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1.1 Introduction & the LOCAL Model

In this chapter, we discuss distributed algorithms for some of the funda-
mental local graph problems, such as graph coloring, maximal independent
set, maximal matching, and network decomposition. In an informal sense,
by calling these local problems, we mean that we will be able to find algo-
rithms for them where the output of each node (e.g., its color) will depend
only on the toplogy of a small neighborhood around it in the network,
rather than the entire network.

We work with the LOCAL model, which was first formalized by Linial [Lin87,
Lin92]. The model definition is as follows.

Definition 1.1. (The LOCAL model) We consider an arbitrary n-node graph
G = (V ,E) where V = {1, 2, . . . ,n}, which abstracts the communication network.
Unless noted otherwise, G is a simple, undirected, and unweighted graph. There
is one process on each node v ∈ V of the network. At the beginning, the processes
do not know the graph G, except for knowing1 n, and their own unique identifier
in {1, 2, . . . ,n}. The algorithms work in synchronous rounds. Per round, each
node/process performs some computation based on its own knowledge, and then
sends a message to all of its neighbors, and then receives the messages sent to it by
its neighbors in that round. In each graph problem in this model, we require that
each node learns its own part of the output, e.g., its own color in a graph coloring.

Comment: We stress that the model does not assume any limitation on
the size of the messages, or on the computational power of the processes.
Because of this, it is not hard to see that, any t-round algorithm in the
LOCAL model induces a function which maps the t-hop neighborhood of
each node to its output (why?). For instance, a t-round algorithm for graph
coloring maps the topology induced by vertices within distance t of a vertex
v to the coloring of vertex v. The converse of this statement is also true,
meaning that if for a given graph problem, such a function exists, then
there is also a t-round algorithm for solving that problem. Hence, one can
say that the LOCAL model captures the locality of graph problems in a
mathematical sense.

Observation 1.2. Any graph problem on any n-node graph G can be solved in
O(n) rounds. In fact, using D to denote the diameter of the graph, any problem
can be solved in O(D) rounds.

1Most often, the algorithms will use only the assumption that nodes know an upper
bound N on n such that N ∈ [n,nc] for a small constant c > 1.
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1.2 Coloring Rooted Trees

We start by examining the graph coloring problem, and in a very special
case, coloring rooted trees. This basic-looking problem already turns out to
have some quite interesting depth, as we see in this section.

The setting is as follows. We consider an arbitrary rooted tree T =

(V ,E), such that V = {1, 2, . . . ,n}, and where each node v knows its parent
p(v) in T . The objective is to find a proper coloring of T , that is, a color
assignment φ : V → {1, 2, . . . ,q} such that there does not exist any node v
with φ(v) = φ(p(v)). Of course, we are interested in using a small number
of colors q, and we seek fast algorithms for computing such a coloring, that
is, algorithms that use a small number of rounds.

Clearly, each tree can be colored using just 2 colors. However, computing
a 2-coloring in the LOCAL model is not such an interesting problem, due to
the following simple observation:

Observation 1.3. Any LOCAL algorithm for 2-coloring an n-node directed path
requires at least Ω(n) rounds.

In contrast, 3-coloring has no such unfortunate lower bound, and in
fact, entails something quite non-trivial: it has a tight round complexity of
1
2 log∗ n±O(1). Recall the definition of the log-Star function:

log∗(x) =

{
0 if x 6 1
1+ log∗(log x) if x > 1

To prove this tight 1
2 log∗ n±O(1) round complexity, in the next two

subsections, we explain the following two directions of this result:

• First, in Section 1.2.1, we explain a log∗ n +O(1) round algorithm
for 3-coloring rooted trees. The upper bound can actually be im-
proved to 1

2 log∗ n+O(1) rounds [SV93], and even to exactly 1
2 log∗ n

rounds [RS14], but we do not cover those refinements. There are
four known methods for obtaining O(log∗ n)-round algorithms [CV86,
SV93, NS93, FHK16]. The algorithm we describe is based on an idea
of [NS95] and some extra step from [GPS87]. The approach of [CV86]
will be covered in Exercise 1.1.

• Then, in Section 1.2.2, we prove the above bound to be essentially
optimal by showing that any deterministic algorithm for 3-coloring
rooted trees requires at least 12 log∗ n−O(1) rounds. This result was
first proved by [Lin87, Lin92]. We explain a somewhat streamlined
proof, based on [LS14]. The lower bound holds also for randomized
algorithms [Nao91], but we will not cover that generalization, for the
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sake of simplicity. Furthermore, essentially the same lower bound
can be obtained as a direct corollary of Ramsey Theory. We will have a
brief explanation about that, at the end of this subsection.

1.2.1 3-Coloring Rooted Trees in log∗ n+O(1) Rounds

Theorem 1.4. Any n-node rooted-tree can be colored with 3 colors, in log∗ n+

O(1) rounds.

Notice that the initial numbering 1, 2, . . . , n of the vertices is already a
coloring with n colors. We explain a method for gradually improving this
coloring, by iteratively reducing the number of colors. The key ingredient
is a single-round color-reduction method, based on Sperner families, which
achieves the following:

Lemma 1.5. Given a k-coloring φold of a rooted tree where k > C0 for a constant2

C0, in a single round, we can compute a k ′-coloring φnew, for k ′ = logk +
log log k/2+ 1.

Proof. Let each node u send its color φold(u) to its children. We now
describe a method which allows each node v to compute its new coloring
φnew(v), based on φold(v) and φold(u) where u is the parent of v, with no
further communication.

Consider an arbitrary one-to-one mapping M : {1, 2, . . . ,k}→ Fk ′ , fixed
a priori, where Fk ′ denotes the set of all the subset of size k ′/2 of the set
{1, 2, . . . ,k ′}. Notice that such a one-to-one mapping exists, because

|Fk ′ | =

(
k ′

k ′/2

)
> 2k

′
/
√
2k ′ > k.

For each node v, we compute the new color φnew(v) ∈ {1, 2, . . . ,k ′} of v as
follows. Let u be the parent of v. Since both M(φold(v)) and M(φold(u)) are
subsets of size k ′/2, and because φold(v) 6= φold(u) and M is a one-to-one
mapping, we know that M(φold(v)) \M(φold(u)) 6= ∅. Let φnew(v) be any
arbitrary color in M(φold(v)) \M(φold(u)). Since each node v gets a color
φnew(v) ∈ M(φold(v)) \M(φold(u)) that is not in the color set M(φold(u))

of its parent, φnew(v) 6= φnew(u) ∈ M(φold(u)). Hence, φnew is a proper
coloring.

Remark 1.1. Notice that in the above proof, the main property that we used is
that none of the color-sets M(i) ∈ Fk ′ is contained in another M(j) ∈ Fk ′ , for
i 6= j. Generally, a family of sets such that none of them is contained in another

2We assume this constant lower bound C0 mainly to simplify our job and let us not
worry about the rounding issues.
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is called a Sperner Family. In particular, `-element subsets of a k ′-element set
form a Sperner family, the size of which is maximized by setting ` = bk ′/2c, as we
did above. More generally, Sperner’s theorem shows that any Sperner family on a
ground set of size k ′ has size at most

(
k ′

bk ′/2c
)

[Spe28]. See [Lub66] for a short and
cute proof of Sperner’s theorem, via a simple double counting.

We can now iteratively apply the above method, abstracted in the state-
ment of Lemma 1.5, to reduce the number of colors. After one round, we
go from an initial n-coloring to a (logn+ log logn/2+ 1)-coloring. After
one more round, we get to a coloring which has no more than log logn+

O(log log logn) colors. More generally, after at most log∗ n+O(1) repeti-
tions, we get to a coloring with no more than C0 colors, for a constant C0.
At this point, we cannot apply the above routine anymore. However, we
can use an easier method that repeatedly uses two rounds to shave off one
color, until arriving at a 3-coloring. We explain this next. Overall, we use
log∗ n+O(1) rounds to get a 3-coloring.

Lemma 1.6. Given a k-coloring φold of a rooted tree where k > 4, in two rounds,
we can compute a (k− 1)-coloring φnew.

Proof. First, use one round where each node u sends its color φold(u) to its
children. Then, let each node v set its temporary coloring φ ′old(v) = φold(u),
where u is the parent of v. For the root node r, this rule is not well-defined.
But that is easy to fix. Define φ ′old(r) ∈ {1, 2, 3} \φold(r). Observe that φ ′old is
a proper k-coloring, with the following nice additional property: for each
node u, all of its children have the same color φ ′old(u).

Now, use another round where each node u sends its color φ ′old(u) to
its children. Then, define the new color φnew(v) as follows. For each node
v such that φ ′old(v) 6= k, let φnew(v) = φ ′old(v). For each node v such that
φ ′old(v) = k, let φnew(v) be a color in {1, 2, 3} \ {φ ′old(u),φold(v)}.

Notice that since only nodes of color k are changing their color, these
nodes are non-adjacent. Each of them switches to a color that is different
than what is held by its parent and its children. Hence, the new coloring
φnew(v) is proper.

Proof of Theorem 1.4. The proof follows by applying Lemma 1.5 for log∗ n+

O(1) iterations, until getting to a coloring with no more than C0 = O(1)

colors, and then applying the method of Lemma 1.6 for C0 − 3 = O(1)

iterations, until getting to a 3-coloring.

Remark 1.2. We can extend Theorem 1.4 to compute a coloring of an arbitrary
graph with maximum degree ∆ using 2O(∆) colors, in O(log∗ n) rounds. For that,
we modify Lemma 1.5 as follows: for each node v, we view each of its up to ∆
neighbors u as one “parent". We compute a new color similar to Lemma 1.5
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when comparing the old color of v with the old color of u. Then we take the
∆-tuple that lists all these ∆ new colors. This way, in one iteration, we reduce the
number of colors from k to (O(logk))∆, as there are O(logk) for each entry of the
∆-tuple. Repeating this for O(log∗ n) iterations gets us to a coloring with 2O(∆)

colors. Notice that we can also turn this to a coloring with only ∆+ 1 colors, by
spending 2O(∆) extra rounds, where per round each node that has a color (strictly)
great than all of its neighbors switches to a color in {1, . . . ,∆+ 1} not taken by its
neighbors. In later sections, we see an algorithm for ∆+ 1 coloring with a much
better dependency on ∆ in its round complexity.

1.2.2 3-Coloring Rooted Trees Needs 1
2

log∗ n−O(1) Rounds

Theorem 1.7. Any deterministic algorithm for 3-coloring n-node directed paths
needs at least log∗ n

2 − 2 rounds.

For the sake of contradiction, suppose that there is an algorithm A

that computes a 3-coloring of any n-node directed path in t rounds for
t <

log∗ n
2 − 2. When running this algorithm for t rounds, any node v can

see at most the k-neighborhood around itself for k = 2t+ 1, that is, the
vector of identifiers for the nodes up to t hops before itself and up to t hops
after itself. Hence, if the algorithm A exists, there is a mapping from each
such neighborhood to a color in {1, 2, 3} such that neighborhoods that can
be conceivably adjacent are mapped to different colors.

We next make this formal by a simple and abstract definition. For
simplicity, we will consider only a restricted case of the problem where
the identifiers are set monotonically increasing along the path. Notice this
restriction only strengthens the lower bound, as it shows that even for this
restricted case, there is no t-round algorithm for t < log∗ n

2 − 2.

Definition 1.8. We say B is a k-ary q-coloring if for any set of identifiers 1 6
a1 < a2 < · · · < ak < ak+1 6 n, we have the following two properties:

P1: B(a1,a2, . . . ,ak) ∈ {1, 2, . . . ,q},

P2: B(a1,a2, . . . ,ak) 6= B(a2, . . . ,ak+1).

Observation 1.9. If there exists a deterministic algorithm A for 3-coloring n-node
directed paths in t < log∗ n

2 − 2 rounds, then there exists a k-ary 3-coloring B, where
k = 2t+ 1 < log∗ n− 3.

Proof. Suppose that such an algorithm A exists. We then produce a k-ary
3-coloring B by examining A. For any set of identifiers 1 6 a1 < a2 < · · · <
ak 6 n, define B(a1,a2, . . . ,ak) as follows. Simulate algorithm A on an
imaginary directed path where a consecutive portion of the identifiers on
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the path are set equal to a1,a2, . . . ,ak. Then, let B(a1,a2, . . . ,ak) be equal to
the color in {1, 2, 3} that the node at+1 receives in this simulation.

We now argue that B as defined above is a k-ary 3-coloring. Prop-
erty P1 holds trivially. We now argue that property P2 also holds. For
the sake of contradiction, suppose that it does not, meaning that there
exist a set of identifiers 1 6 a1 < a2 < · · · < ak < ak+1 6 n such that
B(a1,a2, . . . ,ak) = B(a2, . . . ,ak+1). Then, imagine running algorithm A on
an imaginary directed path where a consecutive portion of identifiers are set
equal to a1,a2, . . . ,a2t+2. Then, since B(a1,a2, . . . ,ak) = B(a2, . . . ,ak+1), the
algorithm A assigns the same color to at+1 and at+2. This is in contradiction
with A being a 3-coloring algorithm.

To prove Theorem 1.7, we show that a k-ary 3-coloring B where k <
log∗ n− 3 cannot exist. The proof is based on the following two lemmas:

Lemma 1.10. There is no 1-ary q-coloring with q < n.

Proof. A 1-ary q-coloring requires that B(a1) 6= B(a2), for any two identifiers
1 6 a1 < a2 6 n. By the Pigeonhole principle, this needs q > n.

Lemma 1.11. If there is a k-ary q-coloring B, then there exists a (k − 1)-ary
2q-coloring B ′.

Proof. For any set of identifiers 1 6 a1 < a2 < · · · < ak−1 6 n, define
B ′(a1,a2, . . . ,ak−1) to be the set of all possible colors i ∈ {1, . . . ,q} for which
∃ak > ak−1 such that B(a1,a2, . . . ,ak−1,ak) = i.

Notice that B ′ is a subset of {1, . . . ,q}. Hence, it has 2q possibilities,
which means that B ′ has property P1 and it assigns each set of identifiers
1 6 a1 < a2 < · · · < ak−1 6 n to a number in 2q. Now we argue that B ′ also
satisfies property P2.

For the sake of contradiction, suppose that there exist identifiers 1 6
a1 < a2 < · · · < ak 6 n such that B ′(a1,a2, . . . ,ak−1) = B ′(a2,a3, . . . ,ak).
Let q∗ = B(a1,a2, . . . ,ak) ∈ B ′(a1,a2, . . . ,ak−1). Then, we must have q∗ ∈
B ′(a2,a3, . . . ,ak). Thus, ∃ak+1 > ak such that q∗ = B(a2,a3, . . . ,ak,ak+1).
But, in that case we would have B(a1,a2, . . . ,ak) = q∗ = B(a2,a3, . . . ,ak,ak+1),
which is in contradiction with B being a k-ary q-coloring. Having reached
at a contradiction by assuming that B ′ does not satisfy P2, we conclude that
it actually does satisfy P2. Hence, B ′ is a (k− 1)-ary 2q-coloring.

Proof of Theorem 1.7. For the sake of contradiction, suppose that there is an
algorithm A that computes a 3-coloring of any n-node directed path in t
rounds for t < log∗ n

2 − 2. As stated in Observation 1.9, if there exists an
algorithm A that computes a 3-coloring of any n-node directed path in
t rounds for t < log∗ n

2 − 2, then there exists a k-ary 3-coloring B, where
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k = 2t+ 1 < log∗ n− 3. Using one iteration of Lemma 1.11, we would get
that there exists a (k− 1)-ary 8-coloring. Another iteration would imply
that there exists a (k− 2)-ary 28-coloring. Repeating this, after k < log∗ n− 3

iterations, we would get a 1-ary coloring with less than n colors. However,
this is in contradiction with Lemma 1.10. Hence, such an algorithm A

cannot exist.

An Alternative Lower Bound Proof Via Ramsey Theory:
Let us first briefly recall the basics of Ramsey Theory. The simplest case of
Ramsey’s theorem says that for any `, there exists a number R(`) such that
for any n > R(`), if we color the edges of the n-node complete graph Kn
with two colors, there exists a monochromatic clique of size ` in it, that is, a
set of ` vertices such that all of the edges between them have the same color.
A simple example is that among any group of at least 6 = R(3) people, there
are either at least 3 of them which are friends, or at least 3 of them no two
of which are friends.

