
Chapter 6

Matching

In this chapter, we look at rounding : a powerful technique to devise determinis-
tic synchronous message-passing algorithms with polylogarithmic running time.
The rough idea is to find a fractional solution to a problem and then turn this
fractional solution into an integral one by rounding.

We illustrate the rounding technique with the example of (maximal) match-
ing. The technique is way more general and has been applied to a variety of
other problems including colorings and MIS.
Remarks (Maximal Matching in Low-Degree Graphs):

• Finding a maximal matching in a bipartite graph is particularly easy.

Lemma 6.1. A maximal matching in a 2-colored bipartite graph with
maximum degree ∆ can be found in O(∆) time.

Proof. See Exercises.

• Note that by Theorem 1.23 and Corollary 4.5, a MIS can be found
in O(∆ + log∗ n) time in general (non-bipartite) graphs. Observing
that a maximal matching in G = (V,E) is nothing else than a MIS in
the line graph (as observed in the remarks after Definition 4.19), we
also have an algorithm with the same running time for the maximal
matching problem. We can even show the following.

Lemma 6.2. Given a q-coloring of a graph with maximum degree ∆,
a maximal matching can be computed in O(∆+ log∗ q) time.

Proof. See Exercises.

Our goal though is to find deterministic algorithms with a running time that
is polylogarithmic in n, no matter how large ∆ is, trying to match the running
time of the randomized counterpart, as given by Theorem 4.11.
Remark:

• Throughout this chapter, we make the simplifying assumption (with-
out loss of generality) that ∆ is a power of 2. All arguments would
still be valid without this assumption but the notation would get a bit
more tedious (e.g., writing 2−⌈log∆⌉ instead of 1

∆ ).
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6.1 Matching
We start by formulating the matching problem as a linear program (i.e., a system
of linear equations). Recall (from Definition 4.19) that a matching M is a subset
of the edges such that no node has more than one incident edge in M . We can
encode this set M with a variable xe ∈ {0, 1} for every edge e where xe = 1 if
and only if e ∈ M . The condition for a node to not have more than one incident
edge in the matching then can be written as

X

e∈E(v)

xe ≤ 1

where E(v) := {e ∈ E : v ∈ e} is the set of edges incident to v. This set of linear
equations with integral values for xe is called an integer program for matching
where the goal is to maximize the number |M | = P

e∈E xe of edges in M :

max
X

e∈E

xe s.t.

∀e ∈ E : xe ∈ {0, 1}
∀v ∈ V :

X

e∈E(v)

xe ≤ 1

Relaxing the values to be non-integer, we get the following linear program:

max
X

e∈E

xe s.t.

∀e ∈ E : 0 ≤ xe ≤ 1

∀v ∈ V :
X

e∈E(v)

xe ≤ 1

Definition 6.3 (Fractional Matching). We call a solution (xe)e∈E to the above
linear program a fractional matching.

Definition 6.4 (Fractionality). We call a fractional matching f -fractional if the
smallest (non-zero) value of an edge is f for 0 < f ≤ 1. Note that a 1-fractional
matching is an integral matching.

Definition 6.5 (Approximation). We say a (fractional or integral) matching
(xe)e∈E is c-approximate if

P
e∈E xe ≥ |M∗|

c for a maximum matching M ∗ and
a number c ≥ 1.

For finding a maximal matching, an approximate maximum matching will
turn out to be helpful. Indeed, there is a close connection between their sizes.

Lemma 6.6. For a maximal matching M and a maximum matching M ∗ in a
graph G = (V,E), we have the following two properties:

1. |M | ≥ |E|
2∆−1 , and

2. |M∗|
2 ≤ |M | ≤ |M∗|.

Proof. See Exercises.
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6.2 Approximate Fractional Matching
It turns out that computing an approximate fractional matching is straightfor-
ward in O(log∆) time, as we will discuss in this section.

