Chapter 6

Global Problems

This chapter is on “hard” problems in distributed computing. In sequential computing, there are NP-hard problems which are conjectured to take exponential time. Is there something similar in distributed computing? Using flooding/echo (Algorithms 2.9 and 2.10) from Chapter 2, everything so far was solvable basically in $O(D)$ time, where D is the diameter of the network.

6.1 Diameter & All Pairs Shortest Paths (APSP)

But how do we compute the diameter itself?!? With flooding/echo, of course!

\begin{algorithm}
\caption{Naïve Diameter Computation}
\begin{algorithmic}
\State All nodes compute their radius by synchronous flooding/echo.
\State All nodes flood their radius on their respective BFS trees.
\State The maximum radius a node sees is the diameter.
\end{algorithmic}
\end{algorithm}

Remarks:

\begin{itemize}
\item Since all these phases only take $O(D)$ time, nodes know the diameter in $O(D)$ time, which is asymptotically optimal.
\item However, there is a problem! Nodes are now involved in n parallel flooding/echo processes, thus a node may have to handle many and big messages in one time step. Although this is not strictly illegal in the message passing model, it still feels like cheating! A natural question now is whether we can do the same by just sending short messages in each round.
\item In Definition 1.8 of Chapter 1 we postulated that nodes should send only messages of “reasonable” size. In this chapter we make this more precise by requiring that each message should have at most $O(\log n)$ bits. This is generally enough to communicate a constant number of ID’s or values to each neighbor, but not enough to communicate everything a node knows to a neighbor in a single round!
\item A simple way to avoid large messages is to split them into small messages that are sent over several rounds. This can cause that messages
are getting delayed in some nodes but not in others. Each flooding
might not use edges of a BFS tree anymore, so the computed dis-
tances might no longer be correct! On the other hand, we know that
the maximal message size in Algorithm 6.1 is \(O(n \log n) \), so we could
just simulate each of these “big message” rounds by \(n \) “small message”
rounds using small messages. This yields a runtime of \(O(nD) \), which
is not desirable. A third possible approach is “starting each flood-
ing/echo one after each other”, also resulting in worst case \(O(nD) \).

- So, let us fix the above algorithm! The key idea is to arrange the
flooding-echo processes in a more organized way: Start the flooding
processes in a certain order and prove that, at any time, each node is
only involved in at most one flooding. This will be done in Algorithm
6.4.

Definition 6.2 \((BFS_v)\). Performing a breadth first search at node \(v \) produces
a spanning tree \(BFS_v \) (see Chapter 2). This takes time \(O(D) \) using small mes-
sages.

Remarks:
- The depth of node \(u \) in \(BFS_v \) is \(d(u, v) \).

Definition 6.3 (Euler Tour). A spanning tree of a graph \(G \) can be traversed
in time \(O(n) \) using a pebble that starts at the root and moves to a neighbor at
each time step, using the following logic: if the node the pebble is currently at
has any unvisited children, then the pebble moves to such a child, otherwise it
moves back to the parent. The process ends when the pebble would move to the
(nonexistent) parent of the root. Such a traversal is known as an Euler tour.

Algorithm 6.4 Computing APSP on \(G \).

1: Assume we have a leader node \(l \) (if not, compute one first).
2: Compute \(BFS_l \) of leader \(l \).
3: send a pebble \(P \) to traverse \(BFS_l \) in an Euler tour.
4: while \(P \) traverses \(BFS_l \) do
5: if \(P \) visits a new node \(v \) then
6: Immediately start \(BFS_v \) from node \(v \) to compute all distances to \(v \).
7: Pebble \(P \) waits one time step to avoid congestion.
8: end if
9: end while

Remarks:
- Algorithm 6.4 works as follows: Given a graph \(G \), first a leader \(l \) com-
putes its BFS tree \(BFS_l \). Then, we send a pebble \(P \) to traverse \(BFS_l \).
Each time pebble \(P \) enters a node \(v \) for the first time it starts a BFS
from \(v \) with the aim of computing the distances from \(v \) to all other
nodes. After starting the BFS, \(P \) waits one time step before moving
to a neighbor. Since we start a \(BFS_v \) from every node \(v \), each node \(u \)
learns its distance to all other nodes \(v \) during the according execution
of \(BFS_v \). There is no need for an echo-process at the end of \(BFS_u \).
• Having all distances is nice, but how do we get the diameter? Well, as before, each node could just flood its radius (its maximum distance) into the network. However, messages are small now and we need to modify this slightly. In each round a node only sends the maximal distance that it is aware of to its neighbors. After \(D \) rounds each node will know the maximum distance among all nodes.