A similar statement is true in hypergraphs. Of particular interest for our
case is coloring hyperedges of a complete n-vertex hypergraph of rank k,
that is, the hypergraph where every subset of size k of the vertices defines
one hyperedge. By Ramsey theory, it is known that there exists an n0 such
that, if n > n0, for any way of coloring hyperedges of the complete n-vertex
hypergraph of rank k with 3 colors, there would be a monochromatic clique
of size k+ 1. That is, there would be a set of k+ 1 vertices a1, . . . , ak+1 in
{1, . . . ,n} such that all of their

(
k+1
k

)
= k+ 1 subsets with cardinality k have

the same color.
In particular, consider an arbitrary k-ary coloring B, and let B define

the colors of the hyperedges {a1, . . . ,ak} when 1 6 a1 < a2 < · · · < ak 6 n.
By Ramsey’s theorem, we would get the following: there exist vertices
1 6 a1 < a2 < · · · < ak < ak+1 6 n such that B assigns the same color to
hyperedges {a1, . . . ,ak} and {a2, . . . ,ak+1}. But this is in contradiction with
the property P2 of B being a k-ary coloring. The value of n0 that follows
from Ramsey theory is such that k = O(log∗ n0). In other words, Ramsey’s
theorem rules out o(log∗ n)-round 3-coloring algorithms for directed paths.
See [CFS10] for more on hypergraph Ramsey numbers.

1.3 Coloring Unrooted Trees

In the previous sections, we saw that on a rooted tree, where each node
knows its parent, a 3-coloring can be computed distributedly in O(log∗ n)
rounds. Moreover, we proved that this round complexity is optimal. This
O(log∗ n)-round algorithm for rooted trees heavily relies on each node
knowing its parent.
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We next prove that no such result is possible in unrooted trees, when
nodes do not know which neighbor is their parent. More concretely, we
prove that any deterministic algorithm for coloring unrooted trees that
runs in o(log∆ n) rounds must use at least Ω(∆/ log∆) colors. Moreover, we
complement this by showing that given O(logn) rounds, we can compute
a 3-coloring of any n-node tree.

1.3.1 The Lower Bound

Theorem 1.12. Any (deterministic) distributed algorithm A that colors n-node
trees with maximum degree ∆ using less than o(∆/ log∆) colors has round com-
plexity at least Ω(log∆ n).

To prove the claimed lower bound, we will use a graph-theoretic result
about the existence of certain graphs. The proof of this lemma is based on
a probabilistic method argument, but we do not cover it in this lecture. Before
stating the properties of this graph, we recall that the girth of a graph is the
length of the shortest cycle.

Fact 1.13 (Bollobas [Bol78]). There exists an infinite family of n-node graphs
H∗ where all nodes have degree ∆, with girth g(H∗) = Ω(log∆ n) and chromatic
number χ(H∗) = Ω(∆/ log∆).

Remark 1.3. We note that this lower bound on the chromatic number is asymptoti-
cally tight, because high-girth graphs, and more generally triangle-free graphs, with
maximum degree ∆ have chromatic number O(∆/ log∆) [Kim95, Jam11, PS15].

Proof of Theorem 1.12. For the sake of contradiction, suppose that there ex-
ists a deterministic distributed algorithm A that computes a o(∆/ log∆)-
coloring of any n-node tree with maximum degree ∆, in o(log∆ n) rounds.

We run A on the graph H∗, stated in Fact 1.13. Notice that H∗ is not a
tree. However, since g(H∗) = Ω(log∆ n), within the o(log∆ n) rounds of the
algorithm, no one will notice! In particular, since g(H∗) = Ω(log∆ n), for any
node v, the subgraph Tv of H∗ induced by nodes within distance o(log∆ n)
of v is a tree (why?). Thus, within the o(log∆ n) rounds of the algorithm,
node v will think that the algorithm A is being run on Tv and will not realize
that the algorithm is being run on a non-tree graph H∗. Similarly, none of
the nodes will recognize that we are not on a tree. Hence, each node v will
compute an output as if the algorithm A was being run on its local tree Tv.
This must produce a valid coloring of H∗ with o(∆/ log∆) colors. That is
because if the algorithm creates two neighbors v and u with the same color,
then running the algorithm on the tree Tv would also produce a non-valid
color. However, the fact that A is able to compute a o(∆/ log∆)-coloring of
H∗ is in contradiction with the fact that χ(H∗) = Ω(∆/ log∆).
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1.3.2 The Upper Bound

Theorem 1.14. There is a deterministic distributed algorithm that computes a
3-coloring of any n-node tree in O(logn) rounds.

The Algorithm for Coloring Unrooted Trees, Step 1 We first perform an
iterated peeling process, on the given tree T = (V ,E). Let T1 = T and let
layer L1 be the set of all vertices of T1 whose degree in T1 is at most 2. Then,
let T2 = T1 \ L1 be the forest obtained by removing from T1 all the L1 vertices.
Then, define layer L2 be the set of all vertices of T2 whose degree in T2 is at
most 2. Then, define T3 = T2 \ L2 similar to before. More generally, each Ti+1
is defined as Ti+1 = Ti \ Li, which is the forest obtained by removing from
Ti all the layer Li vertices, and then layer Li+1 is defined to be the vertices
that have degree at most 2 in Ti+1.

Lemma 1.15. The process terminates in O(logn) iterations, meaning that V gets
decomposed into disjoint sets L1, L2, . . . , L` for some ` = O(logn).

Proof. Ti has at most |Ti|− 1 edges, since it is a forest. Hence, the number
of vertices of Ti that have degree at least 3 is at most (2|Ti|− 1)/3. Hence, at
least 1/3 of the nodes of Ti are put in Li. This means in each iteration the
number of nodes reduces by a 2/3-factor, which implies that we are done
within ` = log3/2 n iterations.

The Algorithm for Coloring Unrooted Trees, Step 2 Now, we color each
of the subgraphs T [Li] independently using 3 colors, in O(log∗ n) rounds.
Notice that since T [Li] has maximum degree at most 2, this is doable for
instance using the algorithm from Theorem 1.4 (concretely its extension
outlined in Remark 1.2) or alternatively using the algorithm that we will
later see in Theorem 1.22. We use these colors of the graphs T [Li] mainly as
a schedule-color, for computing the final output coloring of the vertices.

The Algorithm for Coloring Unrooted Trees, Step 3 We process the
graph by going through the layers L` to L1, spending 3 rounds on each.
Each time, we make sure that we have a valid final-coloring of the graph
T [∪`j=iLi] with 3 colors, for decreasing value of i.

Suppose we have an arbitrary final-coloring of T [∪`j=i+1Lj] already, with
3 colors. How do we compute a 3-coloring for vertices of Li in a manner
that does not create a violation with the colors of vertices of T [∪`j=i+1Lj]?

This can be done easily using our usual trick of applying one coloring
as a schedule for computing another coloring. In particular, we will solve
this part of the problem in 3 rounds. We go through the 3 schedule-colors
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q ∈ {1, 2, 3} of T [Li], one by one, each time picking a final-color in {1, 2, 3} for
all the vertices in Li with schedule color q.

1.4 Deterministic Coloring of General Graphs

1.4.1 Take 1: Linial’s Coloring Algorithm

In the previous section, we discussed distributed LOCAL algorithms for
coloring oriented trees. In this section, we start the study of LOCAL coloring
algorithms for general graphs. Throughout, the ultimate goal would be
to obtain (∆+ 1)-coloring of the graphs — that is, an assignment of colors
{1, 2, . . . ,∆+ 1} to vertices such that no two adjacent vertices receive the
same color — where ∆ denotes the maximum degree. Notice that by a
simple greedy argument, each graph with maximum degree at most ∆
has a (∆+ 1)-coloring: color vertices one by one, each time picking a color
which is not chosen by the already-colored neighbors. However, this greedy
argument does not lead to an efficient LOCAL procedure for finding such a
coloring3.

In this section, we start with presenting an O(log∗ n)-round algorithm
that computes aO(∆2) coloring. This algorithm is known as Linial’s coloring
algorithm [Lin87, Lin92]. In Section 1.4.2, we see how to transform this
coloring into a (∆+ 1)-coloring.

Theorem 1.16. There is a deterministic distributed algorithm in the LOCAL model
that colors any n-node graph G with maximum degree ∆ using O(∆2) colors, in
O(log∗ n) rounds.

Outline. The core piece of the algorithm is a single-round color reduction
method, as we will describe in Lemma 1.17. That will allows us to transform
any given coloring with some k colors to some other coloring with a much
smaller number k ′ � k of colors. Then, by repeated applications of this
single-round color reduction, we obtain the coloring algorithm as claimed
in Theorem 1.16.

Lemma 1.17. Given a k-coloring φold of a graph with maximum degree ∆, in a sin-
gle round, we can compute a k ′-coloring φnew, for k ′ = O(∆2 logk). Furthermore,
if k 6 ∆3, then the bound can be improved to k ′ = O(∆2).

We will come back to proving this lemma. Let us first see how by using
it we can immediately obtain Theorem 1.16.

3The straightforward transformation of this greedy approach to the LOCAL model
would be an algorithm that may need Ω(n) rounds.
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Proof of Theorem 1.16. The proof is via iterative applications of Lemma 1.17.
We start with the initial numbering of the vertices as a straightforward
n-coloring. With one application of Lemma 1.17, we transform this into
a O(∆2 logn) coloring. With another application, we get a coloring with
O(∆2(log∆+ log logn)) colors. With another application, we get a coloring
with O(∆2(log∆+ log log logn)) colors. After O(log∗ n) applications, we
get a coloring with O(∆2 log∆) colors (why4?). At this point, we use one
extra iteration, based on the second part of Lemma 1.17, which gets us to
an O(∆2)-coloring.

Single-Round Color Reduction

We now go back to Lemma 1.17 and explain its color reduction method. We
note that this single-round color reduction method can be seen as a much
more general variant of the single-round color reduction that we discussed
in Lemma 1.5 for coloring rooted trees. The difference is that here, each
node has to ensure that the color that it picks is different than all of its
neighbors, and not just its parents.

The key concept in our single-round color reduction is a combinatorial
notion called cover free families, as we will define next.

Definition 1.18. (Cover free families) Given a ground set {1, 2, . . . ,k ′}, a family
of sets S1, S2, . . . , Sk ⊆ {1, 2, . . . ,k ′} is called a ∆-cover free family if for each set of
indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . ,k}, we have Si0 \

(
∪∆j=1 Sij

)
6= ∅. That is, if no

set in the family is a subset of the union of ∆ other sets.

We comment that cover free families can be seen as a generalization of
Sperner families (as mentioned in Remark 1.1 and used in the single-round
color reduction of Lemma 1.5 for rooted trees): a Sperner family is simply
a 1-cover free family, i.e., no set is a subset of any other set.

Using cover free families for color reduction. We use cover free families
for color reduction in the obvious way: consider an old coloring φold with k
colors and suppose we want a new coloring φnew with k ′ colors. Each node
v of old color φold(v) = q for q ∈ {1, . . . ,k} will use the set Sq ⊆ {1, . . . ,k ′} in
the cover free family as its color-set, i.e., its list of possible colors. Then, it
sets its new color φnew(v) = q ′ where q ′ ∈ Sq is such that q ′ is not in the
color-set of any of the neighbors. Such a color q ′ is promised to exist, by
the definition of cover free families.

As clear from the above outline, we would like to have k ′ as small as
possible, as a function of k and ∆. This would allow us to reduce the

4If this is not clear, please ask during the exercise sessions.
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number of colors faster. In the following, we prove the existence of ∆-
cover free families with a small enough ground set size k ′. In particular,
Lemma 1.19 achieves k ′ = O(∆2 logk) and Lemma 1.20 shows that this
bound can be improved to k ′ = O(∆2), if k 6 ∆3. Toward the end of this
subsection, we provide the formal proof that these imply Lemma 1.17.

Lemma 1.19. (Existence of cover free families) For any k and ∆, there exists
a ∆-cover free family of size k on a ground set of size k ′ = O(∆2 logk).

Proof. We use the probabilistic method [AS04] to argue that there exists
a ∆-cover free family of size k on a ground set of size k ′ = O(∆2 logk).
Let k ′ = C∆2 logk for a sufficiently large constant C > 2. For each i ∈
{1, 2, . . . ,k}, define each set Si ⊂ {1, 2, . . . ,k ′} randomly by including each
element q ∈ {1, 2, . . . ,k ′} in Si with probability p = 1/∆. We argue that this
random construction is indeed a ∆-cover free family, with probability close
to 1. Therefore, such a cover free family exists.

First, consider an arbitrary set of indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . ,k}.
We would like to argue that Si0 \

(
∪∆j=1 Sij

)
6= ∅. For each element q ∈

{1, 2, . . . ,k ′}, the probability that q ∈ Si0 \
(
∪∆j=1 Sij

)
is at exactly 1

∆(1−
1
∆)
∆ >

1
4∆ . Hence, the probability that there is no such element q that is in Si0 \(
∪∆j=1 Sij

)
is at most (1− 1

4∆)
k ′ 6 exp(−C∆ logk/4). This is an upper bound

on the probability that for a given set of indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . ,k},
the respective sets violate the cover-freeness property that Si0 \

(
∪∆j=1 Sij

)
6=

∅.
There are k

(
k−1
∆

)
way to choose such a set of indices i0, i1, i2, . . . , i∆ ∈

{1, 2, . . . ,k}, k ways for choosing the central index i0 and at most (k− 1)∆

ways for choosing the indices i1, i2, . . . , i∆. Hence, by a union bound over
all these choices, the probability that the construction fails is at most

k(k− 1)∆ · exp(−C∆ logk/4) = exp
(

logk+∆(log(k− 1)) −C∆ logk/4
)

6 exp(−C∆ logk/8)� 1,

for a sufficiently large constant C. That is, the random construction succeeds
to provide us with a valid ∆-cover free family with a positive probability,
and in fact with a probability close to 1. Hence, such a ∆-cover free family
exists.

Lemma 1.20. For any k and ∆ > k1/3, there exists a ∆-cover free family of size k
on a ground set of size k ′ = O(∆2).

Proof. Here, we use an algebraic proof based on low-degree polynomials.
Let q be a prime number that is in [3∆, 6∆]. Notice that such a prime
number exists by Bertrand’s postulate (also known as Bertrand-Chebyshev
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Theorem). Let Fq denote the prime field5 of order q (i.e., integers modulo
q). For each i ∈ {1, 2, . . . ,k}, associate with set Si — to be constructed —
a distinct degree d = 2 polynomial gi : Fq → Fq over Fq. Notice that
there are qd+1 > ∆3 > k such polynomials and hence such an association
is possible. Let Si be the set of all evaluation points of gi, that is, let
Si = {(a,gi(a)) |a ∈ Fq}. These are subsets of the k ′ = q2 cardinality set
Fq ×Fq. Notice two key properties:

(A) for each i ∈ {1, 2, . . . ,k}, we have |Si| = q.

(B) for each i, i ′ ∈ {1, 2, . . . ,k} such that i 6= i ′, we have |Si ∩ Si ′ | 6 d.

The latter property holds because, in every intersection point, the degree d
polynomial gi − gi ′ evaluates to zero, and each degree d polynomial has at
most d zeros. Now, the ∆ cover-freeness property follows trivially from (A)
and (B), because for any set of indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . ,k}, we have

|Si0 \
(
∪∆j=1 Sij

)
| > |Si0 | −

∆∑
j=1

|Si0 ∩ Sij |

> q − ∆ · d = q− 2∆ > ∆ > 1.

Remark 1.4. One can easily generalize the construction of Lemma 1.20, by taking
higher-degree polynomials, to a ground set of size k ′ = O(∆2 log2∆ k), where no
assumption on the relation between k and ∆ would be needed.

Proof Sketch of Lemma 1.17. Follows from the existence of cover free families
as proven in Lemma 1.19 and Lemma 1.20. Namely, each node v of old
color φold(v) = q for q ∈ {1, . . . ,k} will use the set Sq ⊆ {1, . . . ,k ′} in the
cover free family as its color-set. Then, it sets its new color φnew(v) = q ′ for
a q ′ ∈ Sq such that q ′ is not in the color-set of any of the neighbors. By
the definition of the cover free families, and given that φold was a proper
coloring, we are guaranteed that such a color q ′ exists. By the choice of q ′,
the coloring φnew is also a proper coloring.

1.4.2 Take 2: Kuhn-Wattenhofer Coloring Algorithm

In the previous section, we saw anO(log∗ n)-round algorithm for computing
a O(∆2)-coloring. In this section, we explain how to transform this into a
(∆+ 1)-coloring. We will first see a very basic algorithm that performs this
transformation in O(∆2) rounds. Then, we see how with the addition of a
small but clever idea of [KW06], this transformation can be performed in
O(∆ log∆) rounds. As the end result, we get an O(∆ log∆+ log∗ n)-round
algorithm for computing a (∆+ 1)-coloring.