Definition 6.7 (Loose/Tight Nodes/Edges). Given a fractional matching, we
call a node v loose if cv :=

P
e∈E(v) xe ≤ 1

2 and tight otherwise. We call an
edge loose if both its endpoints are loose and tight otherwise.

Initially, we set xe = 1
∆ for all e ∈ E. This trivially satisfies the constraints

cv =
P

e∈E(v) xe ≤ 1. Then, we iteratively raise the value of all loose edges (in
parallel) by a factor 2 until all edges are tight.

Algorithm 6.8 Fractional Matching
Every edge e executes the following code:
xe ← 1

∆
while both endpoints of e are loose do
xe ← 2 · xe

end while

Remarks:

• This can be done in O(log∆) time, since at the latest when the value
of an edge is 1, both its endpoints are tight.

• If all edges incident to a node v double their value xe, the value cv
doubles. Since only edges incident to loose nodes double their value,
the value cv of a node never exceeds 1, resulting in a valid matching.

• By construction, the fractional matching is (at least) 1
∆ -fractional and

all edge values are in
�

1
∆ , 2

∆ , 4
∆ , 8

∆ , . . . , 1
8 ,

1
4 ,

1
2 , 1

	
.

• If ∆ is not a power of 2, we work with 2−(⌈log∆⌉) instead of 1
∆ .

• For simplicity, we formulate (most of) the algorithms in this chapter
from the perspective of an edge instead of a node. It is an easy exercise
to reformulate the algorithms for nodes.

Claim 6.9. The fractional matching of Algorithm 6.8 is a 4-approximation.

Proof. We prove the claim using a double counting argument (also called count-
ing in two ways). Let every edge e∗ ∈ M∗ in a maximum matching M∗ distribute
1 dollar to the edges e ∈ E such that every edge e receives at most 4xe dollars.
The claim follows since then |M∗| ≤ 4

P
e∈E xe.

An edge e∗ ∈ M∗ has (at least) one tight endpoint, say v. It takes its dollar
and distributes it among the edges E(v) incident to v proportionally to their
edge value xe. Since cv =

P
e∈E(v) xe > 1

2 , each edge in E(v) receives at most
twice its value. Now look at an arbitrary edge e = {u, v}. There is at most one
edge incident to u and at most one edge incident to v in M ∗ (otherwise, M∗

would not be a matching). Thus, e can have received at most 2xe dollars from
u and at most as much from v, thus in total no more than 4xe.

Lemma 6.10. Algorithm 6.8 computes a 1
∆ -fractional 4-approximate matching

in O(log∆) time.
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6.3 Gradual Rounding in Bipartite Graphs
We now look at a fractional matching (xe)e∈E as given by Algorithm 6.8. Recall
that it (potentially) has edges with values in 1

∆ , 2
∆ , . . . , 1

2 , 1. Our high-level plan
is to gradually get rid of the fractional values by rounding them up by a factor
2 or down to 0. More concretely, we will first get rid of all edge values 1

∆ , then
of all edge values 2

∆ , and so on. Intuitively, if in each of those log∆ steps, we

lose no more than a fraction O
�

1
log∆

�
of the matching size, we end up with a

constant-approximate integral matching.
In the first step, we want to turn the 1

∆ -fractional matching into a 2
∆ -

fractional matching (x′
e)e∈E such that we do not lose too much in the overall

size. To that end, let us look at the graph induced by edges with value f := 1
∆ .

Definition 6.11 (Graph Induced by f -Edges). The graph Gf = (Vf , Ef ) is the
subgraph consisting only of edges (and their endpoints) with value exactly f .

Definition 6.12 (Rounding). Rounding Gf means identifying a subset of Ef

whose edge values are raised from f to 2f (dropping the values of all other edges
in Ef to 0) such that the resulting 2f -fractional matching is still valid.

Definition 6.13 (Perfect Rounding). A perfect rounding of Gf is a rounding
of Gf such that for all nodes in v, half its incident edges are raised and the
other half are dropped. See Figure 6.14.

