
Chapter 10

Wireless Protocols

Wireless communication was one of the major success stories of the last decades.
Today, different wireless standards such as wireless local area networks (WLAN)
are omnipresent. In some sense, from a distributed computing viewpoint wireless
networks are quite simple, as they cannot form arbitrary network topologies.
Simplistic models of wireless networks include geometric graph models such as
the so-called unit disk graph. Modern models are more robust: The network
graph is restricted, e.g., the total number of neighbors of a node which are not
adjacent is likely to be small. This observation is hard to capture with purely
geometric models, and motivates more advanced network connectivity models
such as bounded growth or bounded independence.

However, on the other hand, wireless communication is also more difficult
than standard message passing, as for instance nodes are not able to transmit a
different message to each neighbor at the same time. And if two neighbors are
transmitting at the same time, they interfere, and a node may not be able to
decipher anything.

In this chapter we deal with the distributed computing principles of wireless
communication: We make the simplifying assumption that all n nodes are in the
communication range of each other, i.e., the network graph is a clique. Nodes
share a synchronous time, in each time slot a node can decide to either transmit
or receive (or sleep). However, two or more nodes transmitting in the same
time slot will cause interference. Transmitting nodes are never aware if there is
interference because they cannot simultaneously transmit and receive.

10.1 Basics

The basic communication protocol in wireless networks is the medium access
control (MAC) protocol. Unfortunately it is difficult to claim that one MAC
protocol is better than another, because it all depends on the parameters, such as
the network topology, the channel characteristics, or the traffic pattern. When
it comes to the principles of wireless protocols, we usually want to achieve
much simpler goals. One basic and important question is the following: How
long does it take until one node can transmit successfully, without interference?
This question is often called the wireless leader election problem, with the node
transmitting alone being the leader.

108

10.1. BASICS 109

Clearly, we can use node IDs to solve leader election, e.g., a node with ID i
transmits in time slot i. However, this may be incredibly slow. There are better
deterministic solutions, but by and large the best and simplest algorithms are
randomized.

Throughout this chapter, we use a random variable X to denote the number
of nodes transmitting in a given slot.

Algorithm 10.1 Slotted Aloha
1: Every node v executes the following code:
2: repeat
3: transmit with probability 1/n
4: until one node has transmitted alone

Theorem 10.2. Using Algorithm 10.1 allows one node to transmit alone (be-
come a leader) after expected time e.

Proof. The probability for success, i.e., only one node transmitting is

Pr[X = 1] = n · 1
n
·
�
1− 1

n

�n−1

≈ 1

e
,

where the last approximation is a result from Theorem 10.29 for sufficiently
large n. Hence, if we repeat this process e times, we can expect one success.

Remarks:

• The origin of the name is the ALOHAnet which was developed at the
University of Hawaii.

• How does the leader know that it is the leader? One simple solution is
a “distributed acknowledgment”. The nodes just continue Algorithm
10.1, including the ID of the the leader in their transmission. So the
leader learns that it is the leader.

• One more problem?! Indeed, node v which managed to transmit the
acknowledgment (alone) is the only remaining node which does not
know that the leader knows that it is the leader. We can fix this by
having the leader acknowledge v’s successful acknowledgment.

• One can also imagine an unslotted time model. In this model two
messages which overlap partially will interfere and no message is re-
ceived. As everything in this chapter, Algorithm 10.1 also works in
an unslotted time model, with a factor 2 penalty, i.e., the probability
for a successful transmission will drop from 1

e to 1
2e . Essentially, each

slot is divided into t small time slots with t → ∞ and the nodes start
a new t-slot long transmission with probability 1

2nt .

110 CHAPTER 10. WIRELESS PROTOCOLS

10.2 Non-Uniform Initialization

Sometimes we want the n nodes to have the IDs {1, 2, . . . , n}. This process is
called initialization. Initialization can for instance be used to allow the nodes
to transmit one by one without any interference.

Theorem 10.3. If the nodes know n, we can initialize them in O(n) time slots.

Proof. We repeatedly elect a leader using e.g., Algorithm 10.1. The leader gets
the next free number and afterwards leaves the process. We know that this
works with probability 1/e. The expected time to finish is hence e · n.

Remarks:

• But this algorithm requires that the nodes know n in order to give
them IDs from 1, . . . , n! For a more realistic scenario we need a uni-
form algorithm, i.e, the nodes do not know n.

