1 mod 2D) is not marked
as part of the spanning tree. However, as the edge e = (vj , vj+1 mod 2D) is now missing, A
does not obtain a spanning tree within k rounds, hence we obtained a contradiction.

b) The Bellman-Ford algorithm terminates in R(r) ∈ Θ(D) rounds, where R(r) denotes the
radius of the graph at the root r. This implies that its self-stabilizing variant needs exactly
the same number of rounds to stabilize, matching the bound from a). Since the transforma-
tion of an algorithm running in k rounds results in an algorithm simulating k instances of
the original algorithm in parallel, we need to transmit R(r) ∈ Θ(D) times more information
in each round.

3 Crash Failures

a) In every round, nodes send ’awake’ messages to their neighbors. The left-most node v starts
the coloring by choosing its own color cv := 0, and sends cv to its right neighbor. When a
node v receives color cu from its left neighbor u, it sets its color to cv := 1− cu and sends cv
to its right neighbor. This way, we are guaranteed that non-crashing adjacent nodes obtain
different colors.

If, in some round, node v does not receive a message from its left neighbor u, then node
u has necessarily crashed. Now v may consider itself the left-most neighbor, set its color
c0 := 0 and send cv to its right neighbor.

Algorithm 1 Crash-Resilient 2-Coloring of a Path

1: cv := ⊥. If v has no left neighbor, it sets cv := 0.
2: In every round:
3: If cv ̸= ⊥: Send cv to your right neighbor. Output cv and terminate.
4: Send ’awake’ to your right neighbor.
5: If v has received no message from its left neighbor: cv := 0.
6: If v has received cu from its left neighbor: cv := 1− cu.

b) No: now the nodes cannot distinguish between crashes and messages simply getting delayed,
and they still need to output some color. Assuming such an algorithm exists, it should be able
to obtain a proper coloring even when the notification between all nodes is delayed until all
nodes output a color. This would imply that one can 2-color a path with no communication.

2