⇒

Figure 6.14: A perfect rounding of Gf where blue edges mean they have value
f , orange stands for value 2f , and grey for value 0.

Remarks:

• In a perfect rounding, the values cv of all nodes v remain unchanged,
i.e., c′v :=

P
e∈E x′

e = cv.

• In a perfect rounding, the overall size of the matching remains un-
changed, i.e.,

P
e∈E x′

e =
P

e∈E xe.

Of course, a perfect matching would be our goal: rounding without losing
anything in the overall matching size. But is that even possible (let alone
computationally feasible)? Unfortunately, no. There cannot always be such a
perfect rounding. Why? See Figure 6.15.

• If Gf has an odd-degree node, there is no perfect rounding.

• If Gf is a triangle (or, more generally, an odd-length cycle), there is no
perfect rounding.
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⇒

⇒

Figure 6.15: Two graphs Gf for which a perfect rounding is not possible: a
graph with odd-degree nodes and a graph with an odd-length cycle.

In those cases, it is impossible to round half of a node’s incident edges up
and half of them down. While rounding more than half up runs the risk of
destroying the matching property, rounding down only decreases the size of the
matching. If in doubt, we thus always have to round down. This will result in
a loss in the overall matching size, which luckily turns out to be not too large.

In this section, we will assume that the graph is bipartite (i.e., there are no
odd-length cycles) and that the bipartition (that is, a 2-coloring of the nodes)
is known. We will get rid of this assumption in the subsequent section.

We want to group incident edges of a node into pairs, in the hope that we
can round one of each pair up and the other down. To this end, we look at the
2-decomposition G′

f of the graph Gf . See Figures 6.17 and 6.18 for examples.

Definition 6.16 (2-decomposition). The 2-decomposition of a graph looks as
follows. For every node v, we introduce ⌈δ(v)/2⌉ copies and arbitrarily split its
incident edges among these copies in such a way that every copy has degree 2,
with the possible exception of one copy which has degree 1 (if v has odd degree).

Figure 6.17: A (non-bipartite) graph and its 2-decomposition consisting of node-
disjoint paths and cycles.
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Figure 6.18: The 2-decomposition of a bipartite graph. Blue nodes are copies
of the same original node, grey nodes are non-split original nodes.

Remarks:

• Since every node in a 2-decomposition has degree at most 2, it is a
node-disjoint union of paths and cycles. If G is bipartite, all cycles
have even length.

• Every node is part of ⌈δ(v)/2⌉ cycles and at most one path. If every
node in Gf has even degree, then G′

f consists of cycles only.

An almost perfect alternation of rounding up and rounding down for each
path and cycle would result in an almost perfect rounding. But how do we
compute that? We will discuss the rounding algorithm for cycles and paths
separately, running in O(log∆) time each. We will have to distinguish short
and long cycles/paths.

Definition 6.19 (Short/Long Paths/Cycles). A path or cycle is called short if
its length is at most ℓ := 24 · log∆, and long otherwise.

Rounding of Cycles
In a cycle, we would want the raise and drop of edge values to be alternating.
Since the cycle has even length, the values cv =

P
e∈E(v) xe for all nodes v in

the cycle would remain unaffected by this update. Moreover, the total value of
the edges in the cycle would stay the same.

If the cycle is short, this perfect alternation can be identified in O(log∆)
time as follows. All edges in the cycle agree on a global direction (one of the
two) of the cycle. An edge is rounded up to 2f if it leads from a node with color
1 to a node with color 2 and rounded down to 0 otherwise (recalling that we are
in a 2-colored graph). See Algorithm 6.20 and Figure 6.21.

Algorithm 6.20 Rounding Short Cycles
find globally consistent orientation of cycle
if e goes from color-1-node to color-2-node then
xe ← 2xe

else
xe ← 0

end if
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⇒

Figure 6.21: A perfect rounding of a 2-colored cycle with a given orientation
of the cycle. An edge is rounded up (blue) if it leads from a node with color 1
(black) to a node with color 2 (white) and rounded down otherwise (grey).