Lemma 6.5. In Algorithm 6.4, at no time a node \(w \) is simultaneously active for both \(BFS_u \) and \(BFS_v \).

Proof. Assume a \(BFS_u \) is started at time \(t_u \) at node \(u \). Then, node \(w \) will be involved in \(BFS_u \) at time \(t_u + d(u, w) \). Now, consider a node \(v \) whose \(BFS_v \) is started at time \(t_v > t_u \). According to the algorithm, this implies that the pebble visits \(v \) after \(u \) and takes some time to travel from \(u \) to \(v \). In particular, the time to get from \(u \) to \(v \) is at least \(d(u, v) \). In addition the pebble waited one time step at node \(u \) after starting \(BFS_u \), so we have \(t_v \geq t_u + d(u, v) + 1 \). Using this and the triangle inequality, we get that node \(w \) is involved in \(BFS_v \) strictly after being involved in \(BFS_u \) since \(t_v + d(v, w) \geq (t_u + d(u, v) + 1) + d(v, w) \geq t_u + d(u, w) + 1 > t_u + d(u, w) \).

Theorem 6.6. Algorithm 6.4 computes all pairs shortest paths in time \(O(n) \).

Proof. Since the previous lemma holds for any pair of vertices, no two BFS’s “interfere” with each other, i.e. all messages can be sent on time without congestion. Hence, all BFS’s stop at most \(D \) time steps after they were started. We conclude that the runtime of the algorithm is determined by the time \(O(D) \) we need to build tree \(BFS_l \), plus the time \(O(n) \) that \(P \) needs to traverse \(BFS_l \), plus the time \(O(D) \) needed by the last BFS to finish.

Remarks:

• All of a sudden our algorithm needs \(O(n) \) time, and possibly \(n \gg D \). We should be able to do better, right?!

• Unfortunately not! Later this lecture we prove that computing the diameter of a network needs \(\Omega(n/\log n) \) time.

• Note that one can check whether a graph has diameter 1 by exchanging some specific information such as the degree with the neighbors. However, already checking for diameter 2 is difficult.

6.2 Lower Bound Graphs

We define a family \(G \) of graphs that we use to prove a lower bound on the rounds needed to compute the diameter. To simplify our analysis, we assume that \(n - 2 \) is divisible by 8. We start by defining four sets of nodes, each consisting of \(q = q(n) := (n - 2)/4 \) nodes. Throughout this chapter we write \(\lfloor q \rfloor \)
as a shorthand for \(\{1, \ldots, q\}\) and define:

\[
\begin{align*}
L_0 &:= \{l_i \mid i \in [q]\} \text{ (upper left in Figure 6.7)} \\
L_1 &:= \{l'_i \mid i \in [q]\} \text{ (lower left in Figure 6.7)} \\
R_0 &:= \{r_i \mid i \in [q]\} \text{ (upper right in Figure 6.7)} \\
R_1 &:= \{r'_i \mid i \in [q]\} \text{ (lower right in Figure 6.7)}
\end{align*}
\]

Figure 6.7: The above skeleton \(G'\) contains \(n = 10\) nodes, such that \(q = 2\).

We add node \(c_L\) and connect it to all nodes in \(L_0\) and \(L_1\). Then, we add node \(c_R\) and connect it to all nodes in \(R_0\) and \(R_1\). Furthermore, nodes \(c_L\) and \(c_R\) are connected by an edge. For \(i \in [q]\) we connect \(l_i\) to \(r_i\) and \(l'_i\) to \(r'_i\). Also, we add edges such that nodes in \(L_0\) form a clique, nodes in \(L_1\) form a clique, nodes in \(R_0\) form a clique, and nodes in \(R_1\) form a clique. The resulting graph is called \(G'\). Graph \(G'\) is the skeleton of any graph in family \(G\); all graphs in \(G\) are formed by starting with \(G'\) and adding additional edges to it. More formally, skeleton \(G' = (V', E')\) is defined as:

\[
\begin{align*}
V' := & \ L_0 \cup L_1 \cup R_0 \cup R_1 \cup \{c_L, c_R\} \\
E' := & \ \{(v, c_L) \mid v \in L_0 \cup L_1\} \quad \text{(Connections to } c_L) \\
& \ \cup \ \{(v, c_R) \mid v \in R_0 \cup R_1\} \quad \text{(Connections to } c_R) \\
& \ \cup \ \{(c_L, c_R)\} \quad \text{(Edge from } c_L \text{ to } c_R) \\
& \ \cup \ \left\{ \left\{ (l_i, r_j), (l'_i, r'_j) \right\} \mid \right\} \\
& \ \quad \cup \ \{(u, v) \in S^2 \mid S \in \{L_0, L_1, R_0, R_1\}, u \neq v\} \quad \text{(Clique edges)}
\end{align*}
\]

To simplify our arguments, we partition \(G'\) into two parts: Part \(L\) is the subgraph induced by nodes \(L_0 \cup L_1 \cup \{c_L\}\), Part \(R\) is the subgraph induced by nodes \(R_0 \cup R_1 \cup \{c_R\}\).

Family \(G\) consists of all graphs \(G\) that can be constructed from \(G'\) by adding any combination of edges of the form \((l_i, l'_j)\) or \((r_i, r'_j)\) where \(i, j \in [q]\).

Lemma 6.9. The diameter of a graph \(G = (V, E) \in G\) is 2 if and only if for every pair \((i, j) \in [q]^2\) either \((l_i, l'_j) \in E\) or \((r_i, r'_j) \in E\) (or both).
Figure 6.8: The above graph G has $n = 10$ and is a member of family \mathcal{G}. What is the diameter of G?

Proof. Note that the distance between most pairs of nodes is at most 2. In particular, the radii of c_L and c_R are 2. Thanks to c_L and c_R, the distance between any two nodes within Part L and within Part R is at most 2. Because of the cliques L_0, L_1, R_0, R_1, the distances between l_i and r_j, respectively l'_i and r'_j is at most 2.

The only interesting case is between a node $l_i \in L_0$ and a node $r'_j \in R_1$ (or, symmetrically, between $l'_i \in L_1$ and $r_j \in R_0$). If either edge (l_i, l'_j) or edge (r_i, r'_j) is present, then this distance is 2, since the path (l_i, l'_j, r'_j) or the path (l_i, r_i, r'_j) exists. If neither of the two edges exist, then the neighborhood of l_i consists of $\{c_L, r_j\}$, all nodes in L_0, and some nodes in $L_1 \setminus \{l'_i\}$, and the neighborhood of r'_j consists of $\{c_R, l'_i\}$, all nodes in R_1, and some nodes in $R_0 \setminus \{r_i\}$ (see e.g. Figure 6.10 with $i = 2$ and $j = 2$.) Since the two neighborhoods do not share a common node, the distance between l_i and r'_j is at least 3.\footnote{In fact, exactly 3 because of the path (l_i, c_L, c_R, r'_j).}

Remarks:

- Each part contains up to $q^2 \in \Theta(n^2)$ edges not belonging to the skeleton. The possible such edges are $L_0 \times L_1$ and $R_0 \times R_1$, respectively.

- There are $2q + 1 \in \Theta(n)$ edges connecting the left and the right part. Since in each round we can transmit $O(\log n)$ bits over each edge (in each direction), the bandwidth between Part L and Part R is $O(n \log n)$.

- If we were to naïvely transmit an existence/nonexistence bit for each of the $\Theta(n^2)$ edges in $L_0 \times L_1$ from Part L over to Part R, we would need at least $\Omega(n/ \log n)$ rounds to get the information across, given the bandwidth of $O(n \log n)$. But maybe we can do better?!? Can
6.3 Communication Complexity

To prove the last remark formally, we can use arguments from two-party communication complexity. This area essentially deals with a basic version of distributed computation: two parties are given some input each and want to solve a task on their inputs.

We consider two students (Alice and Bob) at two different universities connected by a communication channel (e.g., via email) and we assume this channel to be reliable. Now, Alice and Bob want to check whether they received the same problem set for homework (we assume their professors are lazy and wrote it on the blackboard instead of putting up a nicely prepared document online.) Do Alice and Bob really need to type the whole problem set into their emails? More formally: Alice receives a \(k \)-bit string \(x \) and Bob another \(k \)-bit string \(y \), and the goal is for both of them to compute the equality function.