10.3 Uniform Initialization with CD

Definition 10.4 (Collision Detection, CD). Two or more nodes transmitting
concurrently is called interference. In a system with collision detection, a re-
ceiver can distinguish interference from nobody transmitting. In a system with-
out collision detection, a receiver cannot distinguish the two cases.

The main idea of the algorithm is to partition nodes iteratively into sets.
Each set is identified by a label (a bitstring), and by storing one such bitstring,
each node knows in which set it currently is. Initially, all nodes are in a single
set, identified by the empty bitstring. This set is then partitioned into two non-
empty sets, identified by ’0’ and ’1’. In the same way, all sets are iteratively
partitioned into two non-empty sets, as long as a set contains more than one
node. If a set contains only a single node, this node receives the next free ID.
The algorithm terminates once every node is alone in its set. Note that this
partitioning process iteratively creates a binary tree which has exactly one node
in the set at each leaf, and thus has n leaves.

10.3. UNIFORM INITIALIZATION WITH CD 111

Algorithm 10.5 Initialization with Collision Detection
1: Every node v executes the following code:
2: nextId := 0
3: myBitstring := ‘’ ◁ initialize to empty string
4: bitstringsToSplit := [‘’] ◁ a queue with sets to split

5: while bitstringsToSplit is not empty do
6: b := bitstringsToSplit.pop()

7: repeat
8: if b = myBitstring then
9: choose r uniformly at random from {0, 1}

10: in the next two time slots:
11: transmit in slot r, and listen in other slot
12: else
13: it is not my bitstring, just listen in both slots
14: end if
15: until there was at least 1 transmission in both slots
16: if b = myBitstring then
17: myBitstring := myBitstring + r ◁ append bit r
18: end if

19: for r ∈ {0, 1} do
20: if some node u transmitted alone in slot r then
21: node u becomes ID nextId and becomes passive
22: nextId := nextId+ 1
23: else
24: bitstringsToSplit.push(b+ r)
25: end if
26: end for
27: end while

Remarks:

• In Line 20 a transmitting node needs to know whether it was the only
one transmitting. This is achievable in several ways, for instance by
adding an acknowledgement round. To notify a node v that it has
transmitted alone in round r, every node that was silent in round r
sends an acknowledgement in round r+1, while v is silent. If v hears
a message or interference in r + 1, it knows that it transmitted alone
in round r.

Theorem 10.6. Algorithm 10.5 correctly initializes n nodes in expected time
O(n).

Proof. A successful split is defined as a split in which both subsets are non-
empty. We know that there are exactly n− 1 successful splits because we have
a binary tree with n leaves and n − 1 inner nodes. Let us now calculate the
probability for creating two non-empty sets from a set of size k ≥ 2 as

Pr[1 ≤ X ≤ k − 1] = 1− Pr[X = 0]− Pr[X = k] = 1− 1

2k
− 1

2k
≥ 1

2
.

112 CHAPTER 10. WIRELESS PROTOCOLS

Thus, in expectation we need O(n) splits.

Remarks:

• What if we do not have collision detection?

10.4 Uniform Initialization without CD

Let us assume that we have a special node ℓ (leader) and let S denote the set of
nodes which want to transmit. We now split every time slot from Algorithm 10.5
into two time slots and use the leader to help us distinguish between silence and
noise. In the first slot every node from the set S transmits, in the second slot
the nodes in S ∪ {ℓ} transmit. This gives the nodes sufficient information to
distinguish the different cases (see Table 10.7).

nodes in S transmit nodes in S ∪ {ℓ} transmit
|S| = 0 ✗ ✔

|S| = 1, S = {ℓ} ✔ ✔

|S| = 1, S ̸= {ℓ} ✔ ✗

|S| ≥ 2 ✗ ✗

Table 10.7: Using a leader to distinguish between noise and silence: ✗ represents
noise/silence, ✔ represents a successful transmission.

Remarks:

• As such, Algorithm 10.5 works also without CD, with only a factor 2
overhead.

• More generally, a leader immediately brings CD to any protocol.

• This protocol has an important real life application, for instance when
checking out a shopping cart with items which have RFID tags.

• But how do we determine such a leader? And how long does it take
until we are “sure” that we have one? Let us repeat the notion of with
high probability.