For longer cycles, however, unfortunately, we cannot compute such a perfect
alternation in O(log∆) time, since it is not possible for all edges to agree on the
same direction of the cycle. Instead, we want only O(log∆)-length chops of the
cycle to agree on a direction. More specifically, our goal is to orient the edges
in the cycle such that maximal directed paths have length at least ℓ.

Definition 6.22 (Maximal Directed Path). Consider a cycle with an orien-
tation of each edge. A maximal directed path is a directed path in that cycle
that cannot made any longer (since the two edges on the cycle incident to the
boundary of the path are directed in the other direction). See Figure 6.23.

Figure 6.23: A cycle (with an arbitrary orientation of each edge) and its maximal
directed paths indicated by different colors.

We can find an orientation of the edges in the cycle such that every maxi-
mal directed path has length at least ℓ as follows: We start with an arbitrary
orientation of the edges (for instance, from color-1 nodes to color-2 nodes). For
i = 1, . . . , log(ℓ), if there is a maximal directed path of length < 2i, we merge it
with the maximal directed path it points towards (where the arrows meet) by
reversing all the edges of the shorter path, say, breaking ties arbitrarily.

Algorithm 6.24 Long Arrows
orient every edge e arbitrarily
for i = 1, . . . , log(ℓ) do

if a maximal directed path has length < 2i then
merge it with maximal directed path it is pointed towards
by reversing shorter one (breaking ties arbitrarily)

end if
end for
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Remarks:

• Since we only merge two maximal directed paths that point towards
each other, it cannot happen that a path P is trying to merge with
a path P ′ (by reversing the edges of P ) while at the same time P ′ is
reversing its edges because it is trying to merge with a path P ′′. For
each path, there is exactly one such potential merging partner and
both paths agree on that!

• Initially, every maximal directed path has length at least 1. Merging
two such paths leads to maximal directed paths of length at least 2,
then 4, and so on. After iteration i, every maximal directed path has
length at least 2i, so after log(ℓ) iterations, every maximal directed
path has length at least ℓ.

• Since, in the end, maximal directed paths have length at least ℓ, at
most a fraction 2

ℓ of the edges are at the boundary of those paths.

• It is easy for an edge to identify whether it is a boundary edge or not:
For e = (u, v), if two arrows meet at v or if two arrows split at u, the
edge is at a boundary.

• The running time is dominated by the last iteration, which takes O(ℓ).

After having computed an orientation with Algorithm 6.24, all edges at the
boundary of a maximal directed path are rounded down (to avoid having a node
with two incident edges being rounded up). With the remaining edges, we can
proceed exactly as before (for short cycles): An edge directed from a node with
color 1 to a node with color 2 is rounded up to 2f ; the other edges are rounded
down. See Figure 6.25 and Algorithm 6.26. See Figure 6.27 for an overview of
the different cases.

⇓

Figure 6.25: Rounding long cycles with long maximal directed paths.
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Algorithm 6.26 Rounding Long Cycles
run Algorithm 6.24 (Long Arrows) to find orientation of each edge
if e is a boundary edge or goes from color-2-node to color-1-node then
xe ← 0

else
xe ← 2xe

end if

. . .

. . .

. . .

. . .

Figure 6.27: The four possible cases: Even-length and odd-length paths starting
with a black and a white node, respectively.

In the worst case, a maximal directed path leads from a color-1 node to
a color-2 node (see Figure 6.27, the second case). This results in the first two
edges as well as the last two edges being rounded down with a perfect alternation
starting and ending with rounding up in between. In this case, a value 3f is
lost over a path that has total value at least ℓ · f . This thus results in a loss of
at most a fraction 3

ℓ .

Claim 6.28. Rounding long cycles leads to a loss ≤ 3
ℓ

P
e∈E xe.