Definition 6.11 (Equality). We define the equality function \(\text{EQ} \) to be:

\[
\text{EQ}(x, y) := \begin{cases}
1, & x = y \\
0, & x \neq y.
\end{cases}
\]

Remarks:

- In a more general setting, Alice and Bob are interested in computing a certain function \(f: \{0, 1\}^k \times \{0, 1\}^k \to \{0, 1\} \) with the least amount of communication between them. Of course, they can always succeed by having Alice send her whole \(k \)-bit string to Bob, who then computes...
the function, but the idea here is to find clever ways of calculating \(f \) with less than \(k \) bits of communication. We measure how clever they can be as follows:

Definition 6.12 (Communication Complexity). The communication complexity of protocol \(A \) for function \(f \) is \(CC(A, f) := \text{the minimum number of bits exchanged between Alice and Bob in the worst case when using } A \). The communication complexity of \(f \) is \(CC(f) := \min \{ CC(A, f) \mid A \text{ computes } f \} \). That is the minimal number of bits that the best protocol needs to send in the worst case.

Definition 6.13. For a given function \(f \), we define a \(2^k \times 2^k \) matrix \(M_f \) representing \(f \). That is \(M_f(x, y) := f(x, y) \).

Example 6.14. For \(EQ \), in case \(k = 3 \), matrix \(M_{EQ} \) looks like this:

\[
\begin{pmatrix}
000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 & \leftarrow x \\
000 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \\
001 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \\
010 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \\
011 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \\
100 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
101 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \\
110 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \\
111 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\end{pmatrix}
\]

As a next step we define the notion of a (combinatorial) monochromatic rectangle. These are “submatrices” of \(M_f \) which contain the same entry.

Definition 6.15 (Monochromatic Rectangle). A set \(R \subseteq \{0, 1\}^k \times \{0, 1\}^k \) is called a monochromatic rectangle, if and only if the following conditions hold:

- Whenever \((x_1, y_1) \in R \text{ and } (x_2, y_2) \in R\), also \((x_1, y_2) \in R\).
- There is a fixed \(z \) such that \(f(x, y) = z \) for all \((x, y) \in R\).

Example 6.16. The first three of the following rectangles are monochromatic, the last one is not:

<table>
<thead>
<tr>
<th>Rectangle</th>
<th>Example 6.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1 = {011} \times {011})</td>
<td>light gray</td>
</tr>
<tr>
<td>(R_2 = {011, 100, 101, 110} \times {000, 001})</td>
<td>gray</td>
</tr>
<tr>
<td>(R_3 = {000, 001, 101} \times {011, 100, 110, 111})</td>
<td>dark gray</td>
</tr>
<tr>
<td>(R_4 = {000, 001} \times {000, 001})</td>
<td>boxed</td>
</tr>
</tbody>
</table>

Each time Alice and Bob exchange a bit, they eliminate columns/rows of the matrix \(M_f \). What is left after exchanging some number of bits is a combinatorial rectangle. They can stop communicating as soon as the remaining rectangle becomes monochromatic. However, maybe there is a more efficient way to exchange information about a given bit string than just naïvely transmitting contained bits? In order to cover all possible ways of communication, we need the following definition:

\(^2\)Note that in our setting we require that both Alice and Bob know the value of \(f(x, y) \) by the end, but if only one knew the value then they could just send it to the other party.
Definition 6.17 (Fooling Set). A set $S \subseteq \{0,1\}^k \times \{0,1\}^k$ fools f if there is a fixed z such that the following conditions hold:

- $f(x,y) = z$ for each $(x,y) \in S$.
- For every $(x_1,y_1),(x_2,y_2) \in S$ such that $(x_1,y_1) \neq (x_2,y_2)$, the rectangle $\{x_1,x_2\} \times \{y_1,y_2\}$ is not monochromatic: either $f(x_1,y_2) \neq z$, $f(x_2,y_1) \neq z$, or both.

Example 6.18. Consider $S = \{(000,000),(001,001)\}$. Take a look at the non-monochromatic rectangle R_4 in Example 6.16. Verify that S is indeed a fooling set for EQ.