5See https://en.wikipedia.org/wiki/Finite_field

https://en.wikipedia.org/wiki/Finite_field
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Warm up: One-By-One Color Reduction

Lemma 1.21. Given a k-coloring φold of a graph with maximum degree ∆ where
k > ∆+ 2, in a single round, we can compute a (k− 1)-coloring φnew.

Proof. For each node v such that φold(v) 6= k, set φnew(v) = φold(v). For each
node v such that φold(v) = k, let node v set its new color φnew(v) to be a
color q ∈ {1, 2, . . . ,∆+ 1} such that q is not taken by any of the neighbors of
u. Such a color q exists, because v has at most ∆ neighbors. The resulting
new coloring φnew is a proper coloring.

Theorem 1.22. There is a deterministic distributed algorithm in the LOCAL model
that colors any n-node graph G with maximum degree ∆ using ∆+ 1 colors, in
O(∆2 + log∗ n) rounds.

Proof. First, compute an O(∆2)-coloring in O(log∗ n) rounds using the al-
gorithm of Theorem 1.16. Then, apply the one-by-one color reduction of
Lemma 1.21 for O(∆2) rounds, until getting to a (∆+ 1)-coloring.

Parallelized Color Reduction

Lemma 1.23. Given a k-coloring φold of a graph with maximum degree ∆ where
k > ∆+ 2, in O(∆ log( k

∆+1)) rounds, we can compute a (∆+ 1)-coloring φnew.

Proof. If k 6 2∆+ 1, the lemma follows immediately from applying the one-
by-one color reduction of Lemma 1.21 for k− (∆+ 1) iterations. Suppose
that k > 2∆+ 2. Bucketize the colors {1, 2, . . . ,k} into b k

2∆+2c buckets, each
of size exactly 2∆ + 2, except for one last bucket which may have size
between 2∆+ 2 to 4∆+ 3. We can perform color reductions in all buckets
in parallel (why?). In particular, using at most 3∆+ 2 iterations of one-by-
one color reduction of Lemma 1.21, we can recolor nodes of each bucket
using at most ∆+ 1 colors. Considering all buckets, we now have at most
(∆+ 1)b k

2∆+2c 6 k/2 colors. Hence, we managed to reduce the number of
colors by a 2 factor, in just O(∆) rounds. Repeating this procedure for
dlog( k

∆+1)e iterations gets us to a coloring with ∆+ 1 colors. The round
complexity of this method is O(∆ log( k

∆+1)), because we have dlog( k
∆+1)e

iterations and each iteration takes O(∆) rounds.

Theorem 1.24. There is a deterministic distributed algorithm in the LOCAL model
that colors any n-node graph G with maximum degree ∆ using ∆+ 1 colors, in
O(∆ log∆+ log∗ n) rounds.

Proof. First, compute an O(∆2)-coloring in O(log∗ n) rounds using the al-
gorithm of Theorem 1.16. Then, apply the parallelized color reduction of
Lemma 1.23 to transform this into a (∆+ 1)-coloring, in O(∆ log∆) addi-
tional rounds.
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1.4.3 Take 3: Kuhn’s Algorithm via Defective Coloring

In the previous section, we saw an algorithm that computes a (∆ + 1)-
coloring in O(∆ log∆+ log∗ n) rounds. We now present an algorithm that
improves this round complexity to O(∆+ log∗ n) rounds, based on a Defec-
tive Coloring method of Kuhn [Kuh09].

Theorem 1.25. There is a deterministic distributed algorithm in the LOCAL model
that colors any n-node graph G with maximum degree ∆ using ∆+ 1 colors, in
O(∆+ log∗ n) rounds.

It is worth noting that this linear-in-∆ round complexity remained as
the state of the art, and it looked as if it might be the best possible for
deterministic algorithms6, until 2015. But then came a breakthrough of
Barenboim [Bar15] which computed a (∆+ 1)-coloring in O(∆3/4 log∆+

log∗ n) rounds. This was followed by a beautiful work of Fraigniaud,
Heinrich, and Kosowski [FHK16], which improved the round complexity
of (∆+ 1)-coloring further to O(∆1/2 log∆2.5 + log∗ n) rounds. We will not
cover these recent advances in our lectures, but the papers should be
already accessible and easy to follow, given what we have covered so far.
What is the optimal round complexity for deterministic (∆+ 1)-coloring
algorithms remains an intriguing and long-standing open problem – an
ultimate goal would be to deterministically compute a (∆+ 1) coloring in
poly log(n) rounds.

Definition 1.26. For a graph G = (V ,E), a color assignment φ : V → {1, 2, . . . ,k}
is called a d-defective k-coloring if the following property is satisfied: for each color
q ∈ {1, 2, . . . ,k}, the subgraph of G induced by vertices of color q has maximum
degree at most d. In other words, in a d-defective coloring, each node v has at most
d neighbors that have the same color as v.

Notice that a standard proper k-coloring — where no two adjacent
nodes have the same color — is simply a 0-defective k-coloring.

Lemma 1.27. Given a d-defective k-coloring φold of a graph with maximum
degree ∆, in a single round, we can compute a d ′-defective k ′-coloring φnew, for

k ′ = O

((
∆−d

d ′−d+1

)2 logk
)

.

Proof. Proof to be added here. See pages 10 to 13 of this handwritten lecture
note7, for now.

6Randomized algorithms have a very different story: We will see a simple O(logn)-
round randomized ∆+ 1 coloring algorithm in the next sections, and we will also touch
upon further improvements on the randomized track.

7http://people.csail.mit.edu/ghaffari/DGA14/Notes/L02.pdf

http://people.csail.mit.edu/ghaffari/DGA14/Notes/L02.pdf
http://people.csail.mit.edu/ghaffari/DGA14/Notes/L02.pdf
http://people.csail.mit.edu/ghaffari/DGA14/Notes/L02.pdf
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In a sense, this color reduction reduces the number of colors significantly,
while increasing the defect only slightly.

Proof of Theorem 1.25. First, compute an 0-defective C∆2-coloring, inO(log∗ n)-
rounds, using the algorithm of Theorem 1.16. Here, C is a sufficiently large
constant, as needed in Theorem 1.16. We will now see how to improve this
to ∆+ 1 colors.

The method is recursive. Let T(∆) denote the complexity of (∆+ 1)-
coloring graphs with maximum degree ∆, given the initial O(∆2)-coloring.
to perform a recursive method, we would like to decompose the graph into
a few subgraphs of degree at most ∆/2 and proceed recursively. In the
following, we explain how to do this, using defective coloring as a tool.

We start with an (C∆2)-coloring, as computed before, for a large enough
constant C > 0. Then, we use one iteration of Lemma 1.27 to transform
this into a ( ∆

log∆)-defective O(log3∆)-coloring. Then, use another iteration

of Lemma 1.27 to transform this into a ( ∆
log log∆)-defective O(log3 log∆)-

coloring. One more iteration gets us to a ( ∆
log log log∆)-defectiveO(log3 log log∆)-

coloring. After O(log∗∆) iterations, we get a (∆2 )-defective k ′′-coloring for
k ′′ = O(1).

Now, each of these k ′′ color classes induces a subgraph with maxi-
mum degree ∆/2. That is, we have decomposed the graph G into O(1)
disjoint subgraphs G1, G2, . . . ,GO(1), each with maximum degree at most
∆/2. Hence, by recursion, we can color each of them using ∆/2+ 1 col-
ors, all in parallel, in T(∆/2) rounds. Formally, to be able to invoke the
recursion, we should provide to each Gi an initial coloring with C(∆/2)2

coloring. Notice that this can be computes easily in at most O(log∗ n) time,
using Linial’s recoloring method as covered in Theorem 1.16. This allows
us to invoke the recursive coloring procedure, and get a ∆/2+ 1 coloring
for each Gi. When paired with the corresponding subgraph Gi index i,
these color form an ∆/2 ·O(1) = O(∆) coloring of the whole graph. This
can be transformed into a ∆+ 1 coloring, in O(∆) extra rounds, using the
one-by-one color reduction method of Lemma 1.21.

As a result, we get the recursion

T(∆) = O(log∗∆) + T(∆/2) +O(∆).

Recalling the Master theorem for recursions [CLRS01], we easily see that
the answer of this recursion is T(∆) = O(∆). Hence, including the initial
O(log∗ n)-rounds, this is an overall round complexity of O(∆+ log∗ n).
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1.5 Network Decomposition

In the previous sections, we zoomed in on one particular problem, graph
coloring, and we discussed a number of algorithms for it. In this section,
we will discuss a method that is far more general and can be used for a
wide range of local problems. The key concept in our discussion will be
network decompositions first introduced by Awerbuch et al. [ALGP89], also
known as low-diameter graph decomposition [LS91].

1.5.1 Definition and Applications

Let us start with defining the concept of network decompositions:

Definition 1.28. (Weak Diameter Network Decomposition) Given a graph G =

(V ,E), a (C,D) weak diameter network decomposition of G is a partition of G into
vertex-disjoint graphs G1, G2, . . . , GC such that for each i ∈ {1, 2, . . . ,C}, we have
the following property: the graph Gi is made of a number of vertex-disjoint and
mutually non-adjacent clusters X1, X2, . . . , X`, where each two vertices v,u ∈ Xj
have distance at most D in graph G. We note that we do not bound the number `.
We refer to each subgraph Gi as one block of this network decomposition.

Definition 1.29. (Strong Diameter Network Decomposition) Given a graph G =

(V ,E), a (C,D) strong diameter network decomposition of G is a partition of G
into vertex-disjoint graphs G1, G2, . . . , GC such that for each i ∈ {1, 2, . . . ,C}, we
have the following property: each connected component of Gi has diameter at most
D.

Notice that a strong diameter network decomposition is also a weak
diameter network decomposition. For

Network decompositions can be used to solve a wide range of local
problems. To see the general method in a concrete manner, let us go back
to our beloved (∆+ 1)-coloring problem.

Theorem 1.30. Provided an (C,D) weak-diameter network decomposition of a
graph G, we can compute a ∆+ 1 coloring of G in O(CD) rounds.

Proof. We will color graphs G1, G2, . . . , GC one by one, each time considering
the coloring assigned to the previous subgraphs. Suppose that vertices of
graphs graphs G1, G2, . . . , Gi are already colored using colors in {1, 2, . . . ,∆+

1}. We explain how to color Gi+1 in O(D) rounds. Consider the clusters X1,
X2, . . . , X` of Gi+1 and notice their two properties: (1) they are mutually
non-adjacent, (2) for each cluster Xj, its vertices are within distance D of
each other (where distances are according to the base graph G). For each
cluster Xj, let node vj ∈ Xj who has the maximum identifier among nodes
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of Xj be the leader of Xj. Notice that leaders of clusters X1, X2, . . . , X` can
be identified in O(D) rounds (why?). Then, let vj aggregate the topology of
the subgraph induced by Xj as well as the colors assigned to nodes adjacent
to Xj in the previous graphs G1, G2, . . . , Gi. This again can be done in
O(D) rounds, thanks to the fact that all the relevant information is within
distance D+ 1 of vj. Once this information is gathered, node vj can compute
a (∆+ 1)-coloring for vertices of Xj, while taking into account the colors of
neighboring nodes of previous graphs, using a simple greedy procedure.
Then, node vj can report back these colors to nodes of Xj. This will happen
for all the clusters X1, X2, . . . , X` in parallel, thanks to the fact that they are
non-adjacent and thus, their coloring choices does not interfere with each
other.

In the next subsections, we first discuss a polylogarithmic-time ran-
domized construction for network decompositions, and then we present
two deterministic constructions for it. The first deterministic construction
is a classic result from 1990s and it only achieves a subpolynomial time
complexity, but not a polylogarithmic time. The second deterministic con-
struction is a very recent result and it gives the first polylogarithmic time
deterministic algorithm for network decomposition (and hence for a wide
range of other central problems in the area).

1.5.2 Randomized Construction

Theorem 1.31. There is a randomized LOCAL algorithm that computes a (C,D)

weak-diameter network decomposition of any n-node graph G, for C = O(logn)
and D = O(logn), in O(log2 n) rounds, with high probability8.

We remark that, as we will see in Exercise 1.10, the round complexity
of this construction can be improved to O(logn) rounds. On the other
hand, as we see in Exercise 1.11, the two key parameters C and D are nearly
optimal and one cannot improve them simultaneously and significantly.

Network Decomposition Algorithm: Suppose that we have already com-
puted subgraphs G1, . . . , Gi so far. We now explain how to compute a
subgraph Gi+1 ⊆ G \

(
∪ij=1 Gj

)
, in O(logn) rounds, which would satisfy the

properties of one block of a weak diameter network decomposition.
Let each node v pick a random radius ru from an geometric distribution

with parameter ε, for a desired (free parameter) constant ε ∈ (0, 1). That is,
for each integer y > 1, we have Pr[ru = y] = ε(1− ε)y−1. We will think of the

8Throughout, we will use the phrase with high probability to indicate that an event happens
with probability at least 1− 1

nc , for a desirably large but fixed constant c > 2.
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vertices within distance ru of u as the ball of node u. Now for each node v, let
Center(v) be the node u∗ among nodes u such that distG(u, v) 6 ru that has
the smallest identifier. That is, Center(v) = u∗ is the smallest-identifier node
whose ball contains v. Define the clusters of Gi by letting all nodes with
the same center define one cluster, and then discarding nodes who are at
the boundary of their cluster. That is, any node v for which distG(v,u) = ru
where u = Center(v) remains unclustered.

There are two properties to prove: one that the clusters have low di-
ameter, and second, that after C iterations, all nodes are clustered. In the
following two lemmas, we argue that with high probability, each cluster
has diameter O(logn/ε) and after C = O(log1/ε n) iterations, all nodes are
clustered.

Lemma 1.32. With high probability, the maximum cluster diameter is at most
O(logn/ε). Hence, this clustering can be computed in O(logn/ε) rounds, with
high probability.

Proof. The proof is simple and is left as an exercise.

Lemma 1.33. For each node v, the probability that v is not clustered — that v is
on the boundary of its supposed cluster and thus it gets discarded — is at most ε.

Proof. Notice that

Pr [v is not clustered ] =∑
u∈V

Pr [v is not clustered |Center(v) = u] · Pr[Center(v) = u]

For each vertex u, let before(u) denote the set of all vertices whose identifier
is less than that of u. Define the following events

• E1 =
(
ru = distG(v,u)

)
.

• E2 =
(
ru > distG(v,u)

)
.

• E3 =
(
∀u ′ ∈ before(u), ru ′ < distG(v,u ′)

)
.

We have

Pr [v is not clustered |Center(v) = u]

= Pr[E1 ∩ E3 | E2 ∩ E3]

=
Pr[E1 ∩ E2 ∩ E3]

Pr[E2 ∩ E3]

=
Pr[E1 ∩ E3]
Pr[E2 ∩ E3]

=
Pr[E3] · Pr[E1|E3]
Pr[E3] · Pr[E2|E3]

=
Pr[E1]

Pr[E2]
= ε,
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where in the penultimate equality, we used the property that the event
E3 is independent of events E1 and E2, and the last equality follows from
the probability distribution function of the exponential distribution (recall
that this is exactly the memoryless property of the exponential distribution).
Hence, we can now go back and say that

Pr [v is not clustered ]

=
∑
u∈V

Pr[v is not clustered |Center(v) = u] · Pr[Center(v) = u]

=
∑
u∈V

ε · Pr[Center(v) = u] = ε.

Corollary 1.34. After C = O(log1/ε n) iterations, all nodes are clustered, with
high probability.

1.5.3 Deterministic Construction I — Subpolynomial Time

In this section, we discuss the classic deterministic algorithms for network
decomposition, from 1990s, which achieves the following statement.

Theorem 1.35. There is a deterministic LOCAL algorithm that computes a (C,D)

strong-diameter network decomposition of any n-node graph G, for C = 2O(
√

logn)

and D = 2O(
√

logn), in 2O(
√

logn) rounds.

In the exercises, we will see how to use this algorithm to compute
an (O(logn),O(logn)) strong-diameter network decomposition, still in the
same running time of 2O(

√
logn). The result of Theorem 1.35 is due to [PS92].

Here, we will present a slightly weaker but simple result, due to [ALGP89],
that provides the following slightly weaker bounds:

Theorem 1.36. There is a deterministic LOCAL algorithm that computes a (C,D)

strong-diameter network decomposition of any n-node graphG, for C = 2O(
√

logn log logn)

and D = 2O(
√

logn log logn), in 2O(
√

logn log logn) rounds.

Towards this goal, we first need to introduce a helper tool, ruling sets,
and present an efficient algorithm for computing them.