Rounding of Paths

What to do about paths? First, observe that we can deal the same way with long
paths as with long cycles (we anyway would not be able to tell the difference,
would we?), resulting in a loss of at most a factor 3

ℓ , as argued in Claim 6.28.
For short paths, however, this approach does not work. Rounding down

the boundary edges might result in the whole path being rounded down. For
instance, think of a path of length 3 starting with a color-1 node. If the 2-
decomposition consists of such paths only, the whole matching gets lost (we end
up with a matching of size 0).

To find a middle ground between rounding the boundary edges down (possi-
bly losing everything) and rounding the boundary edges up (possibly violating
the matching condition), we proceed as follows. We first agree on a global ori-
entation of the path (one of the two) so that we have a start node and an end
node of the path. If the first node is loose, we round the first boundary edge
up, and round it down otherwise. We then move to the next edge and round it
alternatively up and down. Finally, when arriving at the last edge of the path,
we only round it up if its end node is loose, and round it down otherwise. See
Algorithm 6.29 for the algorithm and Figure 6.30 for the possible constellations.
Note that the 2-coloring is not relevant here.
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Algorithm 6.29 Rounding Short Paths
Find globally consistent orientation of path with start node s and end node
t. Consider each edge e sequentially following the path orientation.
if e is first edge then

if s is tight then
xe ← 0

else
xe ← 2xe

end if
else

Let e′ be the previous edge.
if xe′ > 0 then
xe ← 0

else
if e is last edge and t is tight then
xe ← 0

end if
xe ← 2xe

end if
end if

TEven . . . . . . T

TOdd . . . . . . T

LEven . . . . . . L

LOdd . . . . . . L

Figure 6.30: The possible rounding cases for a short path depending on its
length parity and whether its endpoints are tight (T) or loose (L). Note that a
tight end node t is always worse than a loose one since its edge will always be
rounded down. When both endpoints are loose, no loss is suffered. Otherwise,
we may only suffer a loss of f per tight extremal node (this may be achieved
for both extremities simultaneously in the special case of a path of length 2).

Observations:

• For paths of length 2, we may loose 2f in total if both extremal nodes
are tight (hence f per tight extremity).

• Otherwise, we may only lose f over the whole path, and only if one
of the extremities is tight (again f per tight extremity in the worst
case).

• For each node v, there is at most one copy in the 2-decomposition at
the boundary of a short path (by construction). So a loss of f can
happen at most once and only if v is tight (i.e., has value cv ≥ 1

2 ).

Claim 6.31. Rounding short paths in Gf results in a loss ≤ 4f
P

e∈E xe.
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Proof. Overall, by rounding short paths, we can lose at most f for every tight
node. We therefore lose at most a fraction f

1
2

= 2f of a node’s value, hence
overall at most

2f
X

v∈V

cv = 2f
X

v∈V

X

u∈N(v)

x{u,v} = 4f
X

e∈E

xe

using the Handshaking Lemma (where N(v) is the set of neighbors of v).

One Rounding Step
In one rounding step—going from the f -fractional matching (xe)e∈E to the 2f -
fractional matching (x′

e)e∈E—we lose at most

3

ℓ

X

e∈E

xe

due to long paths and cycles (see Claim 6.28) and at most 4f
P

e∈E xe due to
short paths (see Claim 6.31). Taken together, we have

X

e∈E

x′
e ≥

�
1− 3

ℓ
− 4f

�X

e∈E

xe,

summarized by the following lemma.

Lemma 6.32. In the rounding step going from f -fractional to 2f -fractional, the
matching size decreases by a factor


1− 3

ℓ − 4f
�
. This rounding takes O(log∆)

time.

Repeated Gradual Rounding
Now, we do not only want to apply the gradual rounding once but log∆ times
to get from 1

∆ -fractional to 1-fractional (i.e., integral).
Since the loss 4f becomes too large once f gets closer to 1, we cannot go all

the way to integral with the above rounding strategy. Instead, we have to stop
at a, say, 1

16 -fractional matching and resort to a different rounding strategy at
that point.