10.5 Leader Election

Definition 10.8 (With High Probability). See also Definition 4.16. Some
probabilistic event is said to occur with high probability (w.h.p.), if it happens
with a probability p ≥ 1 − 1/nc, where c is a constant. The constant c may be
chosen arbitrarily, but it is considered constant with respect to Big-O notation.

Theorem 10.9. Algorithm 10.1 elects a leader w.h.p. in O(log n) time slots.

Proof. The probability for not electing a leader after c · log n time slots, i.e.,
c log n slots without a successful transmission is

10.6. FAST LEADER ELECTION WITH CD 113

�
1− 1

e

�c lnn

=

�
1− 1

e

�e·c′ lnn

≤ 1

elnn·c′ =
1

nc′
.

Remarks:

• What about uniform algorithms, i.e. the number of nodes n is not
known?

Algorithm 10.10 Uniform leader election
1: Every node v executes the following code:
2: for k = 1, 2, 3, . . . do
3: for i = 1 to ck do
4: transmit with probability p := 1/2k

5: if node v was the only node which transmitted then
6: v becomes the leader
7: break
8: end if
9: end for

10: end for

Theorem 10.11. By using Algorithm 10.10 it is possible to elect a leader w.h.p.
in O(log2 n) time slots if n is not known.

Proof. Let us briefly describe the algorithm. The nodes transmit with prob-
ability p = 2−k for ck time slots for k = 1, 2, At first p will be too high
and hence there will be a lot of interference. But after log n phases, we have
k ≈ log n and thus the nodes transmit with probability ≈ 1

n . For simplicity’s
sake, let us assume that n is a power of 2. Using the approach outlined above,
we know that after log n iterations, we have p = 1

n . Theorem 10.9 yields that we
can elect a leader w.h.p. in O(log n) slots. Since we have to try log n estimates
until 2k ≈ n, the total runtime is O(log2 n).

Remarks:

• Note that our proposed algorithm has not used collision detection.
Can we solve leader election faster in a uniform setting with collision
detection?

10.6 Fast Leader Election with CD

Theorem 10.13. With collision detection we can elect a leader using Algorithm
10.12 w.h.p. in O(log n) time slots.

114 CHAPTER 10. WIRELESS PROTOCOLS

Algorithm 10.12 Uniform leader election with CD
1: Every node v executes the following code:
2: repeat
3: transmit with probability 1

2
4: if at least one node transmitted then
5: all nodes that did not transmit quit the protocol
6: end if
7: until one node transmits alone

Proof. The number of active nodes k is monotonically decreasing and always
greater than 1 which yields the correctness. A slot is called successful if at most
half the active nodes transmit. We can assume that k ≥ 2 since otherwise we
would have already elected a leader. We can calculate the probability that a
time slot is successful as

Pr

�
1 ≤ X ≤

�
k

2

��
= P

�
X ≤

�
k

2

��
− Pr[X = 0] ≥ 1

2
− 1

2k
≥ 1

4
.

Since the number of active nodes at least halves in every successful time slot,
log n successful time slots are sufficient to elect a leader. Now let Y be a random
variable that counts the number of successful time slots after 32 · c · log n time
slots. The expected value is E[Y] ≥ 32 · c · log n · 1

4 ≥ 8 · c · log n. Since all those
time slots are independent from each other, we can apply a Chernoff bound (see
Theorem 10.28) with δ = 1

2 which states

Pr[Y < (1− δ)E[Y]] ≤ e−
δ2

2 E[Y] ≤ e−
1
8 ·8c log n ≤ n−c

for any constant c.

Remarks:

• Can we be even faster?

• Let us first briefly describe an algorithm for this.

• In the first phase the nodes transmit with probability 1/22
0

, 1/22
1

, 1/22
2

, . . .
until no node transmits. This yields a first approximation on the num-
ber of nodes.

• Afterwards, a binary search is performed to determine an even better
approximation of n.

• Finally, the third phase finds a constant approximation of n using a
biased random walk. The algorithm stops in any case as soon as only
one node is transmitting, which will become the leader.

Lemma 10.15. If j > log n+ log log n, then Pr[X > 1] ≤ 1
log n .

Proof. The nodes transmit with probability 1/2j < 1/2log n+log log n = 1
n log n .