Ruling Sets

Definition 1.37. Given a graph G = (V ,E) and a set W ⊆ V , an (α,β)-ruling set
of W in G is a subset S ⊆W such that the following two properties are satisfied:

(A) For each two vertices v,u ∈ S, we have distG(v,u) > α



22 CHAPTER 1. LOCAL PROBLEMS

(B) For each vertex v ∈W, there exists a vertex u ∈ S such that distG(v,u) 6 β.

For instance, if W = V , a maximal independent set S ⊂ V is simply a
(2, 1)-ruling set. Moreover, letting Gk be the supergraph of G where each
two vertices with distance at most k are connected, a set S ⊂ V that is a
maximal independent set in Gk is actually a (k+ 1,k)-ruling set in G.

Lemma 1.38. Given a graph G = (V ,E) and a set W ⊆ V , there is a deterministic
LOCAL algorithm that computes a (k,k logn)-ruling set of W in G, in O(k logn)
rounds.

Proof. The algorithm is recursive. Let W0 be the set of vertices whose
identifier ends in a 0 bit, and let W1 be the set of vertices whose identifier
ends in a 1 bit. Recursively compute (k,k(logn− 1))-ruling sets S0 and
S1 of W0 and W1, respectively, in O(k(logn− 1)) rounds. Notice that the
parameter of the recursion is the length of the binary representation of
the identifiers. Now, let S = S0 ∪ S∗1 where S∗1 is the set of all vertices in S1
who do not have any S0-vertex within their distance k. Note that S can be
computed from S0 and S1, in k rounds. One can see that S is a (k,β)-ruling
set of W for β = k(logn− 1) + k = k logn (why?).

Constructing the Network Decomposition

Here, we describe the network decomposition algorithm that establishes
Theorem 1.36. The construction uses a free parameter d, which we will set
later on, in order to optimize some trade off.

The construction is iterative, and works in logd n similar iterations. Let
us start with the description of the first iteration.

Partition vertices into two classes, high-degree vertices H whose degree
is at least d, and low-degree vertices L whose degree is at most d − 1.
Compute a (3,O(logn))-ruling set S of the H vertices in G, in O(logn)
rounds, using Lemma 1.38. Now for the set of all vertices in V who have at
least one S-vertex within their distance O(logn), bundle them around the
closest S-vertex, breaking ties based on the identifiers. Hence, each bundle
induces a subgraph of radius at most O(logn) and has at least d+ 1 vertices
(why?). Furthermore, the set of nodes that remain unbundled induces a
graph with maximum degree at most d− 1.

Compute a d-coloring of the subgraph induced by unbundled vertices
in O(d+ log∗ n) rounds, using the algorithm we discussed in Theorem 1.25.
Each of these d colors will be one of the subgraphs Gi in our network
decomposition’s partition, and each vertex of each color class is simply its
own cluster. Note that clearly the clusters of the same class are non-adjacent.

We are now essentially done with the first iteration. To start the second
iteration, we will switch to a new graph G2, defined as follows. We will
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imagine contracting each bundle into a single new node in G2. We call these
the level-2 nodes. In G2, two level-2 nodes are connected if their bundles in-
clude adjacent vertices in G = G1. Notice that one round of communication
on G2 can be performed in O(logn) rounds of communication on the base
graph G = G1, simply because each of the bundles has diameter O(logn).

Now the construction for level-2 works similar to that of level-1, but on
the graph G2. Again, we partition level-2 vertices into high and low-degree,
by comparing to threshold d. Then, we compute a (3,O(logn))-ruling set of
high-degree level-2 vertices, with respect to the graph G2. We then bundle
nodes around these ruling set vertices into bundles of diameter O(logn) in
G2. Afterward, we color the level-2 vertices that remain unbundled using
d colors. Notice that each level-2 vertex is actually one of the bundles in
level-1, and hence, by this coloring, we color all the vertices of that bundle
using the same color. Therefore, this is not a proper color of G1, but each
color of this level does induce a block satisfying the conditions of network
decomposition (why?).

Afterward, we repeat to level 3, by contracting the bundles of level-2,
producing the graph G3 as a result, and continuing the process on G3.

Lemma 1.39. Each level i bundle has at least (d+ 1)i−1 vertices. Therefore, logd n
levels of iteration suffice.

Proof. Follows by a simple induction and observing that each level i bundle
includes at least d+ 1 level (i− 1) bundles.

Lemma 1.40. Each level i bundle has diameter O(logn)i in G. Hence, the
algorithm for level i can be performed in O(logn)i ·O(d+ log∗ n) rounds.

Proof. Follows by a simple induction and observing that each level i bundle
is a graph of diameter O(logn) on the level (i− 1) graph Gi−1.

Corollary 1.41. Overall the algorithm takes at most d ·O(logn)logd n rounds.
At the end of all levels, we get a (C,D) strong-diameter network decomposition
for C = d logd n and D = O(logn)logd n. Setting d = 2O(

√
logn log logn), we get

round complexity of d ·O(logn)logd n = 2O(
√

logn log logn) and C = d logd n =

2O(
√

logn log logn) and D = O(logn)logd n = 2O(
√

logn log logn).

1.5.4 Deterministic Construction II — Polylogarithmic Time

In this section, we discuss a recent algorithm of [RG20] that computes a
network decomposition with ideal parameters in poly(logn) rounds9. This

9We note that the writing here is borrowed almost verbatim from [RG20], modulo some
editorial aspects.
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leads to the first poly(logn) rounds deterministic algorithms for a wide
range of problems, including ∆+ 1 coloring, maximal independent set, etc.

Concretely, the statement of the network decomposition result is as
follows:

Theorem 1.42. There is a deterministic LOCAL algorithm that computes a (C,D)

strong-diameter network decomposition of any n-node graph G, for C = O(logn)
and D = O(logn), in O(log8 n) rounds.

To focus on the core algorithmic part of the construction, we present the
proof for a seemingly weaker statement, as provided below in Theorem 1.43.
In the exercises, we will see how one can use the algorithm of Theorem 1.43

in a black-box manner to achieve Theorem 1.42. Moreover, for some of
the main applications (e.g., deterministic algorithms for coloring, MIS, etc),
Theorem 1.43 itself is directly sufficient.

Theorem 1.43. There is a deterministic LOCAL algorithm that computes a (C,D)

weak-diameter network decomposition of any n-node graph G, for C = O(logn)
and D = O(log3 n), in O(log7 n) rounds.

We obtain Theorem 1.43 by c = logn iterations of applying the following
clustering lemma. Intuitively, each iteration of applying this lemma gives
the clusters in one color of the network decomposition. More concretely,
this lemma’s algorithm clusters at least half of the vertices—more precisely,
half of the vertices that remain unclustered—into non-adjacent clusters,
each with weak-diameter at most O(log3 n). The precise statement is as
follows:

Lemma 1.44. (Clustering Lemma) Consider an arbitrary n-node network graph
G = (V ,E) where each node has a unique b = O(logn)-bit identifier, as well as
a set S ⊆ V of living vertices. There is a deterministic distributed algorithm that,
in O(log6 n) rounds in the LOCAL model, finds a subset S ′ ⊆ S of living vertices,
where |S ′| > |S|/2, such that the subgraph G[S ′] induced by set S ′ is partitioned
into non-adjacent disjoint clusters, each of weak-diameter O(log3 n) in graph G.

We obtain Theorem 1.43 directly by c = logn iterations of applying
Lemma 1.44, starting from S = V . For each iteration j ∈ [1, logn], the set
S ′ are exactly nodes of color j in the network decomposition, and we then
continue to the next iteration by setting S← S \ S ′. In the remaining part of
this section, we focus on presenting the algorithm of Lemma 1.44 and its
analysis.

The Clustering Lemma’s Algorithm

We now describe the algorithm outline of Lemma 1.44. The construction has
b = O(logn) phases, corresponding to the number of bits in the identifiers.
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Initially, we think of all nodes of S as living. During this construction,
some living nodes die. We use S ′i to denote the set of living vertices at the
beginning of phase i ∈ [0,b− 1]. Slightly abusing the notation, we let S ′b
denote the set of living vertices at the end of phase b− 1 and define S ′ to
be the final set of living nodes, i.e., S ′ := S ′b.

Moreover, we label each living node v with a b-bit string `(v), and we use
these labels to define the clusters. At the beginning of the first phase, `(v) is
simply the unique identifier of node v. This label can change over time. For
each b-bit label L ∈ {0, 1}b, we define the corresponding cluster S ′i(L) ⊆ S ′i in
phase i to be the set of all living vertices v ∈ S ′i such that `(v) = L.

Construction Invariants The construction is such that, for each phase
i ∈ [0,b− 1], we maintain the following invariants:

(I) For each i-bit string Y, the set S ′i(Y) ⊆ S ′i of all living nodes whose
label ends in suffix Y has no edge to other living nodes S ′i \ S

′
i(Y). In

other words, the set S ′i(Y) is a union of some connected components
of the subgraph G[S ′i] induced by living nodes S ′i.

(II) For each label L, the corresponding cluster S ′i(L) has weak-radius at
most iR, where R = O(log2 n). We emphasize that in the subgraph
induced by living vertices a cluster can be disconnected.

(III) We have |S ′i+1| > |S ′i|(1− 1/2b).

These invariants prove Lemma 1.44: Invariant (I) shows that at the end
of b phases, different clusters are non-adjacent. Invariant (II) shows that
each cluster has weak-radius bR = O(log3 n). Invariant (III) shows that for
the final set of living nodes S ′ = S ′b, we have |S ′| > (1− 1/2b)b|S| > |S|/2.

Outline of One Phase We now outline the construction of one phase and
describe its goal. Let us think about some fixed phase i. We focus on
one specific i-bit suffix Y and the respective set S ′i(Y). Let us categorize
the nodes in S ′i(Y) into two groups of blue and red, based on whether the
(i+ 1)th least significant bit of their label is 0 or 1. Hence, all blue nodes
have labels of the form (∗ . . . ∗ 0Y) and all red nodes have labels of the
form (∗ . . . ∗ 1Y), where ∗ can be an arbitrary bit. Please also see Figure 1.1,
when following these descriptions. During this phase, we make some small
number of the red vertices die and we change the labels of some of the
other red vertices to blue labels (and then the node is also colored blue). All
blue nodes remain living and keep their label. The eventual goal is that, at
the end of the phase, among the living nodes, there is no edge from a blue
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node to a red node. Hence, each connected component of the living nodes
consists either entirely of blue nodes or entirely of red nodes. Therefore, the
length of the common suffix in each connected component is incremented,
which leads to invariant (I) for the next phase. The construction ensures
that we kill at most |S ′i(Y)|/2b red vertices of set S ′i(Y), during this phase,
which gives invariant (III). We next describe the steps of this phase.

Steps of One Phase Each phase consists of R = 10b logn = O(log2 n)
steps, each of which will be implemented in O(log3 n) rounds. Hence, the
overall round complexity of one phase is O(log5 n) and over all the O(logn)
phases, the round complexity of the whole construction of Lemma 1.44 is
O(log6 n) as advertised in its statement. Each step of the phase works as
follows: each red node sends a request to an arbitrary neighboring blue
cluster, if there is one, to join that blue cluster (by adopting the label). For
each blue cluster A, we have two possibilities:

(1) If the number of adjacent red nodes that requested to join A is less
than or equal to |A|/2b, then A does not accept any of them and all
these requesting red nodes die (because of their request being denied
by A). In that case, cluster A stops for this whole phase and does not
participate in any of the remaining steps of this phase.

(2) Otherwise — i.e., if the number of adjacent red nodes that requested
to join A is strictly greater than |A|/2b — then A accepts all these
requests and each of these red nodes change their label to the blue
label that is common among all nodes of A. In this case, the cluster A
grows by at most one hop to include all these newly joined nodes.

We note that each step can be performed in O(log3 n) rounds, because
each blue cluster has radius at most O(log3 n) and therefore can gather the
number of vertices in the cluster, as well as the number of red vertices that
would like to join this cluster. We also emphasize that in each step, each
red node acts alone, independent of other nodes in the same red cluster.
Hence, red clusters may shrink, disconnect, or even get dissolved over time.
Once a red node adopts a blue label (or if a node had a blue label at the
beginning), it will maintain that label throughout the phase. Therefore,
blue clusters can only grow, and have more and more red nodes join them.
We also emphasize that we can have blue clusters adjacent to each other,
and red clusters adjacent to each other – the objective is to have no edge
connecting a red cluster to a blue cluster.
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Figure 1.1: In this illustration, we consider the second phase of the algorithm, in a
simple example graph. The three figures show the configuration in the beginning
of three steps of this phase from left to right. Note that, at the beginning of this
phase, the clusters are already separated according to their least significant bit
(as a result of the first phase). When the second phase starts—i.e., in the left
figure—the second least significant bit determines whether each cluster is blue
or red. Adjacent red nodes are proposing to blue nodes (dark arrows) to join
their clusters and blue clusters decide either to relabel them so that they join this
cluster or to make them die (crossed red vertices). In the end, blue and red clusters
are separated. Note that nothing will happen in the third phase, since the only
two adjacent clusters share the same bit on the third least significant bit. Their
boundary will be resolved only in the last phase.

Analysis of the Clustering Algorithm

We next provide some simple observations about this construction in one
phase, which allow us to argue that the construction maintains invariants
(I) to (III), described above.

Observation 1.45. Any blue cluster stops after at most 4b logn steps.

Proof. In each step that a cluster A does not stop, its size grows by a factor
of at least (1+ 1/2b), as it accepts at least |A|/2b requests from neighboring
red nodes. Hence, after 4b logn steps of growth, the size would exceed
(1+ 1/2b)4b logn > n, which is not possible. Therefore, cluster A stops after
at most 4b logn steps.

Observation 1.46. Once a blue cluster A stops, it has no edge to a red node, and
it will never have one during this phase. This implies invariant (I).

Proof. By the observation above, cluster A stops after at most 4b logn steps.
Consider the step in which cluster A stops. In that step, each neighboring
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red node (if there is one) either requested to join A or some other blue
cluster. In the former case, that red node dies. In the latter case, the node
adopts a blue label or dies. In either case, the node is not a living red node
anymore (and it will never become one). From this point onward, this blue
cluster A never grows or shrinks.

Observation 1.47. In each step, the radius of each blue cluster grows by at most
1, while the radius of each red cluster does not grow. This implies invariant (II).

Observation 1.48. The total number of red vertices in S ′i(Y) that die during this
phase is at most |S ′i(Y)|/(2b). This implies invariant (III).

Proof. From Observation 1.46, it follows that each blue cluster A stops
exactly once, and if it had |A| vertices at that point, it makes at most |A|/(2b)
red vertices die. Hence, in total over the whole phase, the number of red
vertices that die is at most a 1/(2b) fraction of the number of nodes in blue
clusters that stop, and thus at most |S ′i(Y)|/(2b).

These observations show that the constructions satisfies invariants (I)
to (III). As discussed when introducing the invariants, this completes the
proof of Lemma 1.44.

1.6 Maximal Independent Set

The Maximal Independent Set (MIS) problem is a central problem in the
area of distributed algorithms for local graph problems. One partial reason
for this central role is that many other problems, including graph coloring
and maximal matching, reduce to MIS, as we soon see.

1.6.1 Definition and Reductions

Let us start with recalling the definition of MIS:

Definition 1.49. Given a graph G = (V ,E), a set of vertices S ⊆ V is called a
Maximal Independent Set (MIS) if it satisfies the following two properties:

(1) the set S is an independent set meaning that no two vertices v,u ∈ S are
adjacent,

(2) the set S is maximal — with regard to independence — meaning that we
cannot add any node v /∈ S to the set S, i.e., there exists a neighbor u of v
such that u ∈ S.



1.6. MAXIMAL INDEPENDENT SET 29

Graph 𝐺 Graph 𝐻 = 𝐺 × 𝐾4

Figure 1.2: A simple graph G and its transformed version H = G×K∆+1.

The independence condition ensures that we choose nodes that are not
neighboring each other. For instance, this is what we desire when we want
neighboring nodes to avoid performing their operations simultaneously,
e.g., when accessing a shared resource, such as a common channel in wire-
less networks or the same memory location in multi-processor computers.
The maximality condition then ensures that we cannot add any more nodes
to the solution, without destroying the independence property. In some
sense, the nodes in an MIS can be seen as centers for clustering: each node
will be either itself such a center or will have a neighbor as a center, while
the centers are not adjacent.

More concretely, besides the above intuitive description of applications,
algorithms for MIS can be used to solve a number of other graph problems.
Below, we see a simple and beautiful reduction that allows us to solve ∆+ 1

coloring using an MIS algorithm, without any significant overhead in the
round complexity.