Let us first see what matching size remains after having arrived there at a
1
16 -fractional matching by repeated rounding. We have

X

e∈E

x
( 1

16 )
e ≥

�
1− 3

ℓ
− 1

8

�X

e∈E

x
( 1

32 )
e

≥
�
1− 3

ℓ
− 1

8

�
·
�
1− 3

ℓ
− 1

16

�X

e∈E

x
( 1

64 )
e

≥ · · ·

≥
�
1− 3

ℓ
− 1

8

�
· . . . ·

�
1− 3

ℓ
− 4

∆

�X

e∈E

xe

=

log(∆)−5Y

i=0

�
1− 3

ℓ
− 4 · 2

i

∆

�X

e∈E

xe
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where (xe)e∈E is the initial 1
∆ -fractional matching and

�
x
(f)
e

�
e∈E

is used to

denote the f -fractional matching in the rounding process. Intuitively, 3
ℓ is in

O
�

1
log∆

�
, so over the log∆ rounding steps, the expected loss due to this is

a constant. On the other hand, the term 4 · 2i

∆ grows geometrically and is
dominated by the largest term, which is a constant. Overall, the loss thus is
constant. This is formalized in the following claim.

Claim 6.33. The resulting 1
16 -fractional matching is a constant factor smaller

than the initial 1
∆ -fractional matching.

Proof. Recalling that ℓ := 24 log∆ from Definition 6.19, we observe that

3

ℓ
+ 4 · 2

i

∆
≤ 3

ℓ
+

1

8
=

1

8 log∆
+

1

8
<

1

2
.

Using the inequality 1− y ≥ e−2y (known to be true for all 0 ≤ y ≤ 1
2 ), we thus

get

X

e∈E

x
( 1

16 )
e ≥

log(∆)−5Y

i=0

e
−
�

6
ℓ+8· 2i∆

� X

e∈E

xe

= e
−Plog(∆)−5

i=0

�
6
ℓ+8· 2i∆

� X

e∈E

xe = e
−Plog(∆)−5

i=0

�
6
ℓ+8· 2i∆

� X

e∈E

xe.

Because
log(∆)−5X

i=0

6

ℓ
= (log(∆)− 4) · 6

24 log∆
≤ 1

4

and
log(∆)−5X

i=0

8 · 2
i

∆
=

1

4

log(∆)−5X

i=0

2−i =
1

4
· 1− 2−(log(∆)−4)

1− 2−1
≤ 1

2
,

we get

X

e∈E

x
( 1

16 )
e ≥ e−

3
4

X

e∈E

xe,

concluding the proof.

Lemma 6.34. A constant-approximate 16-fractional matching can be computed
in O(log2 ∆) in a 2-colored bipartite graph with maximum degree ∆.

Proof. By Lemma 6.10, we get a constant-approximate 1
∆ -fractional matching

in O(log∆) time. By applying the rounding procedure from Lemma 6.32 re-
peatedly for O(log∆) iterations, each iteration taking O(log∆) time, we end up
with a 1

16 -fractional matching which is a constant factor smaller than the initial
matching due to Claim 6.33.
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Final Rounding

Now that is not bad, but also not quite what we wanted. We are interested
in an integral matching. So how do we turn the 1

16 -fractional matching from
Lemma 6.34 into an integral one? The above rounding procedure will not work
anymore: It could lead to the whole matching size getting lost.