The expected number of nodes transmitting is E[X] = n
n log n . Using Markov’s

inequality (see Theorem 10.27) yields Pr[X > 1] ≤ Pr[X > E[X] · log n] ≤
1

log n .

10.6. FAST LEADER ELECTION WITH CD 115

Algorithm 10.14 Fast uniform leader election
1: i := 1
2: repeat
3: i := 2 · i
4: transmit with probability 1/2i

5: until no node transmitted
{End of Phase 1}

6: l := i/2
7: u := i
8: while l + 1 < u do
9: j := ⌈ l+u

2 ⌉
10: transmit with probability 1/2j

11: if no node transmitted then
12: u := j
13: else
14: l := j
15: end if
16: end while

{End of Phase 2}
17: k := u
18: repeat
19: transmit with probability 1/2k

20: if no node transmitted then
21: k := k − 1
22: else
23: k := k + 1
24: end if
25: until exactly one node transmitted

Lemma 10.16. If j < log n− log log n, then P [X = 0] ≤ 1
n .

Proof. The nodes transmit with probability 1/2j > 1/2log n−log log n = log n
n .

Thus, the probability that a node is silent is at most 1 − log n
n . Hence, the

probability for a silent time slot, i.e., Pr[X = 0], is at most (1 − log n
n)n ≤

e− log n = 1
n , where the inequality follows from Theorem 10.29.

Corollary 10.17. If i > 2 logn, then Pr[X > 1] ≤ 1
log n .

Proof. This follows from Lemma 10.15 since the deviation in this corollary is
even larger.

Corollary 10.18. If i < 1
2 log n, then P [X = 0] ≤ 1

n .

Proof. This follows from Lemma 10.16 since the deviation in this corollary is
even larger.

Lemma 10.19. Let v be such that 2v−1 < n ≤ 2v, i.e., v ≈ log n. If k > v+2,
then Pr[X > 1] ≤ 1

4 .

116 CHAPTER 10. WIRELESS PROTOCOLS

Proof. Markov’s inequality yields

Pr[X > 1] = Pr

�
X >

2k

n
E[X]

�
≤ Pr

�
X >

2k

2v
E[X]

�

< Pr[X > 4E[X]] <
1

4
.

Lemma 10.20. If k < v − 2, then P [X = 0] ≤ 1
4 .

Proof. A similar analysis is possible to upper bound the probability that a
transmission fails if our estimate is too small. We know that k ≤ v−2 and thus

Pr[X = 0] =

�
1− 1

2k

�n

< e−
n

2k < e−
2v−1

2k < e−2 <
1

4
.

Lemma 10.21. If v− 2 ≤ k ≤ v+2, then the probability that exactly one node
transmits is constant.

Proof. The transmission probability is p = 1
2v±Θ(1) = Θ(1/n), and the lemma

follows with a slightly adapted version of Theorem 10.2.

Lemma 10.22. With probability 1 − 1
log n we find a leader in Phase 3 in

O(log log n) time.

Proof. For any k, because of Lemmas 10.19 and 10.20, the random walk of the
third phase is biased towards the good area. One can show that in O(log log n)
steps one gets Ω(log log n) good transmissions. Let Y denote the number of
times exactly one node transmitted. With Lemma 10.21 we obtain E[Y] =
Ω(log log n). Now a direct application of a Chernoff bound (see Theorem 10.28)
yields that these transmissions elect a leader with probability 1− 1

log n .

Theorem 10.23. The Algorithm 10.14 elects a leader with probability of at
least 1− log log n

log n in time O(log log n).

Proof. From Corollary 10.17 we know that after O(log log n) time slots, the
first phase terminates. Since we perform a binary search on an interval of size
O(log n), the second phase also takes at most O(log log n) time slots. For the
third phase we know that O(log log n) slots are sufficient to elect a leader with
probability 1− 1

log n by Lemma 10.22. Thus, the total runtime is O(log log n).
Now we can combine the results. We know that the error probability for

every time slot in the first two phases is at most 1
log n . Using a union bound

(see Theorem 10.26), we can upper bound the probability that an error occurred
during these phases by log log n

log n . Thus, we know that after Phase 2 our estimate is
at most log log n away from log n with probability of at least 1− log log n

log n . Hence,
we can apply Lemma 10.22 and thus successfully elect a leader with probability
of at least 1− log log n

log n (again using a union bound) in time O(log log n).