Remarks:

- Can you find a larger fooling set for EQ?
- We assume that Alice and Bob take turns in sending a bit. This results in $2t$ possible action patterns during a sequence of t rounds.

Lemma 6.19. If S is a fooling set for f, then $\text{CC}(f) = \Omega(\log |S|)$.

Proof. We prove the statement via contradiction: fix a protocol A and assume that it needs $t < \log |S|$ rounds in the worst case. Then, there are 2^t possible action patterns, with $2^t < |S|$. Hence, for at least two elements of S, let us call them (x_1,y_1) and (x_2,y_2), protocol A produces the same action pattern P. Naturally, the action pattern on the alternative inputs $(x_1,y_2),(x_2,y_1)$ will be P as well: in the first round Alice and Bob have no information on the other party’s string and send the same bit that was sent in P. Based on this, they determine the second bit to be exchanged, which will be the same as the second one in P since they cannot distinguish the cases. This continues for all t rounds. We conclude that after t rounds, Alice does not know whether Bob’s input is y_1 or y_2 and Bob does not know whether Alice’s input is x_1 or x_2. By the definition of fooling sets, either

- $f(x_1,y_2) \neq f(x_1,y_1)$ in which case Alice (with input x_1) does not know the solution yet,

or

- $f(x_2,y_1) \neq f(x_1,y_1)$ in which case Bob (with input y_1) does not know the solution yet.

This contradicts the assumption that A leads to a correct decision for all inputs after t rounds. Therefore, at least $\log |S|$ rounds are necessary.

Theorem 6.20. $\text{CC}(\text{EQ}) = \Omega(k)$.

Proof. The set $S := \{(x,x) \mid x \in \{0,1\}^k\}$ fools EQ and has size 2^k. Now apply Lemma 6.19.

Definition 6.21. Denote the negation of a string z by \overline{z} and by $x \circ y$ the concatenation of strings x and y.

Lemma 6.22. Let x, y be k-bit strings. Then $x \neq y$ if and only if there is an index $i \in [2k]$ such that the ith bit of $x \circ \overline{y}$ and the ith bit of $\overline{y} \circ y$ are both 0.

Proof. If $x \neq y$, there is $j \in [k]$ such that x and y differ in the jth bit. Therefore, either the jth bit of both x and \overline{y} is 0, or the jth bit of both \overline{x} and y is 0. For this reason, there is an $i \in [2k]$ such that $x \circ \overline{y}$ and $\overline{y} \circ y$ are both 0 at position i. If $x = y$, then for any $i \in [2k]$ it is always the case that either the ith bit of $x \circ \overline{y}$ is 1 or the ith bit of $\overline{y} \circ y$ (which is the negation of $x \circ \overline{y}$ in this case) is 1.

Remarks:

- With these insights we get back to the problem of computing the diameter of a graph and relate this problem to EQ.

Definition 6.23. Using the parameter q defined before, we define a bijective map between all pairs (x, y) of q^2-bit strings and the graphs in \mathcal{G}: each pair of strings (x, y) is mapped to graph $G_{x,y} \in \mathcal{G}$ that is derived from skeleton G' by adding

- edge (l_i, l'_j) to Part L if and only if the $(j + q \cdot (i - 1))$th bit of x is 1.
- edge (r_i, r'_j) to Part R if and only if the $(j + q \cdot (i - 1))$th bit of y is 1.

Remarks:

- Clearly, Part L of $G_{x,y}$ depends on x only and Part R depends on y only.

Lemma 6.24. Let x and y be $(q^2/2)$-bit strings given to Alice and Bob. Then, $x = y$ if and only if graph $G := G_{x \circ \overline{y}, \overline{x} \circ y} \in \mathcal{G}$ has diameter 2.

Proof. By Lemma 6.22 we know that $x \neq y$ if and only if there is an index $i \in [q^2]$ such that both $x \circ \overline{y}$ and $\overline{x} \circ y$ have the ith bit equal to 0. By construction of G, this condition is equivalent to there existing $(i, j) \in [q^2]$ such that $(l_i, l'_j) \notin E(G)$ and $(r_i, r'_j) \notin E(G)$. However, by negation in Lemma 6.9 this happens if and only if G does not have diameter 2.

Theorem 6.25. Any distributed algorithm A that decides whether a graph G has diameter D needs $\Omega \left(\frac{n}{\log n} + D \right)$ time.