Luckily, the graph G′ = (V ′, E′) induced by edges with non-zero value looks
pretty nice. Since every edge has value either at least 1

16 or 0, a node cannot
have more than 16 incident edges with non-zero value; the induced graph G′

thus has maximum degree ∆′ ≤ 16. By Lemma 6.1, in a 2-colored bipartite
constant-degree graph, a maximal matching M can be found in O(1) time, and,
by Lemma 6.6 1., such a maximal matching has size

|M | ≥ |E′|
2∆′ − 1

≥

����
�
e ∈ E : x

( 1
16 )

e > 0

�����
31

≥
P

e∈E x
( 1

16 )
e

31
,

where we use that 1 ≥ x
( 1

16 )
e in the last inequality. Since the 1

16 -fractional
matching is a c-approximate matching for some c ≥ 1 due to Lemma 6.34,
it follows |M | ≥ |M∗|

c·31 . In only O(1) we thus have turned the almost-integral
matching from Lemma 6.34 into an integral one, thus now know how to compute
a constant-approximate integral matching in O(log2 ∆) time.

Lemma 6.35. A constant-approximate matching can be computed in O(log2 ∆)
time in a 2-colored bipartite graph with maximum degree ∆.

6.4 Matching in General Graphs

The above rounding procedure does not work for non-bipartite graphs. In short
odd-length cycles, a loss is inevitable. If the 2-decomposition consists of many
short odd-length cycles, the loss is too big. Instead, our goal is to use the ap-
proximation algorithm for matchings in 2-colored bipartite graphs from Lemma
6.35 in a black-box manner to find approximate matchings in general graphs.
We first explain how this can be done and then how the constant-approximation
algorithm can be used to find a maximal matching, again as a black box.

Approximate Matching in General Graphs

The main idea is to transform the given general graph into a bipartite graph
with the same edge set in such a way that a matching in this bipartite graph can
be easily turned into a matching in the general graph. There is a well-known
systematic approach to this, called bipartite double cover.

Definition 6.36 (Bipartite Double Cover). The bipartite double cover B =

(Vin
S
Vout, EB) of a graph G = (V,E) is defined as follows. Let

−→
E be an

arbitrary orientation of the edges E. Split every node v ∈ V into two siblings vin

and vout, and add an edge {uout, vin} to EB for every oriented edge (u, v) ∈ −→
E .

Let Vin := {vin : v ∈ V } and Vout := {vout : v ∈ V } be the nodes with color 1
and 2, respectively. See Figure 6.37.
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Figure 6.37: A graph and its bipartite double cover (for an arbitrary orienta-
tion). Here, the green color (color 1, say) is used for in-nodes and the blue color
(color 2, say) for out-nodes.

Remarks:

• The bipartite double cover has twice as many nodes and the same
number of edges as the original graph.

• The bipartite double cover is bipartite: Since it has edges only between
in-siblings and out-siblings, any cycle must have an even length.

• A bipartite double cover can be computed in O(1) time using an ar-
bitrary orientation of the edges (e.g., from lower-ID to higher-ID).

• A matching in the bipartite double cover corresponds to a degree-2
subgraph in the original graph.

By Lemma 6.35, a c-approximate maximum matching MB in the bipartite
graph B = (Vin

S
Vout, EB) can be computed in O


log2 ∆

�
time for some c ≥ 1.

We now go back to V , that is, merge vin and vout back into v. This makes the
edges of MB incident to vin or vout now be incident to v, leaving us with a graph
G′ = (V,MB) ⊆ G with maximum degree 2.

We now compute a maximal matching M ′ in G′ using the algorithm of
Lemma 6.2, in O(log∗ n) time with

|M ′| ≥ |MB |
3

≥ |M∗
B |

3c
≥ |M∗|

3c

for some c ≥ 1, a maximum matching M∗
B in B and a maximum matching M∗

in G. Here, the first inequality follows from Lemma 6.6 1.; the second inequality
follows from the fact that MB is a c-approximate matching in B for some c ≥ 1.
For the last inequality, observe that a maximum matching M ∗

B in B must be at
least as big as a maximum matching M ∗ in G. This is because any matching in
G certainly is also a matching in B (but not necessarily vice versa) as when going
from G to B, we introduce additional nodes but leave the edge set unchanged
(leading to fewer potential conflicts of an edge). Thus, M ′ is a 3c-approximate
maximum matching in G. See Figure 6.38 for an overview.
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Figure 6.38: The algorithm step by step. We first orient the edges arbitrarily
to compute the bipartite double cover. We then use our bipartite matching
algorithm to compute a matching in this graph (red edges). By going back to
the original graph, we end up with a degree-2 graph. In this graph, a maximal
matching (purple) can be computed in O(1) time, which results in a constant
loss. Overall, this yields a constant approximation.