10.7. LOWER BOUND 117

Remarks:

• Tightening this analysis a bit more, one can elect a leader with prob-
ability 1− 1

log n in time log log n+ o(log log n).

• Can we be even faster?

10.7 Lower Bound

Theorem 10.24. Any uniform protocol that elects a leader with probability of
at least 1− 1

2t must run for at least t time slots.

Proof. Consider a system with only 2 nodes. The probability that exactly one
transmits is at most

Pr[X = 1] = 2p · (1− p) ≤ 1

2
.

Thus, after t time slots the probability that a leader was elected is at most
1− 1

2t .

Remarks:

• Setting t = log log n shows that Algorithm 10.14 is almost tight.

10.8 Uniform Asynchronous Wakeup

Until now we have assumed that all nodes start the algorithm in the same time
slot. But what happens if this is not the case? How long does it take to elect
a leader if we want a uniform and anonymous (nodes do not have an identifier
and thus cannot base their decision on it) algorithm?

Theorem 10.25. If nodes wake up in an arbitrary (worst-case) way, any al-
gorithm may take Ω(n/ log n) time slots until a single node can successfully
transmit.

Proof. Nodes must transmit at some point, or they will surely never successfully
transmit. With a uniform protocol, every node executes the same code. We
focus on the first slot where nodes may transmit. No matter what the protocol
is, this happens with probability p. Since the protocol is uniform, p must be a
constant, independent of n.

The adversary wakes up w = c
p lnn nodes in each time slot with some con-

stant c. All nodes woken up in the first time slot will transmit with probability
p. We study the event E1 that exactly one of them transmits in that first time
slot. Using the inequality (1 + t/n)n ≤ et from Lemma 10.29 we get

118 CHAPTER 10. WIRELESS PROTOCOLS

Pr[E1] = w · p · (1− p)
w−1

= c lnn (1− p)
1
p (c lnn−p)

≤ c lnn · e−c lnn+p

= c lnn · n−cep

= n−c ·O (log n)

<
1

nc−1
=

1

nc′
.

In other words, w.h.p. that time slot will not be successful. Since the nodes
cannot distinguish noise from silence, the same argument applies to every set of
nodes which wakes up. Let Eα be the event that all n/w time slots will not be
successful. Using the inequality 1− p ≤ (1− p/k)k from Lemma 10.30 we get

Pr[Eα] = (1− Pr(E1))
n/w >

�
1− 1

nc′

�Θ(n/ log n)

> 1− 1

nc′′
.

In other words, w.h.p. it takes more than n/w time slots until some node can
transmit alone.

10.9 Useful Formulas
In this chapter we have used several inequalities in our proofs. For simplicity’s
sake we list all of them in this section.

Theorem 10.26. Boole’s inequality or union bound: For a countable set of
events E1, E2, E3, . . ., we have

Pr[
[

i

Ei] ≤
X

i

Pr[Ei].

Theorem 10.27. Markov’s inequality: If X is any random variable and a > 0,
then

Pr[|X| ≥ a] ≤ E[X]

a
.

Theorem 10.28. Chernoff bound: Let Y1, . . . , Yn be n independent Bernoulli
random variables and let Y :=

P
i Yi. For any 0 ≤ δ ≤ 1 it holds

Pr[Y < (1− δ)E[Y]] ≤ e−
δ2

2 E[Y]

and for δ > 0

Pr[Y ≥ (1 + δ) · E[Y]] ≤ e−
min{δ,δ2}

3 ·E[Y]

Theorem 10.29. We have

et
�
1− t2

n

�
≤

�
1 +

t

n

�n

≤ et

for all n ∈ N, |t| ≤ n. Note that

lim
n→∞

�
1 +

t

n

�n

= et.

BIBLIOGRAPHY 119

Theorem 10.30. For all p, k such that 0 < p < 1 and k ≥ 1 we have

1− p ≤ (1− p/k)k.