Lemma 1.50. Given a LOCAL algorithm A that computes an MIS on any N-node
graph in T(N) rounds, there is a LOCAL algorithm B that computes a ∆ + 1

coloring of any n-node graph with maximum degree ∆ in T(n(∆+ 1)) rounds.

In particular, we will soon see an O(logn) round randomized algorithm
for computing an MIS on n-node graphs, which by this lemma, implies an
O(logn) round randomized algorithm for (∆+ 1) coloring.

Proof of Lemma 1.50. Let G be an arbitrary n-node graph with maximum
degree ∆, for which we would like to compute a (∆+ 1)-coloring.

Let H = G×K∆+1 be an n(∆+ 1)-vertex graph generated by taking ∆+ 1

copies of G. See Figure 1.2 for an example illustration. Hence each node
v ∈ G has ∆+ 1 copies in H, which we will refer to as v1, v2, . . . , v∆+1. Then,
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add additional edges between all copies of each node v ∈ G, that is, each
two copy vertices vi and vj are connected in H.

Run the algorithm A on H. The resulting MIS produces a maximal
independent set S. For each node v ∈ G, the color of v will be the number
i such that the vi ∈ S. Clearly, each node receives at most one color, as at
most one copy vi of v ∈ G can be in S. However, one can see that each
node v ∈ G receives actually exactly one color. The reason is that each
neighboring node u ∈ G can have at most one of its copies in S. Node v has
at most ∆ neighbors u and ∆+ 1 copies vi. Hence, there is at least one copy
vi of v for which no adjacent copy ui of neighboring vertices u ∈ G is in the
set S. By maximality of S, we must have vi ∈ S.

1.6.2 Luby’s MIS Algorithm

As we see next, there is an extremely simple and elegant randomized
algorithm that computes an MIS in merely O(logn) rounds, with high
probability (probability at least 1 − 1/n). This is a celebrated result of
Luby [Lub85] and Alon, Babai, and Itai [ABI86] from the 1980s, for which
they received the 2016 Dijkstra award.

Luby’s Algorithm: The algorithm is made of iterations, each of which has
two rounds, as follows:

• In the first round, each node v picks a random real number rv ∈ [0, 1]
and sends it to its neighbors10. Then, node v joins the (eventual) MIS
set S if and only if node v has a strict local maxima, that is, if rv > ru
for all neighbors u of v.

• In the second round, if a node v joined the MIS, then it informs its
neighbors and then, node v and all of its neighbors get removed from
the problem. That is, they will not participate in the future iterations.

Analysis: It is easy to see that the algorithm always produces an indepen-
dent set, and eventually, this set is maximal. The main question is, how
long does it take for the algorithm to reach a maximal independent set?

Theorem 1.51. Luby’s Algorithm computes a maximal independent set inO(logn)
rounds, with high probability.

Proof. Let us first give a brief proof outline. Consider an arbitrary iteration
i and suppose that the graph induced on the remaining vertices is Gi, which

10One can easily see that having real numbers is unnecessary and values with O(logn)-
bit precision suffice.
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w

u v

Figure 1.3: Node w killing edge e = {u, v}

has mi edges. In the following, and as the main ingredient of the proof,
we show that the graph Gi+1 which will remain for the next iteration has
in expectation at most mi/2 edges. Then, at the end, we use a repeated
application of this to conclude that after 4 logn iterations, the leftover graph
is empty with high probability and thus the algorithm terminates.

As outlined above, the main step is to consider the graph Gi remaining
for step i, and to show that

E[mi+1 |Gi is any graph with mi edges] 6 mi/2.

In the above, mi+1 denotes the number of edges in the graph that remains
at the end of iteration i. To prove this inequality, let us consider an edge
e = {u, v} and a neighbor w of u, as depicted in Figure 1.3. If w has the
maximum number among N(w), the set of neighbors of w in the remaining
graph, then w joins the MIS and hence nodes w and u and thus also the
edge e = {u, v} get removed. In this case, we say node w killed edge
e = {u, v}. The probability of w having the maximum number among its
neighbors is exactly 1/(d(w) + 1), where d(w) denotes the degree of node w.
But, we are interested in the probability of edge e being killed by any such
neighbor w. We cannot easily sum over the probabilities of the neighbors
w1, w2, ..., killing edge e, as those events are not necessarily disjoint —
several of them might happen at the same time, in which case summing
the probabilities would be over counting.

To circumvent this, we make a slight adjustment: we say that node w
single-handedly kills e = {u, v} (from the side of u) if rw is the maximum
random number among those of nodes in N(w) ∪N(u). Notice that this
limits the number of double-counting of an edge being killed to 2, meaning
that at most one node w might single-handedly kill e = {u, v} (from the side
of u) and at most one node w ′ might single-handedly kill e = {u, v} (from
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the side of v). Hence, we can lower bound the number of removed edges
by bounding the number of single-handedly killed edges and dividing
that by 2. More concretely, suppose we use the indicator random variable
Xw→e which is equal to 1 if and only if node w ∈ N(e)— where N(e) =

N(u)∪N(v) is the set of all nodes that are adjacent to at least one endpoint
of e—single-handedly kills edge e = {u, v}. If the edge e is removed, then
(
∑
w∈N(e) Xw→e)/2 is at least 1/2 and at most 1. Hence, (

∑
w∈N(e) Xw→e)/2 is

a (good) lower bound for the indicator of whether edge e is removed or not.
Thus, we can lower bound the expected number of removed edges over the
entire graph Gi as follows:

E[mi −mi+1] > E

[∑
e∈E

(
∑

w∈N(e)

Xw→e)/2

]
=
∑
e∈E

∑
w∈N(e)

E[Xw→e]/2.

To analyze this sum, we rearrange the summations and put the one on
nodes w on the outside:∑

e∈E

∑
w∈N(e)

E[Xw→e]/2 =
∑
w∈V

∑
e∈E s.t. w∈N(e)

E[Xw→e]/2.

Now, we can focus on the contributions of each node w to this summation
(grouping the edges e by their other endpoint u), as follows: Consider
two neighboring nodes w and u. The probability that w has the maxi-
mum among N(w)∪N(u) is at least 1

d(w)+d(u) . In that case, node w single-
handedly kills d(u) edges incident on u (from the side of u). Similarly, the
probability that u has the maximum among N(w)∪N(u) is at least 1

d(w)+d(u) ,
and in that case, u single-handedly kills d(w) edges incident on w (from
the side of w). Therefore, we can lower bound the total expected number
of removed edges as follows:

E[mi −mi+1] >
∑
w∈V

∑
e∈E s.t. w∈N(e)

E[Xw→e]/2

=
∑

{w,u}∈E

( ∑
e∈E s.t. u∈N(e)

E[Xw→e]/2+
∑

e∈E s.t. w∈N(e)

E[Xu→e]/2

)

>
∑

{w,u}∈Ei

( d(u)

d(w) + d(u)
+

d(w)

d(w) + d(u)

)
/2 = mi/2.

Now we know that we have E[mi+1 |Gi is any graph with mi edges] 6
mi/2, for every iteration i. By a repeated application of this inequality over
different iterations, we get that the expected number of the edges in the
graph that remains after 4 logn iterations is E[m4 logn] 6 m0/2

4 logn 6 1/n2

edges. Hence, by Markov’s inequality, the probability that the graph G4 logn
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has at least 1 edge is at most 1/n2. That is, with high probability, G4 logn
has no edge left, and thus, the algorithm finishes in 4 logn+ 1 iterations,
with high probability.

1.7 Sublogarithmic-Time Randomized Coloring

Here, we explain a randomized algorithm that inO(
√

logn) rounds, achieves
a coloring with almost ∆+ 1 colors:

Theorem 1.52. There is a randomized LOCAL algorithm that computes a ∆(1+ ε)-
coloring in O(

√
logn) rounds11, for any constant ε > 0, with high probability.

We present the algorithm in two parts: First, in Section 1.7.1, we explain
the algorithm assuming that ∆ 6 2

√
logn, and then, in Section 1.7.2, we

extend the algorithm to larger ∆ using a small additional step.

1.7.1 The algorithm for low-degree graphs

Theorem 1.53. There is a randomized algorithm that computes a ∆(1+ ε) coloring
of the graph in Θ(

√
logn/ε) rounds, for any constant ε > 0, assuming12 that

∆ 6 2
√

logn.

Suppose that each vertex has degree at most 2
√

logn. Consider running
the following algorithm for Θ(

√
logn/ε) iterations. In each iteration, each

node v picks a random color among the colors not previously taken by any
of its neighbors. If no neighbor of v picked the same color, then v takes this
color as its permanent coloring, and gets removed from the problem. The
neighbors update their palette of remaining colors, by removing the colors
taken by the colored neighbors.

In Lemma 1.54 below, we show that after Θ(
√

logn/ε) iterations for any
ε ∈ (0, 1], with high probability, each connected component of the remaining
graph has diameter at most Θ(

√
logn/ε). Hence, each of these components

can be colored in Θ(
√

logn/ε) additional steps, deterministically. Therefore,
once we prove Lemma 1.54, we have essentially completed the proof of
Theorem 1.53.

Lemma 1.54. After Θ(
√

logn/ε) iterations, with high probability, each connected
component in the subgraph induced by the remaining nodes has at diameter at
most Θ(

√
logn/ε).

11We remark that a much faster algorithm, with a round complexity of 2O(
√

log logn), is
known. We will cover that result in the next sections.

12As mentioned before, we will soon see how to remove this assumption.
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Proof. We show that with high probability, no path of length C
√

logn/ε
can have all of its vertices remain, for a large enough constant C > 3.

We start with some simple observations. Notice that in every iteration,
the palette size of each node is at least a (1 + ε) factor larger than its
number of remaining neighbors, i.e., its degree in the remaining graph.
Hence, in each iteration, each node gets colored with probability at least
ε/(1+ ε) > ε/2, even independent of its neighbors (why?).

Consider an arbitrary path P = v0, v1, . . . , v` where ` = Θ(
√

logn/ε). In
each iteration, each of these vertices gets removed with probability at least
ε, regardless of the coloring of the other vertices. Hence, the probability
that all these nodes remain for k = C

√
logn/ε iterations is at most

(1− ε/2)`k 6 exp(−`kε/2) 6 exp(−C2 logn/(2ε)).

Now, there are at most n∆` ways for choosing the path P, because there
are n choices for the starting point and then ∆ choices for each next hop.
Hence, by a union bound, the probability that any such path remains is at
most

n ·∆` · exp(−C logn/(2ε))
= exp(logn+ ` log∆−C2 logn/(2ε))

6 exp(logn+C
√

logn/ε ·
√

logn−C2 logn/(2ε))

= exp(logn+C logn/ε−C2 logn/(2ε)) 6 1/nC.

1.7.2 The extension to high-degree graphs

We now see how to extend Theorem 1.53 to higher degree graphs, using
one extremely simple step.

Theorem 1.55. There is a randomized algorithm that computes a ∆(1+ ε) coloring
of the graph in Θ(

√
logn/ε) rounds, for any constant ε > 0.

Suppose that ∆ > 2
√

logn, as otherwise Theorem 1.53 suffices. Partition G
into k = αε2∆/ logn vertex-disjoint subgraphs G1, G2, G3, . . . , Gk by putting
each vertex in one of these subgraphs at random. Here, α is a sufficiently
small positive constant α > 0. In Lemma 1.56, we argue that, with high
probability, each subgraph has degree at most ∆k (1+ ε/3) = O(logn). This
will be by a simple application of the Chernoff bound. Hence, it can
be colored using ∆

k (1+ ε/3)(1+ ε/3) 6
∆
k (1+ ε) colors, via the method of

Theorem 1.53, in Θ(
√

logn/ε) rounds. We use different colors for different
subgraphs, and color them all in parallel. Hence, overall, we get a coloring
with k · ∆k (1+ ε) = ∆(1+ ε) colors, in Θ(

√
logn/ε) rounds.
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Lemma 1.56. With high probability, each subgraph Gi has maximum degree at
most ∆k (1+ ε/3).

The lemma follows in a straightforward manner from the Chernoff
bound, and a union bound. The Chernoff bound is among the most
basic concentration of measure tools. In a rough sense, it shows that the
sum of independent (indicator) random variables has a distribution well-
concentrated around its expected value. More concretely, the probability
that this sum deviates significantly from its expected value is exponentially
small in the expected value. The mathematical statement is as follows:

Theorem 1.57. (Chernoff Bound) Suppose X1, X2, . . . , Xη are independent random
variables taking values in {0, 1}. Let X =

∑`
i=1 Xi denote their sum and let µ = E[X]

denote the sum’s expected value. For any 0 < δ 6 1, we have

Pr[X /∈ [µ(1− δ),µ(1+ δ)] 6 2e−δ
2µ/3.

Proof of Lemma 1.56. Consider each node v ∈ G. Let X1, X2, . . .X∆ be the
indicator random variables of whether the ith neighbor of v picks the same
subgraph as v does. Let X =

∑`
i=1 Xi and µ = E[X]. Notice that µ = ∆/k.

Given that k = αε2∆/ logn, we get that µ > logn
αε2

. Hence, by Chernoff
bound, we have

Pr[X > µ(1+ ε/3)] 6 2e−ε
2µ/18 6 e1−logn/(18α) 6 1/n3,

where the last inequality holds for small enough α, e.g., α = 0.01.
Now, we know that the probability of one node v having a degree (in its

own subgraph) higher than the desired threshold ∆(1+ε/3)
k is at most 1/n3.

By a union bound over all nodes v, we get that the probability of having
such a node is at most 1/n2. In other words, with high probability, each
node has degree at most ∆(1+ε/3)k in its own subgraph.

1.8 Sublinear-Time Centralized Algorithms

In this section, we discuss sublinear-time centralized algorithms for graph
problems, and particularly what is known as Local Computation Algorithms
(LCA). As we shall see soon, the core part of these algorithms is a local pro-
cedure, quite similar to the LOCAL distributed algorithms that we discussed
in the previous sections of this chapter.

Sublinear-time (centralized) algorithms are gaining importance with
the constant increase in the size of the graph problems that need to be
solved13. In particular, for a range of problems of interest, the graphs have

13Does “Big Data" ring a bell?
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become so large that spending a linear-time to read the whole graph to
solve the problem is well-beyond the time that we can afford. We instead
want centralized algorithms that, on an n-node graph, spend Θ(1) time
or at most poly(logn) time and provide some meaningful answer (e.g.
approximation) about the problem at hand. As we will see, the prototypical
way of achieving such results is via local algorithms. In a very rough sense,
we will poke the graph at a few random places, and determine the solution
at each of those places by performing a local procedure, which checks only
a small neighborhood around there. At the end, we try to infer something
about the overall solution by putting together the solutions at these few
randomly sampled places.

1.8.1 The LCA Model

We consider a graph G = (V ,E) with n = |V | nodes and maximum degree ∆.
Moreover, we will assume that the graph has no isolated vertex. For the
graphs of interest, which are thought to be extremely large and complex,
it is typical to assume that degrees are much smaller than the network
size. Thus, we will think of ∆ as a constant compared to n. The graph is
represented by a query-access model, where each query is as follows:

• Query Q(v, i) asks “who is the ith neighbor of node v?".

We can also access a random node v, chosen uniformly at random from V .
The main performance measure is the number of queries, which we will
refer to as the algorithm’s query complexity. The goal would be to have a
query complexity which depends only on ∆ (aside from some precision and
certainty parameters) and not on n. Moreover, we clearly prefer smaller
dependencies on ∆, e.g., poly(∆) is preferred to 2∆.

1.8.2 Approximating Maximum Matching

Consider the problem of computing an approximation of the size of maxi-
mum matching. Recall that a matching is a set of edges M ⊆ E such that no
two of the edges in M share an end-point. The size of a matching is simply
the number of its edges. Computing a maximum matching, or approxi-
mating it, are classic optimization problems which have been studied for
decades, at the very least since 1965 work of Edmonds [?], which presented
a polynomial-time algorithm for computing a maximum matching.

We next discuss an algorithm that computes a (2+ ε)-approximation of
the size of maximum matching, for a desirably small constant ε > 0 — say
ε = 0.01 — with query-complexity 2O(∆)/ε2, independent of how large the
graph size n is.
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The Algorithm’s Roadmap We will present a simple way of constructing
a maximal matching M, namely a random greedy maximal matching proce-
dure, which we will be able to simulate in a local manner. This allow us to
pick a set S of randomly sampled nodes and infer whether each sampled
node s ∈ S is matched in the maximal matching or not, using a small
number of queries around s. Then, the average fraction of sampled nodes
that are matched give us as estimation of the size of the maximal matching
M. Since any maximal matching is a 2-approximaiton of the maximum
matching, we get an estimator for a 2-approximation of maximum matching.
Using a large enough number k = |S| of sampled nodes S, we can adjust
the accuracy and certainty of this estimator. We next explain the details of
this outline.