Lemma 6.39. In a graph with n nodes and maximum degree ∆, a constant-
approximate matching can be found in O(log2 ∆+ log∗ n).

Maximal Matching in General Graphs

We now show how to use the constant-approximation algorithm from above
repeatedly in order to compute a maximal matching in a graph G = (V,E) with
maximum matching M∗ of size |M∗|.

We use the algorithm from Lemma 6.39 to compute a c-approximate match-
ing M in G in time O(log2 ∆+log∗ n) for some c ≥ 1. We remove this matching
M as well as all the matched nodes and all incident edges, resulting in a graph
G1. We observe that the maximum matching M ∗

1 in this graph G1 has size at
most


1− 1

c

�
|M∗|. Why?

Claim 6.40. The maximum matching in G1 has size |M∗
1 | ≤


1− 1

c

�
|M∗|.

Proof. Towards a contradiction, suppose G1 has a matching M1 of size |M1| >
1− 1

c

�
|M∗|. Since the edges of G1 (and hence M1) are not incident to the

edges in M (by construction of G1), we have that M ∪M1 is a valid matching
in G. As M is a c-approximate matching in G, we have |M | ≥ |M∗|

c , and thus
|M ∪M1| > |M∗|, contradicting the optimality of M ∗.
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By repeatedly applying the above trick, after i iterations, the maximum
matching in the remaining graph Gi has size


1− 1

c

�i |M∗|. After log1− 1
c

1
n

iterations, the maximum matching size thus has decreased to |M∗|
n < 1, which

means that the remaining graph is empty. This, on the other hand, means that
the union of the matchings that have been removed in the previous iterations
constitutes a maximal matching. See Figure 6.41 for an illustration.

Figure 6.41: By repeatedly computing a matching (boxes with blue edges) in
the remaining graph and removing matched nodes as well as their incident edges
from the graph, we eventually end up with an empty remaining graph (depicted
on the right). The union of all matchings is a valid matching (by construction)
and is maximal (since the remaining graph is empty).

Theorem 6.42. In a graph with n nodes and maximum degree ∆, a maximal
matching can be found in O(log2 ∆ · log n+ log∗ n · log n) time.

Remarks:

• Note that log1− 1
c

1
n = log c

c−1
n = O(log n).

• The running time can be improved to O(log2 ∆ · log n+log∗ n) by first
precomputing a coloring and then using this coloring in each iteration.
More concretely, we can use the algorithm of Linial [Lin92] to compute
a O


∆2

�
-coloring in O(log∗ n) time.

Chapter Notes

The algorithm presented here is due to Fischer [Fis17, Fis20] and applies to
many different variants of matching not discussed (e.g., weighted matching or b-
matching). The idea of rounding has been introduced by Ghaffari et al. [GKM17]
and since has been applied to a variety of problems, such as hypergraph maximal
matching (and hence edge coloring, as well as maximal independent set in special
graph classes) [FGK17], vertex coloring [GK22], set cover [FGG+23] as well as
MIS [GG23].

Many techniques go back to an earlier matching algorithm due to Hanck-
owiak, Karonski, and Panconesi [HKP01] in 2001, the first deterministic polylog-
arithmic algorithm for maximal matching (running in O


log4 n

�
time). Before

that, matching algorithms were only known for low-degree graphs [PR01]. The
current best lower bound for maximal matching is the following: there is no
deterministic algorithm that runs in o

�
∆+ log n

log log n

�
[BBH+19].
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