Chapter Notes

The Aloha protocol is presented and analyzed in [Abr70, BAK+75, Abr85]; the
basic technique that unslotted protocols are twice as bad a slotted protocols is
from [Rob75]. The idea to broadcast in a packet radio network by building a
tree was first presented in [TM78, Cap79]. This idea is also used in [HNO99]
to initialize the nodes. Willard [Wil86] was the first that managed to elect a
leader in O(log log n) time in expectation. Looking more carefully at the success
rate, it was shown that one can elect a leader with probability 1− 1

log n in time
log log n + o(log logn) [NO98]. Finally, approximating the number of nodes in
the network is analyzed in [JKZ02, CGK05, BKK+16]. The lower bound for
probabilistic wake-up is published in [JS02]. In addition to single-hop networks,
multi-hop networks have been analyzed, e.g. broadcast [BYGI92, KM98, CR06],
or deployment [MvRW06].

Bibliography
[Abr70] Norman Abramson. THE ALOHA SYSTEM: another alternative

for computer communications. In Proceedings of the November 17-
19, 1970, fall joint computer conference, pages 281–285, 1970.

[Abr85] Norman M. Abramson. Development of the ALOHANET. IEEE
Transactions on Information Theory, 31(2):119–123, 1985.

[BAK+75] R. Binder, Norman M. Abramson, Franklin Kuo, A. Okinaka, and
D. Wax. ALOHA packet broadcasting: a retrospect. In American
Federation of Information Processing Societies National Computer
Conference (AFIPS NCC), 1975.

[BKK+16] Philipp Brandes, Marcin Kardas, Marek Klonowski, Dominik Pa-
jąk, and Roger Wattenhofer. Approximating the Size of a Radio
Network in Beeping Model. In 23rd International Colloquium on
Structural Information and Communication Complexity, Helsinki,
Finland, July 2016.

[BYGI92] Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the Time-
Complexity of Broadcast in Multi-hop Radio Networks: An Expo-
nential Gap Between Determinism and Randomization. J. Comput.
Syst. Sci., 45(1):104–126, 1992.

[Cap79] J. Capetanakis. Tree algorithms for packet broadcast channels.
IEEE Trans. Inform. Theory, 25(5):505–515, 1979.

[CGK05] Ioannis Caragiannis, Clemente Galdi, and Christos Kaklamanis. Ba-
sic Computations in Wireless Networks. In International Symposium
on Algorithms and Computation (ISAAC), 2005.

120 CHAPTER 10. WIRELESS PROTOCOLS

[CR06] Artur Czumaj and Wojciech Rytter. Broadcasting algorithms in
radio networks with unknown topology. J. Algorithms, 60(2):115–
143, 2006.

[HNO99] Tatsuya Hayashi, Koji Nakano, and Stephan Olariu. Randomized
Initialization Protocols for Packet Radio Networks. In 13th Interna-
tional Parallel Processing Symposium & 10th Symposium on Parallel
and Distributed Processing (IPPS/SPDP), 1999.

[JKZ02] Tomasz Jurdzinski, Miroslaw Kutylowski, and Jan Zatopianski.
Energy-Efficient Size Approximation of Radio Networks with No
Collision Detection. In Computing and Combinatorics (COCOON),
2002.

[JS02] Tomasz Jurdzinski and Grzegorz Stachowiak. Probabilistic Al-
gorithms for the Wakeup Problem in Single-Hop Radio Net-
works. In International Symposium on Algorithms and Computation
(ISAAC), 2002.

[KM98] Eyal Kushilevitz and Yishay Mansour. An Omega(D log (N/D))
Lower Bound for Broadcast in Radio Networks. SIAM J. Comput.,
27(3):702–712, 1998.

[MvRW06] Thomas Moscibroda, Pascal von Rickenbach, and Roger Watten-
hofer. Analyzing the Energy-Latency Trade-off during the Deploy-
ment of Sensor Networks. In 25th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM),
Barcelona, Spain, April 2006.

[NO98] Koji Nakano and Stephan Olariu. Randomized O (log log n)-Round
Leader Election Protocols in Packet Radio Networks. In Interna-
tional Symposium on Algorithms and Computation (ISAAC), 1998.

[Rob75] Lawrence G. Roberts. ALOHA packet system with and without
slots and capture. SIGCOMM Comput. Commun. Rev., 5(2):28–42,
April 1975.

[TM78] B. S. Tsybakov and V. A. Mikhailov. Slotted multiaccess packet
broadcasting feedback channel. Problemy Peredachi Informatsii,
14:32–59, October - December 1978.

[Wil86] Dan E. Willard. Log-Logarithmic Selection Resolution Protocols in
a Multiple Access Channel. SIAM J. Comput., 15(2):468–477, 1986.