1.8.3 A Local Matching Procedure

Maximal Matching A maximal matching is a matching M ⊆ E such that
we cannot add any edge of E \M to M, without violating the property that
we have a matching. Put more positively, in a maximal matching M, we
have the property that for each edge e ∈ E, at least one endpoint v ∈ e is
incident on a matching edge e ′ ∈M. Notice that a maximal matching is not
necessary a maximum matching. However, as we prove next, any maximal
matching has a size close to that of a maximum matching.

Lemma 1.58. In any graph, any maximal matching has size at least 1/2 of the
maximum matching.

Proof. Consider a maximum matching M∗ and an arbitrary maximal match-
ing M. We prove that 2|M| > |M∗|. For that, we give one dollar to each
M∗-edge and then ask this M∗-edge e to pass this dollar to one of its in-
cident edges in M. Each edge has such an incident M-edge due to the
maximality of M. This way, each M-edge receives at most two dollars,
at most one through each of its endpoints (why?). Hence, we have redis-
tributed |M∗| dollars on the |M| edges of M in a way that each receives at
most two dollars. Hence, 2|M| > |M∗|.

Next, we explain a simple algorithm for computing a maximal matching.
We will not run this algorithm in its entirety, but rather, we will sample a
few nodes and try to locally infer what would be the output of these nodes
in the algorithm.

Random Greedy Maximal Matching Algorithm Suppose that for each
edge e ∈ E, we pick a random number re ∈ [0, 1]. Then, we process the
edges in non-decreasing order of their random numbers re, and we greedily
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add them to the matching M. More concretely, as we go through the (non-
decreasing) sorted order of the edges, each time we add the edge e under
process to the matching M if and only if no edge e ′ incident to e with a
lower random number re ′ < re has been added to the matching M before.
This process always keeps M as a matching, and eventually, once we are
done with the processing, M is a maximal matching.

Approximating the Size of Maximal Matching What we would do is as
follows. We will pick a set S of k randomly chosen nodes (with replacement).
The fraction of these nodes that are matched in M is an unbiased estimator
of the fraction of vertices that are matched in M. More precisely,

E[
∑
s∈S

1(vertex s matched in M)/|S|] = 2|M|/n.

Thus, we can output

n

2|S|
·
∑
s∈S

1(vertex s matched in M)

as an unbiased estimator of |M|, which by Lemma 1.58, we know is within
a 2-factor of the size of the maximum matching.

The key thing that remains to be discussed is how do we deduct whether
a given randomly sampled node s is matched in M or not, without running
the entire maximal matching algorithm. Ideally, we should just check a few
things around s and be able to infer whether s is matched in M or not. In
particular, we will check each of the edges e incident on s separately, to
see whether e ∈M. Once we discuss this part, we will afterward explain
how to set the number of sampled vertices S to obtain a desired degree
of certainty and accuracy for this estimator, using basic concentration of
measure arguments (e.g. Chernoff bound).

Checking e ∈M for One Edge, and its Query Complexity

Imagine the following procedure. Instead of running the entire random
greedy maximal matching procedure to figure out whether e ∈M or not,
we do something simpler, which should get the same answer: We determine
the random value re and also all the values re ′ for edges e ′ incident on e.
We then recursively check whether any of these edges e ′ for which re ′ < re
is in the matching M or not. If none of them is in the matching, then e is
in the matching. Clearly, if we use the same random numbers re as in the
procedure explained above, we can deduce whether e ∈M or not, when we
run the entire algorithm.
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1.8.4 Analysis

The only question is, what is the query complexity of this recursive pro-
cedure. A priori, we might end up opening another recursion branch on
each neighboring edge and thus we may conceivably end up with a query
complexity up to O(m). However, that is not likely. We next prove that for
a given edge e, the expected query complexity of the recursive procedure
is upper bounded to 2O(∆), which is independent of n.

Lemma 1.59. The expected query complexity of the algorithm for an arbitrary
given edge e, which is selected independent of the random values r ′e for e ′ ∈ E, is
at most 2O(∆).

Proof. Let Q(x) be the maximum expected number of queries for any edge
e, conditioned on re = x. Notice that x 6 y implies Q(x) 6 Q(y). Let e1, . . . ,
e` be the edges incident on e. Notice that ` 6 2∆− 2. We claim that

Q(x) 6 (2∆− 2) +
∑̀
i=1

Pr[rei < x] ·E[Q(rei)|rei < x].

This is because, we first read all the up to 2∆− 2 incident edges and then,
for each neighboring edge ei with rei < re, we start a new recursion at
ei, which we know in expectation will take at most Q(rei) queries. What
remain is to solve this recursive relation Q(x) and obtain an upper bound
on it.

To simply the task of upper bounding this recursive inequality, we
discretize it in some sense, that is, we upper bound it in only a bounded
number of (well-spread) places. For any j ∈ {1, . . . , 4∆}, by setting x = j

4∆ in
the above inequality, we have

Q(
j

4∆
) < 2∆+

2∆∑
i=1

Pr[rei <
j

4∆
] ·E[Q(rei)|rei <

j

4∆
]

6 2∆+

2∆∑
i=1

j∑
k=1

E
[
Q(rei)|rei ∈ [

k− 1

4∆
,
k

4∆
)
]
· Pr[rei ∈ [

k− 1

4∆
,
k

4∆
)]

6 2∆+

2∆∑
i=1

j∑
k=1

Q(
k

4∆
) · 1
4∆

6 2∆+
1

2

j∑
k=1

Q(
k

4∆
).

By rearranging the terms around this inequality, we arrive at the following
simpler recursion:

Q(
j

4∆
) 6 4∆+

j−1∑
k=1

Q(
k

4∆
).
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Given this recursion, by a simple induction on j, we can prove that Q( j4∆) 6
4∆(2j − 1) (why?). Hence, Q(re) 6 Q(1) = Q(4∆4∆) 6 4∆(2

4∆ − 1) = 2O(∆).

Observation 1.60. The overall expected query complexity for checking a set S
of nodes, to see whether they are matched in M or not, is at most |S| ·∆2O(∆) =
|S| · 2O(∆).

This essentially determines the query complexity of our algorithm. Even
for a small sample set S, this is an unbiased estimator. However, we usually
would like to say that the estimator has a good probability to be a good
approximation of its target value. Next, we discuss how by picking a large
enough sample set size k = |S|, we can satisfy these desires.

Adjusting the Sample Set For the Desired Accuracy and Cer-
tainty

Lemma 1.61. For any certainty parameter δ ∈ [0, 0.25] and any precision parame-
ter ε > 0, suppose that we choose a set S of k =

20∆ log 1/δ
ε2

nodes at random, with
replacement, and check whether each s ∈ S is matched in the maximal matching M
or not. Then, the function

n

2|S|
·
∑
s∈S

1(vertex s matched in M)

provides a (1+ ε) approximation of the size of maximal matching, with probability
at least 1− δ. Hence, this is a 2(1+ ε) approximation of the size of maximum
matching.

Notice that by the above observation, the expected query complexity of
our algorithm becomes k2O(∆) = 2O(∆) · log 1/δ

ε2
.

Proof of Lemma 1.61. Define Xi to be the random variable that is equal to
1 if the ith node in our sample set S is matched in M, and is equal to
0 otherwise. Notice that Pr[Xi = 1] =

2|M|
n . Hence, µ = E[

∑k
i=1 Xk] =∑k

i=1 E[Xi] =
∑k
i=1 Pr[Xi = 1] · 1 = k2|M|

n . Therefore, by Chernoff bound, the
probability that X =

∑k
i=1 Xk deviates by more than a (1+ ε) factor from its

expectation µ is at most

2e−ε
2µ/3 = 2e−ε

2k·2|M|/(3n) = 2e
−ε2

20∆ log1/δ
ε2

2|M|/(3n)
= 2e−10

∆|M|
3n ·log 1/δ 6 δ.

The last inequality uses |M| > n
4∆ . This fact holds because we have assumed

that the graph has no isolated edge, and thus it has at least n/2 edges, and
moreover, each edge in the maximal matching M can hit at most 2∆ edges
(including itself) and all edges must be hit.
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Remark The algorithm presented here is (a streamlined variant of) a result
of Nguyen and Onak [NO08]. See their paper for how this technique can be
used for a range of other approximation problems. In the exercises of this
lecture, we will see an alternative method for computing an approximation
of maximum matching, which has a better query complexity as a function
of ∆, but with a slightly worse dependency on the precision parameter ε.
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1.9 Exercises

Exercise 1.1. In Lemma 1.5, we saw a single-round algorithm for reducing the
number of colors exponentially. Here, we discuss another such method, which
transforms any k-coloring of any rooted-tree to a 2 logk-coloring, so long as k > C0
for a constant C0.

The method works as follows. Let each node u send its color φold(u) to its
children. Now, each node v computes its new color φnew(v) as follows: Consider
the binary representation of φold(v) and φold(u), where u is the parent of v. Notice
that each of these is a log2 k-bit value. Let iv be the smallest index i such that the
binary representations of φold(v) and φold(u) differ in the ith bit. Let bv be the ithv
bit of φold(v). Define φnew(v) = (iv,bv). Prove that φold(v) is well-defined, and
that it is a proper (2 logk)-coloring.

Exercise 1.2. Here, we use the concept of cover free families, as defined in Def-
inition 1.18, to obtain an encoding that allows us to recover information after
superimposition. That is, we will be able to decode even if k of the codewords are
superimposed and we only have the resulting bit-wise OR.

More concretely, we want a function Enc : {0, 1}logn → {0, 1}m — that encodes
n possibilities using m-bit strings for m > log2n — such that the following
property is satisfied: ∀S,S ′ ⊆ {1, ...,n} such that |S| 6 k and |S ′| 6 k, we have that
∨i∈SEnc(i) 6= ∨i∈S ′Enc(i). Here ∨ denotes the bit-wise OR operation.

Present such an encoding function, with a small m, that depends on n and k.
What is the best m that you can achieve?

Exercise 1.3. This exercise has two parts:

(A) Design a single-round algorithm that transforms any given k-coloring of
a graph with maximum degree ∆ into a k ′-coloring for k ′ = k− d k

2(∆+1)e,
assuming k ′ > ∆+ 1.

(B) Use repetitions of this single-round algorithm, in combination with the
O(log∗ n)-round O(∆2)-coloring of Theorem 1.16, to obtain an O(∆ log∆+

log∗ n)-round (∆+ 1)-coloring algorithm.

Exercise 1.4. Here, we see yet another deterministic method for computing a (∆+

1)-coloring in O(∆ log∆+ log∗ n) rounds. First, using Theorem 1.16, we compute
an O(∆2)-coloring φold in O(log∗ n) rounds. What remains is to transform this
into a (∆+ 1)-coloring, in O(∆ log∆) additional rounds.

The current O(∆2)-coloring φold can be written using C log∆ bits, assuming
a sufficiently large constant C. This bit complexity will be the parameter of our
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recursion. Partition G into two vertex-disjoint subgraphs G0 and G1, based on
the most significant bit in the color φold. Notice that each of G0 and G1 inherits a
coloring with C log∆− 1 bits. Solve the ∆+ 1 coloring problem in each of these
independently and recursively. Then, we need to merge these colors, into a ∆+ 1

coloring for the whole graph.

(A) Explain an O(∆)-round algorithm, as well its correctness proof, that once
the independent (∆+ 1)-colorings of G0 and G1 are finished, updates only
the colors of G1 vertices to ensure that the overall coloring is a proper
(∆+ 1)-coloring of G = G0 ∪G1.

(B) Provide a recursive time-complexity analysis that proves that overall, the
recursive method takes O(∆ log∆) rounds.

Exercise 1.5. In this exercise, we prove a lower bound of Ω(logn/ log logn) on
the round complexity of computing a locally-minimal coloring. For a graph
G = (V ,E), a coloring φ : V → {1, 2, ...,Q} is called locally-minimal if it is a
proper coloring, meaning that no two adjacent vertices v and u have φ(v) = φ(u),
and moreover, for each node v colored with color q = φ(v) ∈ {1, 2, ...,Q}, all colors
1 to q− 1 are used in the neighborhood of v. That is, for each i ∈ {1, . . . ,q− 1},
there exists a neighbor u of v such that φ(u) = i.

To prove the lower bound, we will use a classic graph-theoretic result of
Erdős [Erd59]. Recall that the girth of a graph is the length of its shortest cycle,
and the chromatic number of a graph is the smallest number of colors required in
any proper coloring of the graph.

Theorem 1.62 (Erdős [Erd59]). For any sufficiently large n, there exists an
n-node graph G∗n with girth g(G∗n) >

logn
4 log logn and chromatic number χ(G∗n) >

logn
4 log logn .

(A) Prove that in any locally-minimal coloring φ : V → {1, 2, ...,Q} of a tree
T = (V ,E) with diameter d — i.e., where the distance between any two nodes
is at most d — no node v can receive a color φ(v) > d+ 1.

(B) Suppose towards contradiction that there exists a deterministic algorithm
A that computes a locally-minimal coloring of any n-node graph in at most

logn
8 log logn − 1 rounds. Prove that when we run A on the graph G∗n, it produces

a (locally-minimal) coloring with at most Q =
logn

4 log logn − 1 colors. For this,

you should use part (1b) and the fact that G∗n has girth g(G∗n) >
logn

4 log logn .

(C) Conclude that any locally-minimal coloring algorithm needs at least logn
8 log logn

rounds on some n-node graph.
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Exercise 1.6. In this exercise, we see a simple and efficient sequential algorithm
that, for every n-node graph G, computes an (C,D) (strong-diameter) network
decomposition for C = O(logn) and D = O(logn).

We determine the blocks G1, G2, ..., GC of network decomposition one by one,
in C phases. Consider phase i and the graph G \

(
∪i−1j=1 Gj

)
remaining after the

first i− 1 phases which defined the first i blocks G1, . . . , Gi−1. To define the next
block, we repeatedly perform a ball carving starting from arbitrary nodes, until all
nodes of G \

(
∪i−1j=1 Gj

)
are removed. This ball carving process works as follows:

consider an arbitrary node v ∈ G \
(
∪ij=1 Gj

)
and consider gradually growing a

ball around v, hop by hop. In the kth step, the ball Bk(v) is simply the set all
nodes within distance k of v in the remaining graph. In the very first step that the
ball does not grow by more than a 2 factor — i.e., smallest value of k for which
|Bk+1(v)|/|Bk(v)| 6 2 — we stop the ball growing. Then, we carve out the inside
of this ball — i.e., all nodes in Bk(v) — and define them to be a cluster of Gi.
Hence, these nodes are added to Gi. Moreover, we remove all boundary nodes of
this ball —i.e., those of Bk+1(v) \ Bk(v)—and from the graph considered for the
rest of this phase. These nodes will never be put in Gi. We will bring them back in
the next phases, so that they get clustered in the future phases. Then, we repeat a
similar ball carving starting at an arbitrary other node v ′ in the remaining graph.
We continue a similar ball carving until all nodes are removed. This finishes the
description of phase i. Once no node remains in this graph, we move to the next
phase. The algorithm terminates once all nodes have been clustered.

Prove the following properties:

(A) Each cluster defined in the above process has diameter at most O(logn).
In particular, for each ball that we carve, the related radius k is at most
O(logn).

(B) In each phase i, the number of nodes that we cluster —and thus put in Gi —
is at least 1/2 of the nodes of G \

(
∪ij=1 Gj

)
.

(C) Conclude that the process terminates in at most O(logn) phases, which
means that the network decomposition has at most O(logn) blocks.

Exercise 1.7. Explain how given a (C,D) network decomposition of graph G, a
maximal independent set can be computed in O(CD) rounds.

Exercise 1.8. Suppose that you are given a deterministic algorithm ALG that on
any N-node graph, computes a (C(N),D(N)) weak-diameter network decompo-
sition, in T(N) rounds. Develop a new deterministic distributed algorithm that
computes an (C,D) strong-diameter network decomposition in any n-node network,
in T(n) ·O(logn) +O(C(n) ·D(n) · log2 n) rounds.
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Exercise 1.9. Prove Lemma 1.32. That is, show that in the randomized network
decomposition provided in Section 1.5.2, with high probability, the maximum
cluster diameter is at most O(logn/ε).

Exercise 1.10. Improve the round complexity of the algorithm stated in Theo-
rem 1.31 to O(logn) rounds.