Proof. Computing D for sure needs time $\Omega(D)$. It remains to prove $\Omega(n/\log n)$. To prove this term of the lower bound, it suffices to study $D = 2$. Assume there is a distributed algorithm A that decides whether the diameter of a graph is 2 in time $o(n/\log n)$. When Alice and Bob are given $(q^2/2)$-bit inputs x and y, they can simulate A to decide whether $x = y$ as follows: Alice constructs Part L of $G_{x \circ \overline{y}, \overline{x} \circ y}$ and Bob constructs Part R. As we remarked, both parts are independent of each other such that Part L can be constructed by Alice without knowing y and Part R can be constructed by Bob without knowing x. Furthermore, $G_{x \circ \overline{y}, \overline{x} \circ y}$ has diameter 2 if and only if $x = y$ (Lemma 6.24).

3This is why we need that $n-2$ is divisible by 8.
6.3. COMMUNICATION COMPLEXITY

Now, Alice and Bob simulate the distributed algorithm A round by round: In the first round, they determine which messages the nodes in their part of G would send. Then, they use their communication channel to exchange all $2(2q+1) \in \Theta(n)$ messages that would be sent over edges between Part L and Part R in this round while executing A on G. Based on this, Alice and Bob determine which messages would be sent in round two, and so on. For each round simulated by Alice and Bob, they only need to communicate $O(n \log n)$ bits: $O(\log n)$ bits for each of $O(n)$ messages. Since A makes a decision after $o(n/\log n)$ rounds, this yields a total communication of $o(n^2)$ bits. On the other hand, Lemma 6.20 states that to decide whether x equals y Alice and Bob need to communicate at least $\Omega(q^2/2) = \Omega(n^2)$ bits. A contradiction.

Remarks:
- Until now we only considered deterministic algorithms. Can one do better using randomness?

Algorithm 6.26 Randomized Evaluation of EQ.

1: Alice and Bob use public randomness. That is they both have access to the same random bit string $z \in \{0,1\}^k$
2: Alice sends bit $a := (\sum_{i \in [k]} z_ix_i) \mod 2$ to Bob.
3: Bob sends bit $b := (\sum_{i \in [k]} z_iy_i) \mod 2$ to Alice.
4: if $a \neq b$ then
5: We know $x \neq y$.
6: end if

Example 6.27. If $x = y$, then $a = b$ for sure. Otherwise, if $x \neq y$, Algorithm 6.26 might not reveal inequality: take, for instance, $k = 2$, $x = 01$, $y = 10$ and $z = 11$, then we get $a = b = 1$.

Lemma 6.28. If $x \neq y$, Algorithm 6.26 discovers $x \neq y$ with probability $\geq 1/2$ under the assumption that bits of z are independent and have equal probabilities of being 0 or 1.

Proof. Let $I := \{i \in [k] \mid x_i \neq y_i\}$ be the set of indices where $x_i \neq y_i$. Since $x \neq y$, we know that $|I| > 0$. Observe that $a - b \equiv \sum_{i \in I} z_i \mod 2$. Since all z_i with $i \in I$ are independent and have equal probabilities of being 0 or 1, we get that $\sum_{i \in I} z_i \equiv 1 \mod 2$ holds with probability 1/2. This is because I has equally many subsets of even and odd counts. As a result, with probability at least 1/2 it holds that $a \neq b$.

Remarks:
- By excluding the vector $z = 0^k$ we can even get a discovery probability strictly larger than 1/2.
- Repeating the Algorithm 6.26 with different random strings z, the error probability can be reduced arbitrarily.
- Does this imply that there is a fast randomized algorithm to determine the diameter? Unfortunately not!
• Sometimes public randomness is not available, but private randomness is. Here Alice has her own random string and Bob has his own random string. A modified version of Algorithm 6.26 also works with private randomness, but at the cost of runtime.

• One can prove an $\Omega(n/ \log n)$ lower bound for any randomized distributed algorithm that computes the diameter. To do so, one considers the disjointness function $DISJ$ instead of equality. Here, Alice is given a subset $X \subseteq [k]$ and and Bob is given a subset $Y \subseteq [k]$ and they need to determine whether $Y \cap X = \emptyset$. (X and Y can be represented by k-bit strings x, y.) The reduction is similar to the one presented above but uses graph $G_{x,y}$ instead of $G_{x \circ x, y \circ y}$. However, the lower bound for the randomized communication complexity of $DISJ$ is more involved than the lower bound for $CC(EQ)$.