Exercise 1.11. In this exercise, we prove that the network decomposition obtained
in Theorem 1.31 has the nearly best possible parameters. As we discussed above
in Theorem 1.62, it is known that there are n-node graphs that have girth14

Ω(logn/ log logn) and chromatic number Ω(logn)[AS04, Erd59]. Use this
fact to argue that on these graphs, an (o(logn),o(logn/ log logn)) network
decomposition does not exist.

Exercise 1.12. Given an n-node undirected graph G = (V ,E), a d(n)-diameter
ordering of G is a one-to-one labeling f : V → {1, 2, . . . ,n} of vertices such that for
any path P = v1, v2, . . . , vp on which the labels f(vi) are monotonically increasing,
any two nodes vi, vj ∈ P have distG(vi, vj) 6 d(n).

Use the network decomposition of Theorem 1.31 to argue that each n-node
graph has an O(log2 n)-diameter ordering.

Exercise 1.13. Consider the following simple 1-round randomized algorithm: each
node v picks a random real number rv ∈ [0, 1] and then, v joins a set S if its random
number is a local minima, that is, if rv < ru for all neighbors u of v. Prove that,
with high probability, the set S is a (2,O(logn))-ruling set.

Exercise 1.14. Consider a regularized variant of Luby’s MIS algorithm, as follows:
The algorithm consists of log∆+ 1 phases, each made of O(logn) consecutive
rounds. Here ∆ denotes the maximum degree in the graph. In each round of the
ith phase, each remaining node is marked with probability 2i

10∆ . Different nodes are
marked independently. Then marked nodes who do not have any marked neighbor
are added to the MIS set, and removed from the graph along with their neighbors.
If at any time, a node v becomes isolated and none of its neighbors remain, then v
is also added to the MIS and is removed from the graph.

(A) Argue that the set of vertices added to the MIS is always an independent
set.

14Recall that the girth of a graph is the length of its shortest cycle.



46 CHAPTER 1. LOCAL PROBLEMS

(B) Prove that with high probability, by the end of the ith phase, in the remaining
graph each node has degree at most ∆

2i
.

(C) Conclude that the set of vertices added to the MIS is a maximal independent
set, with high probability.

Exercise 1.15. Consider the following simple randomized ∆+ 1 coloring algorithm:
Per round, each node selects one of the colors not already taken away by its
neighbors, at random. Then, if v selected a color and none of its neighbors selected
the same color in that round, v gets colored with this color and takes this color
away permanently. That is, none of the neighbors of v will select this color in any
of the future rounds.

(A) Prove that in the first round, each node has at least a constant probability of
being colored.

(B) Prove that per round, each remaining node has at least a constant probability
of being colored. This is somewhat similar to part (B) but requires much
more care, because after the first round, the colors remaining for a node or
for its neighbors can be quite different.

(C) Conclude that within O(logn) rounds, all nodes are colored, with high
probability.
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2.1 Introduction & the CONGEST Model

In this chapter, we discuss distributed algorithms for some of the funda-
mental global graph problems, such as minimum spanning tree and minimum
cut computation. These are global problems in the sense that the solution
can depend on pieces of information that are far away, e.g., even up to
Θ(D)-hops away, where D denotes the network diameter. Other central
examples, which we will not get to discuss here, include computing single
source shortest paths (SSSP), or all pairs shortest paths (APSP), minimum-
cost subgraphs with various properties (e.g., connected dominating set or
k-edge-connected spanning subgraph), etc.

In studying global problems, we work with the CONGEST model, which
is a variant of the LOCAL model where we take the bandwidth limitations
into account.

Definition 2.1. (The CONGEST model) We consider an arbitrary n-node graph
G = (V ,E) where V = {1, 2, . . . ,n}, which abstracts the communication network.
Unless noted otherwise, G is a simple, undirected, and unweighted graph. There
is one process on each node v ∈ V of the network. At the beginning, the processes
do not know the graph G, except for knowing1 n, and their own unique identifier
in {1, 2, . . . ,n}. The algorithms work in synchronous rounds. Per round, each
node/process performs some computation based on its own knowledge, and then
sends one B − bit message to each of its neighbors. Usually, we assume that
B = O(logn), which, e.g., implies that each message can describe constant many
edges or vertices of the network. A node can send different messages to different
neighbors. At the end of the round, each node receives the messages send to it by
its neighbors in that round. In each graph problem in this model, we require that
each node learns its own part of the output, e.g., whether each of its edges is in a
computed tree or not.

A first-order summary of global network optimization problems Dis-
tributed algorithms for global network optimization problems have a long
and rich history. A first-order summary of the state of the art is that,
for many of the fundamental problems—including minimum spanning
tree, minimum cut, maximum flow Approximation, and shortest path
computations—there is a lower bound of Ω̃(D+

√
n) rounds [PR99, Elk04,

DSHK+
11], in general graphs. In particular, there is a graph of fairly small

diameter D = O(logn) in which solving these problems, or often even ob-
taining a non-trivial approximation, requires Ω̃(

√
n) rounds. Over the past

decade, there has been also a flurry of positive results that provide algo-

1Most often, the algorithms will use only the assumption that nodes know an upper
bound N on n such that N ∈ [n,nc] for a small constant c > 1.
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rithms with a round complexity of Õ(D+
√
n), or other bounds approach-

ing it, for a number of these problems. See for instance [LPS13, GK13,
Nan14, LPS14, CHGK14, NS14, GL14, Gha14, GKK+

15, GU15, BFKL16,
EN16, HKN19, Elk17, GL18a, FN18, Dor18, DG19, DHIN19, DEMN20]. In
the next two sections, as examples of these upper bounds, and to showcase
some of the basic techniques used throughout, we discuss algorithms for the
minimum spanning tree problem and for the minimum cut approximation
problem.

2.2 Minimum Spanning Tree

In this section, we discuss a near-optimal distributed algorithm in the
CONGEST model for the problem of computing a minimum spanning
tree (MST). We note that, over the years, the problem of computing an
MST has turned out to have a central role in distributed algorithms for
network optimization problems, significantly more central than its role in
the centralized algorithms domain. The upper and lower bound techniques
for the MST problem are used frequently in solving other distributed
network optimization problems. What we see in this section is based on the
work of Kutten and Peleg [KP95], although we deviate from their approach
in a few parts.

2.2.1 MST: The Algorithm Outline

The algorithm we describe follows the outline of Boruvka’s MST [NMN01]
from 1926, though with some small changes. In particular, we have O(logn)
phases. During these phases, we gradually grow a forest until we reach a
spanning tree. We start with the trivial forest where each node forms its
own component of the forest, that is, each node is one separate component
in our partition of G.

In each phase, each component Si will have a leader node si ∈ Si, and
moreover, the leader will know the size of its component. Each component
Si suggests a merge along the edge with exactly one endpoint in Si that has
the smallest weight among such edges. This is called the minimum weight
outgoing edge (MWOE). Recall from the second lecture (lemma 2.17) that
all such edges belong to MST2. We soon explain how to compute these
min-weight outgoing edges, one per part, using shortcuts. Let us for now

2This assumes that the edge-weights are unique, which is effectively without loss of
generality, because we can append the identifier of the edge—composed of the identifiers
of its two endpoints—to its weight in a manner that makes the edge weights unique, and
guarantees that the MST according to the new weights is one of the MSTs according to the
original weights.
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continue with the high-level explanation of how to use these edges to merge
parts.

Let N be the current number of connected components of the forest.
If N = 1, we are done already. Otherwise, each component suggests one
merge edge. Each edge might be suggested by two of its endpoints, so
we have at least N/2 suggested edges in total. We add these edges to the
forest and thus, effectively, merge the connected components at their two
endpoints. Hence, the number of components shrinks to at most N/2. After
logn iterations, the number of connected components is down to 1, which
means we have reached a spanning tree.

What remains is to explain how to find the merge edges, and how
to perform the merges. We first discuss the process of computing the
minimum-weight outgoing edges of one phase in O(D+

√
n) rounds. Then,

we will discuss how to perform the merges in the same round complexity.

2.2.2 Computing Min-Weight Outgoing Edges

Our objective is to let each node know the minimum weight outgoing
edge of its component. More concretely, let each node v set c(v) to be the
minimum-weight outgoing edge among edges incident to v. The objective
is that each node v ∈ Si learns the weight of the minimum-weight outgoing
edge among edges all edges incident on component Si. Notice that node
v can easily find c(v) by first receiving from all neighbors the component
leader IDs of their components and then only considering the smallest
of those edges having the other endpoint in a different component. We
handle the components in two categories of small and large, depending on
whether the component has at least

√
n vertices or not.

Small Components Consider a single small component Si, which means
this component has no more than

√
n vertices. Then, in this component,

each node v starts with its own minimum-weight outgoing edge and its
weight c(v). Then, we perform a convergecast (or simply minimum flood-
ing) on the BFS tree of this component Si. This convergecast goes from the
leaves to the root, maintaining the minimum value seen, and thus even-
tually delivering the minimum-weight outgoing edge to the component
leader. The information about this edge can be delivered to all nodes of the
component by a broadcast from the root to the leaves.

Large Components There are at most n/
√
n =
√
n large parts, as each of

them has at least
√
n vertices. Since the number of large components is

relatively small, we can handle all these components by performing their
communications on the BFS of the whole graph G, simultaneously. Using
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standard pipelining techniques[Pel00], we can compute the minimum-
weight outgoing edges of all these

√
n components in O(D+

√
n) rounds.

A more general treatment

The above division to small and large categories, and then the rules for
where each of these should communicate, leads to an O(D+

√
n)-round

algorithm for one phase and thus an Õ(D+
√
n)-round algorithm for MST.

This is nearly-optimal in the worst case. However, in many graphs families
of interest, this would be quite far from desirable bounds. In the following,
and mostly as side remarks, we introduce a graph-theoretic notion of
low-congestion shortcuts and briefly outline how this notion leads to more
efficient algorithms, as well as a simple and clean unification of many
methods.

Definition 2.2 (Low-Congestion Shortcuts). Consider a graph G = (V ,E)
and a partition of V into disjoint subsets S1, . . . , SN ⊂ V , each inducing a
connected subgraph G[Si]. We define an α-congestion shortcut with dilation β
to be a set of subgraphs H1, . . . , HN ⊂ G, one for each set Si, such that:

(1) For each i, the diameter of the subgraph G[Si] +Hi is at most β.

(2) For each e ∈ E, the number of subgraphs G[Si] +Hi containing e is at
most α.

Theorem 2.3. Suppose that the graph family G is such that for each graph G ∈ G,
and any partition of G into vertex-disjoint connected subsets S1, . . . , SN, we can
find an α-congestion β-dilation shortcut such that max{α,β} 6 K. Here, K can be
a function of the family G, and it can depend on n and D. Moreover, we assume
such a low-congestion shortcut can be found in Õ(T) rounds.

Then, there is a randomized distributed MST algorithm that computes an MST
in Õ(T) +O(α logn+β log2 n) = Õ(T +K) rounds, with high probability, in any
graph from the family G.

It is not hard to see that the above rule for small and large components
can be used to infer that any graph has a α-congestion β-dilation shortcut
such that max{α,β} 6 D+

√
n, and thus leads to an Õ(D+

√
n)-round MST

algorithm for general graphs. There are a number of graph families where
the question, and especially its graph-theoretic aspects, becomes much
more interesting:

• For planar graphs and a few generalizations (e.g. bounded-genus
graphs, bounded pathwidth or treewidth grapths, and more gener-
ally any graph that does not include a dense minor), it has been
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shown[GH16, HIZ16a, HIZ16b, HHW18, HLZ18, GH20] that there al-
ways exists an α-congestion β-dilation shortcut such that max{α,β} 6
Õ(D) and moreover, such a shortcut can be found in Õ(D) rounds.
This leads to an Õ(D)-round algorithm for MST in planar and near-
planar graphs. See [GH20] for the most general result and also the
simplest proof.

• In Erdős-Renyi random graph Gn,p, where each of the possible
(
n
2

)
edges is included with probability p > Ω(logn/n) (that is, above
the connectivity threshold), it has been shown that there always
exists a low-congestion shortcut with max{α,β} 6 poly logn, and
such a shortcut can be found in 2O(

√
logn) rounds. That leads to an

2O(
√

logn)-round algorithm for MST in Erdős-Renyi random graphs.
See [GKS17, GL18b] for this result and extensions to much broader
graph families (those with small random walk mixing time).

2.2.3 Back to Worst-Case Graphs, Merging Components

A small change in Boruvka’s outline to have low-depth merges We re-
strict the merges to be star shapes, using a simple random coin idea: toss
a random coin per component and then allow only merges centered on
head-parts, each accepting incoming suggested merge-edges from tail-parts.
The leader of this head-component becomes the leader of the merged new
part. In exercise 2 of today’s lecture, we see that, albeit this slightly slowed
down probabilistic merging process, still after O(logn) phases, with high
probability, we reach a tree.

What we need to compute for a merge We need to make all nodes learn,
besides the minimum-weight outgoing edge of their component, three extra
pieces of information: (1) the coin tossed by their component leader, (2) the
ID of their new component leader, (3) the size of the new component. We
next explain how to perform each of these steps in O(D+

√
n) rounds.

• Item (1)—which is to let each node know the coin toss of its com-
ponent leader—is by a simple small change to the messages sent in
computing the min-weight outgoing edge: now the message starting
at the root also carries the random bit flipped by the leader.

• Item (2)—which is to let each node know its new component leader
ID—is performed as follows: We define the component leader ID to
be the leader of the center component of the merge, who had a head
coin. This ID is already delivered to the physical endpoint of the
merge edge in the tail part.
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Hence, within the tail component, all that we need to do is that one
node knows the ID of the new leader and we want all nodes to have
it. If the component was small, we can do it directly in O(

√
n) rounds,

inside the component. For large components, which there are only at
most

√
n of them, we can broadcast the their new ID leader, which is

known to the physical endpoint of their merge edge, to all nodes of
the graph in O(D+

√
n) rounds.

• Item (3)—which is to let each node know the size of its component—
can be performed similar to (2). First, in the center-of-merge head
component, the physical endpoints of the merge can receive from
their other endpoints the sizes of the merging tail components. Then,
within this head component, we can compute the new component
size by performing a simple converge-case, if the component is small,
and by doing it through the global BFS tree, for large components.
At the end, this information can be passed to all vertices of the new
component, by first delivering it to all nodes of the head component,
then passing it through the physical edges to the tail components,
and then spreading it in the tail components.

2.3 Minimum Cut

In this lecture, we explain a distributed algorithm that computes a (2+ ε)

approximation of the minimum cut, for any constant ε > 0, in O(k(D+√
n) log3 n) rounds. Here, k denotes the size of the minimum cut, i.e., the

minimum number of edges whose removal disconnects the graph. The
algorithm should present a nonempty subset of vertices S such that the
number of edges connecting nodes of S to nodes of V \ S is at most (2+ ε)k.
As usual, we work in the standard synchronous message-passing model
of distributed computing where the network is abstracted as an n-node
connected graph with diameter D and per round each node can send
O(logn) bits to each of its neighbors.

A number of remarks are in order:

• First, the k factor in the round complexity can be removed and re-
placed with O(logn), using a sampling idea which reduces the mini-
mum cut to O(logn), while preserving the sizes of all cuts approxi-
mately.

• Second, the algorithm can be generalized to weighted graphs where
each edge has a weight in {1, 2, . . . , poly(n)} and the size of a cut is the
summation of the weights of the edges whose removal disconnects
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the graph. For this generalization, we simply view each edge of w as
w many parallel edges.

• Third, the resulting Õ(D+
√
n) round complexity is nearly optimal,

as a known lower bound shows that any distributed algorithm for
(any non-trivial) approximation of the minimum cut requires at least
Ω̃(D+

√
n) rounds. See Ghaffari and Kuhn [GK13] for details of the

above three points.

• Fourth, a (1+ ε) approximation algorithms with a round complexity
of Õ(D+

√
n) is known to a work of Nanongkai and Su [NS14]; we

will not cover it in this lecture.

• Finally, in a recent breakthrough, Daga et al. [DHNS19] presented
the first distributed algorithm that computes the exact minimum cut
in a sublinear number of rounds, particularly in Õ(n1−1/353D1/353 +
n1−1/706) rounds in unweighted graphs. More recently, Ghaffari and
Nowicki [GTN20] presented a different algorithm that improved the
round complexity further to Õ(n1−1/9D1/9 +n1−1/18).