• Since one can compute the diameter given a solution for APSP, an $\Omega(n/ \log n)$ lower bound for APSP is implied. As such, our simple Algorithm 6.4 is almost optimal!

• Many prominent functions allow for a low communication complexity. For instance, $CC(PARITY) = 2$. What is the Hamming distance (number of different entries) of two strings? It is known that $CC(HAM_\geq d) = \Omega(d)$. Also, $CC(\text{decide whether } "HAM \geq k/2 + \sqrt{k}" \text{ or } "HAM \leq k/2 - \sqrt{k}") = \Omega(k)$, even when using randomness. This problem is known as the Gap-Hamming-Distance.

• Lower bounds in communication complexity have many applications. Apart from getting lower bounds in distributed computing, one can also get lower bounds regarding circuit depth or query times for static data structures.

• In the distributed setting with limited bandwidth we showed that computing the diameter has about the same complexity as computing all pairs shortest paths. In contrast, in sequential computing, it is a major open problem whether the diameter can be computed faster than all pairs shortest paths. No nontrivial lower bounds are known, only that $\Omega(n^2)$ steps are needed – partly due to the fact that there can be n^2 edges/distances in a graph. On the other hand, the currently best algorithm uses fast matrix multiplication and terminates after $O(n^{2.3738})$ steps.

6.4 Distributed Complexity Theory

We conclude this chapter with a short overview on the main complexity classes of distributed message passing algorithms. Given a network with n nodes and diameter D, we managed to establish a rich selection of upper and lower bounds regarding how much time it takes to solve or approximate a problem. Currently we know five main distributed complexity classes:

• Strictly local problems can be solved in constant $O(1)$ time, e.g., a constant approximation of a dominating set in a planar graph.
• Just a little bit slower are problems that can be solved in \(\log^* n \) time, e.g., many combinatorial optimization problems in special graph classes such as growth bounded graphs. 3-coloring a ring takes \(O(\log^* n) \).

• A large body of problems is polylogarithmic (or pseudo-local), in the sense that they seem to be strictly local but are not, as they need \(O(\text{polylog } n) \) time, e.g., the maximal independent set problem.

• There are problems which are global and need \(O(D) \) time, e.g., to count the number of nodes in the network.

• Finally there are problems which need \(\text{polynomial } O(n^{poly}) \) time, even if the diameter \(D \) is a constant, e.g., computing the diameter of the network.

Chapter Notes
The linear time algorithm for computing the diameter was discovered independently by [HW12, PRT12]. The presented matching lower bound is by Frischknecht et al. [FHW12], extending techniques by [DHK + 11].

Due to its importance in network design, shortest path-problems in general and the APSP problem in particular were among the earliest studied problems in distributed computing. Developed algorithms were immediately used, e.g., as early as in 1969 in the ARPANET (see [Lyn96], p.506). Routing messages via shortest paths were extensively discussed to be beneficial in [Taj77, MS79, MRR80, SS80, CM82] and in many other papers. It is not surprising that there is plenty of literature dealing with algorithms for distributed APSP, but most of them focused on secondary targets such as trading time for message complexity. E.g., papers [AR78, Tou80, Che82] obtain a communication complexity of roughly \(O(n \cdot m) \) bits/messages and still require superlinear runtime. Also a lot of effort was spent to obtain fast sequential algorithms for various versions of computing APSP or related problems such as the diameter problem, e.g., [CW90, AGM91, AMGN92, Sei95, SZ99, BVW08]. These algorithms are based on fast matrix multiplication, a topic which is heavily researched with improved bounds almost every year.

The problem sets in which one needs to distinguish diameter 2 from 4 are inspired by a combinatorial \((\times, 3/2)\)-approximation in a sequential setting by Aingworth et al. [ACIM99]. The main idea behind this approximation is to distinguish diameter 2 from 4. This part was transferred to the distributed setting in [HW12].

Two-party communication complexity was introduced by Andy Yao in [Yao79]. Later, Yao received the Turing Award. A nice introduction to communication complexity covering techniques such as fooling-sets is the book by Nisan and Kushilevitz [KN97].

Bibliography
CHAPTER 6. GLOBAL PROBLEMS