2.3.1 Sparse Certificates for Connectivity

Before presenting the algorithm for minimum cut approximation, first we
introduce the concept of sparse certificates. In a very rough sense, this is a
subgraph that maintains the size of the minimum cut while reducing the
number of edges. Notice that any graph that has minimum-cut size at least
k must have at least nk/2 edges. This is because each node in such a graph
must have degree at least k, as otherwise removed the edges adjacent to
that node would yield a cut with size less than k. A sparse certificate aims
to reduce the number of the edges in any graph to something close to this
threshold of nk/2, while maintaining the minimum cut size.

Definition 2.4. For a graph G = (V ,E), we call a spanning subgraph H = (V ,EH)
a sparse certificate of G for connectivity k ′ if the following two conditions are
satisfied:

(1) For each nonempty subset S ⊂ V of vertices, we have cutH(S,V \ S) >
min{k ′, cutG(S,V \ S)}. Here, cutH(S,V \ S) denotes the number of edges
in H that have one endpoint in S and the other endpoint in V \ S. Similarly,
cutG(S,V \ S) denotes the number of edges in G that have one endpoint in S
and the other endpoint in V \ S.

(2) Subgraph H has at most |nk ′| edges.
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Example: In a connected graph G, any spanning tree T is a sparse certificate
for connectivity k ′ = 1. It clearly satisfies condition (2), because it has n− 1

edges, and it satisfies condition (1) as well because CutT (S,V \ S) > 1. More
generally, if we do not assume G to be connected, any maximal spanning
forest is a sparse certificate for connectivity k ′ = 1.

Computing a Sparse Certificate for Connectivity k ′ (Algorithm Outline):
As the above example reveals, there is a simple and natural algorithm for
computing a sparse certificate for connectivity k ′. Here, we discuss the algo-
rithm outline from a centralized viewpoint. We later discuss a distributed
algorithm that implement this outline, efficiently. The algorithm works in
k ′ iterations, as follows: In iteration i, compute a maximal spanning forest
Fi of G and then update G ← G \ Fi. Here, G \ Fi means we remove from
G all edges of Fi. At the end of algorithm, the union H =

⋃k ′
i=1 Fi of the

forests computed in the k ′ iterations is our desired sparse certificate for
connectivity k ′.

Lemma 2.5. In the above algorithm, H =
⋃k ′
i=1 Fi is a sparse certificate for connec-

tivity k ′.

Proof. Since the number of edges in each forest Fi is at most n− 1, graph H
has at most k(n− 1) 6 kn edges and thus it clearly satisfies condition (2).
To see that it also satisfies condition (1), let us focus on an arbitrary cut
(S,V \ S). In each iteration i, so long as at least one edge of G remains in
the cut (S,V \ S), the forest Fi will include at least one edge from (S,V \ S).
Notice that it might also include more than edge. Hence, the number of
edges of H in cut (S,V \ S) is either at least k, or the algorithm exhausted all
the edges of this cut and therefore the number is equal to cutG(S,V \ S).

Distributed Implementation of the Above Outline: A naive idea for
implementing the above outline would be to compute each Fi separately,
in the remaining graph. However, this might be quite inefficient as the
remaining graph might have a very large diameter. To go around this issue,
we use some artificial edge weights to implement the outline. In particular,
initially, we set the weight of each edge to be 1. Then, in each iteration
i, we compute a minimum-weight spanning tree Ti and define Fi to be
all edges of Ti that have weight 1. Then, instead of removing these edges
from the graph, we simply set their weight to be ∞ (or realistically, just
n2). Computing each minimum-weight spanning tree Ti can be done in
O((D+

√
n) logn) rounds, using the MST algorithm that we discussed in

the previous lecture.



56 CHAPTER 2. GLOBAL PROBLEMS

Lemma 2.6. Consider the weighted version of G where we set the edge weight of
G \ (∪i−1j=1Fi) to be 1 and the edge weights of (∪i−1j=1Fi) to be n2. Then, the edges of
weight 1 in the minimum-weight spanning tree Ti form a maximal spanning forest
of the graph G \ (∪i−1j=1Fi).

Proof Idea. Informally, Ti will try to include as many as possible of weight 1
edges before including any weight n2 edges. Formalizing this into a proof
is left as an exercise.

2.3.2 Approximation Algorithm for Minimum Cut

We now describe the algorithm for computing a (2+ ε) approximation of
the minimum cut. For now, we assume that the value k of the minimum
cut size is known. The algorithm will compute a subset S ⊂ V such that
cutG(S,V \ S) 6 (2+ ε)k.

Intuitive Description of the Algorithm: First, we compute a sparse cer-
tificate H for connectivity k ′ = (1+ ε/10)k. Notice that this can be done
in O(k(D+

√
n) logn) rounds, as we discussed above. Now, think about

the auxiliary graph H ′ where we contract each edge of G \H, that is, we
unify the two endpoint nodes into one node. Notice two properties: (A)
Edges of H ′ are exactly edges of H (while the nodes where contracted) and
therefore H ′ has at most nk ′ = (1+ ε/10)nk edges. Moreover, (B) every cut
of H ′ has size at least k, and every cut of H ′ that has size less than k ′ must
have had size less than k ′ also in G. Hence, H ′ has minimum cut size k and
any minimum cut of it corresponds to a minimum cut of G (and vice versa).
Now, H ′ might be in one of the following two cases. In each case, we can
handle the problem differently.

(1) Suppose that H ′ has at least n/(1 + ε/5) nodes. In this case, the
average degree in H ′ is at most 2(1+ε/10)nk

n/(1+ε/5) which implies that H ′ has
at least one node with degree at most 2k(1+ ε/10)(1+ ε/5) 6 (2+ ε)k.
This node in H ′ is the result of contracting some edges of G, and
is therefore some subset S of vertices of G (which were contracted
together). We get that the number of edges from S to V \ S is at most
(2+ ε)k, that is, S is our desired approximate minimum cut. Hence,
if we are in the case that H ′ has at least n/(1+ ε/5) nodes, then the
problem is easy.

(2) Suppose that H ′ has less than n/(1+ ε/5) nodes. In this case, it is
not so clear to identify a small cut. However, we have managed to
make some progress because the number of nodes has reduced to
n/(1+ ε/5), while we have preserved the minimum cut. Then, we can
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recurse on this new graph H ′ by setting G← H ′, which has at most
n/(1+ ε/5) vertices. Notice that after O(log1+ε/5 n) such recursions,
the number of remaining nodes would drop to at most 2 and thus,
there, we have found our approximate minimum cut.

Distributed Implementation The above intuitive description provides
the outline of one level of recursion, in our algorithm. We now discuss how
to implement it in a distributed setting. Suppose we are in a setting where
we are working on a subgraph G ′ of G, identified by its edges. Initially,
in the very first iteration, G ′ will be same as G. In each iteration, at the
end of the iteration, if we are in case (2) and need to recurse, if we want to
contract edges of G \H, we would set G ′ ← H. Effectively, each connected
component of G \G ′ corresponds to one node in our contracted structure.

The algorithm in this iteration of recursion works as follows: we set the
weights of edges of G \G ′ to be 0 and weights of edges of G ′ to be 1. Then,
we compute a sparse certificate H of G ′ for connectivity k ′ = (1+ ε/10)k,
as we described in the previous subsection (iteratively computing MSTs,
taking one-weight edges as Fi, and increasing their weight to n2). At the
end of the sparse certificate computation, by the definition of a sparse
certificate, subgraph H has a number of edges that is at most a k ′ factor of
the number of connected components of G \G ′. Hence, we are virtually
moving to a graph where all edges of G \H are contracted (weight 0) and
no edge of H is contracted.

Then, each component of G \H computes the number of its edges in
H, using the algorithm that we saw in the previous lecture where each
component could compute the minimum of its edges — now, instead of
minimum, we compute summation, but the algorithm is the same. This can
be done in O((D+

√
n) logn) rounds, as we saw last week. If for at least

one of the components, the number of edges is at most (2+ ε)k, then we
have found our approximate minimum cut. Otherwise, we set G ′ = H and
recurse.

Final Remark — Removing the Assumption of Known k: In the above,
we assumed that we know the value of k. In fact, the outline works perfectly
fine if instead we know an estimation of k that is at least k and at most
k(1+ ε/10) (Why? Explain what happens in the algorithm and how the
calculations change). To remove the assumption of knowing this value,
we simply run the algorithm for many estimates, which are powers of
(1+ ε/10). That is, we run the algorithm for each estimate of the form
(1+ ε/10)i between 1 and n2. Notice that there are only O(log1+ε/10 n) such
powers, in this range. From each estimate, we get some cut (which might or
might not be a small cut). The algorithm sets its output to be the smallest
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of these cuts. We know that one of these estimates (1+ ε/10)i must be at
least k and at most k(1+ ε/10). For that estimate, the algorithm outputs a
cut that has size at most (2+ ε)k. For other estimates, the cut size might be
much larger, but since we output the minimum, we know that the output
cut will have size at most (2+ ε)k.



Chapter 3

Distributed Computing via
All-to-All Communication
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3.1 Introduction & the Congested Clique Model

In this chapter, we see a brief introduction to distributed computation in
a setting where all the computers in the system can talk to each other
(pairwise) via direct bounded-size message exchanges. This is sometimes
also called the congested clique model of distributed computing.

The Congested Clique Model To model systems with all to all commu-
nication, we consider n processors that can communicate in synchronous
rounds, in an all-to-all fashion. Per round, each processor can send O(logn)
bits to each other processor—hence, O(n logn) bits in total. Notice that in
one round, each processor can learn the unique identifier of all other pro-
cessors (each processor sends its identifier to all other processors, directly).
In fact, because of this, and as nodes can sort all identifiers locally once
they known them, we can without loss of generality think that the nodes
have unique identifiers from {1, 2, . . . ,n}.

3.2 Routing in the Congested Clique

One of the most interesting problems, and also key building blocks in
distributed algorithms in the congested clique model is the routing problem,
stated as follows:

The Routing Problem: Suppose that there are a number of O(logn)-bit
messages, where the ith message resides in some source node si and should
be delivered to some target/destination node ti. We emphasize that each
node might the source and/or destination for several messages. Initially, for
each message, only the source knows the related destination. The objective
is to deliver each message from its source to the destination.

Intutive Discussion The interesting question is how many rounds of all-
to-all communication do we need to solve this problem. Of course, the
answer depends on the source and destinations. For instance, if each node
wants to send exactly one message to each other node, that can be done
directly in one round of the model with all-to-all communication. What
else can we do? For instance, this solution doesn’t work if one node wants
to send several messages to some particular other node. What should be
do then?

A concrete question is,

What instances of the routing problem can be solved in O(1) rounds?
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Can we characterize necessary and sufficient conditions for that?

A clear necessary condition is that each node should be the source for at
most O(n) messages, and each node should be at most the destination for
at most O(n) messages. This is because, per round, each node can send at
most n− 1 messages, one to each other node, and can receive at most n− 1

messages, one from each other node. Interestingly, we see in this lecture
that this necessary condition is also sufficient.

3.2.1 Viewing Routing as an Edge Coloring Problem

Let us think that we are in the setting that we know all the message source
and destinations and we want to design a routing procedure, knowing all
the information, in a centralized way. In the next subsection, we come back
to the question of how to do such a thing in the distributed setting, when
for each message, only the source of it knows which node is the destination.

We now argue that if each node is the source for at most K messages
and each node is the destination for at most K messages, when K 6 n, the
routing problem can be solved in O(1) rounds. For that, we cast the routing
problem as an instance of edge coloring for a certain graph.

Consider a bipartite graph H with n nodes on each side. That is, the
graph is made of nodes {a1,a2, . . . ,an} on one side and nodes {b1,b2, . . . ,bn}.
Now, draw an edge between ai and bj iff in the routing problem, there is a
message that has source node i and destination j.

We can use edge colorings of this graph to solve the routing problem:

Lemma 3.1. Any edge coloring of H with q colors implies a routing algorithm
with 2dq/ne rounds.

Proof. Consider a given coloring of H with q colors and partition the colors
into dq/ne parts, each of which has n colors. Let us focus on one part. We
explain how the messages in the edges that are colored with this part of
colors can be delivered in 2 rounds. Hence, over all the parts, all messages
can be delivered in 2dq/ne rounds.

Focusing on one part of colors, let us renumber the at most n colors in
this part so that they are from [1,n]. Consider all the edges (ai,bj) in the
colors of this part, and the corresponding message that should go from
node i of the system to node j. The key idea is this: we interpret the color
of edge (ai,bj) as the identifier on an intermediate node. If the edge is
colored with color k ∈ [1,n], then, node i send the message destined to j
instead to the intermediate node k and node k will then directly send the
message to node j. Now, notice that this a correct procedure and it will
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never try to send two messages through the same edge in the same round.
That is because, edges of H that have the same color k form a matching
in H and thus, they are disjoint in sources and in destinations. Therefore,
in the first round of communication, each source node sends at most one
message to node k, and in the second round, node k should send at most
one message to each node j.

Edge coloring of H: Recall that were are in the case that each node is
the source for at most K 6 n messages and each node is the destination
for at most K 6 n messages. Hence, the corresponding bipartite graph H
has maximum degree at most n. By a theorem of Vizing, for any bipartite
graph with maximum degree ∆, we can color its edges using ∆ colors such
that any two edges that share an endpoint have different colors1. Hence,
there is a coloring of its edges with n colors. By Lemma 3.1, this implies
we can solve the routing problem in 2 rounds.

3.2.2 Solving the Routing Problem Distributedly

The solution given above works if we know all of the source and desti-
nations of all messages (and can solve the edge coloring problem in a
centralized fashion). There is an elegant distributed algorithm by Christoph
Lenzen [Len13]2 that solves the problem in O(1) rounds, assuming each
node is the source for at most K messages and each node is the destination
for at most K messages, where K 6 n. Since describing this whole algorithm
does not fit the time of one lecture, we instead describe a slightly weaker
result. We show a randomized algorithm that solves the problem in O(1)
rounds, assuming K 6 n/(20 logn). We leave it as an (optional) exercise
how to extend the algorithm to work when K 6 O(n/ log logn) and even
further3.

Distributed Routing for K 6 n/(20 logn) Make each source send its
message to a 5 logn independently chosen random intermediate node
k1, . . . ,k5 logn ∈ [1, . . . ,n] and ask that intermediate node to deliver it directly
to the destination. That is, for each message, we make 5 logn copies of it
and send toward the destination, through independently chosen random
intermediate nodes. We use independent random intermediate points, for

1For general graphs (i.e., non-bipartite), Vizing’s theorem implies a coloring with ∆+ 1

colors, and that is the best possible in general, e.g., think of a triangle graph.
2Who was a PhD student at ETH Zurich.
3One can apply the same idea repeatedly to get to K 6 O(n/ log log . . . logn), for any

constant number of repetitions of log.
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different messages. Also, the delivery process is done in two separate
rounds: in the first round the message is sent from the source to the
intermediate nodes, and in the second round, the message is sent from the
intermediate nodes to the destination. If for an edge, there are 2 or more
copies of messages that are planned to go through that edge in a round,
we say that these copies failed.

Lemma 3.2. With probability at least 1− 1/n, for each message, at least one of its
copies arrives at the related destination.

Proof. Let us focus on one message whose source is node i, and one fixed
copy of it. What is the probability that this message fails to reach the
intermediate node that it chooses? Notice that the copy fails in that step,
only if chooses an edge {i,k} that is also chosen by another copy of a message
whose source is i. The only messages that can be arranged to go from i to
k are messages whose source is i. There are at most K 6 n/(20 logn) such
messages, and each such message has 5 logn copies. Hence, at most n/4
edges starting from i are blocked with other copies of messages. Since the
intermediate node k of the copy we are considering is chosen independent
of everything else, we conclude that the probability of the copy failing in
the first step is at most 1/4.

You can see similarly that the probability of each copy failing in the
second step — going from the intermediate node to the destination — is
also at most 1/4. That is because, for each destination j, there are at most
K 6 n/(20 logn) messages destined to j, and each such message has 5 logn
copies. Hence, at most n/4 edge going to node j are blocked with other
copies of messages.

By a union bound, we conclude that each copy of each message succeeds
to reach its destination with probability at least 1−(1/4+ 1/4) = 1/2. Hence,
considering that one message has 5 logn copies, with probability at least 1−
(1/2)5 logn = 1− 1/n5, at least one of the copies makes it to the destination.
By a union bound over all the at most Kn 6 n2 messages, we can conclude
that with probability at least 1− 1/n3, for each message, at least one of its
copies makes it to the corresponding destination.

Exercise Extend the above method to solve the problem whenever K 6
O(n/ log logn).

Hint: think about having only 3 log logn copies per message, and then after-
wards dealing with all the left over messages that none of their copies makes it to
the destination.
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