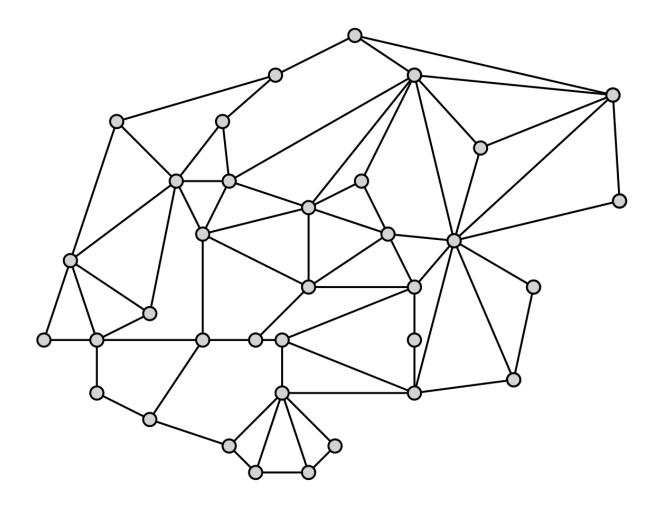
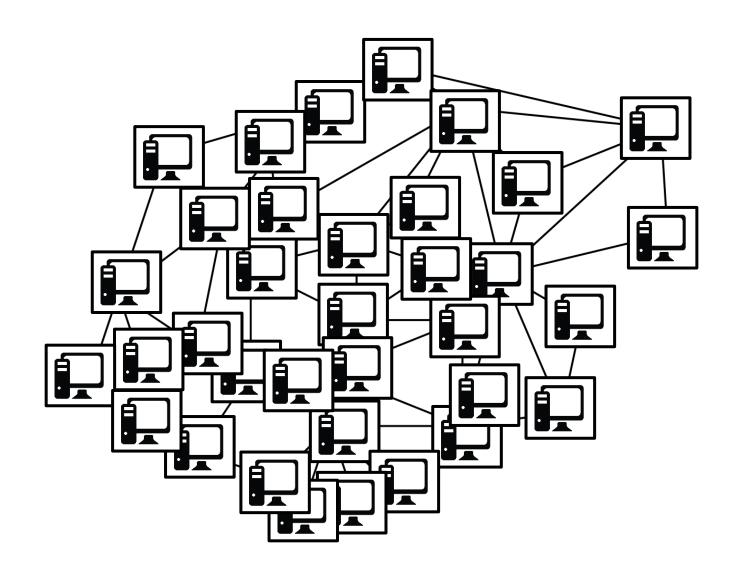
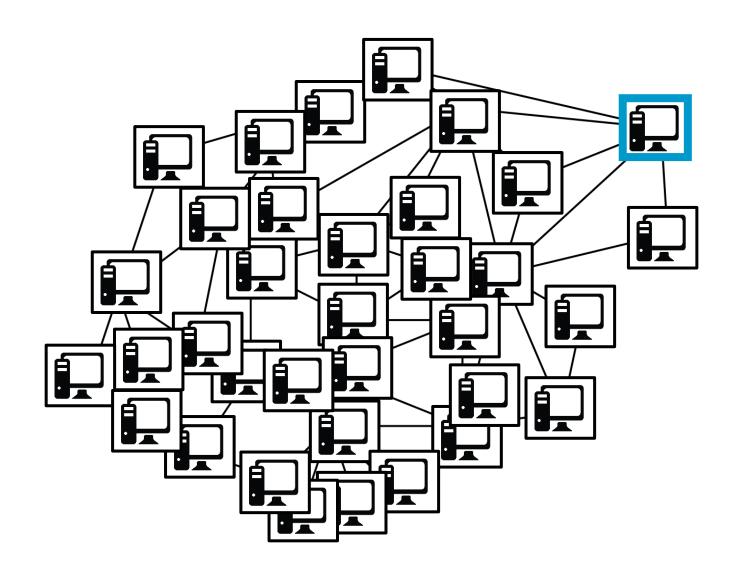


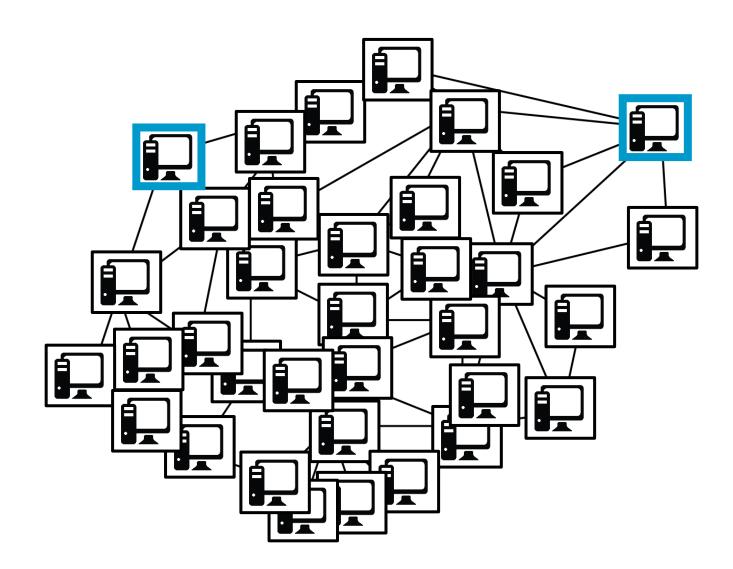
The Locality of Maximal Matching

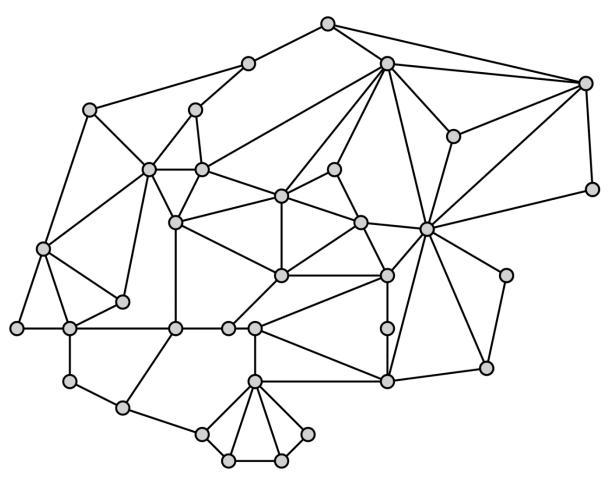
Manuela Fischer ETH Zurich





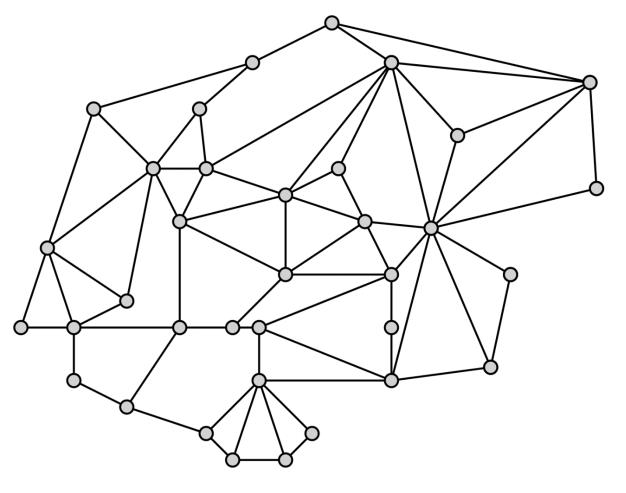






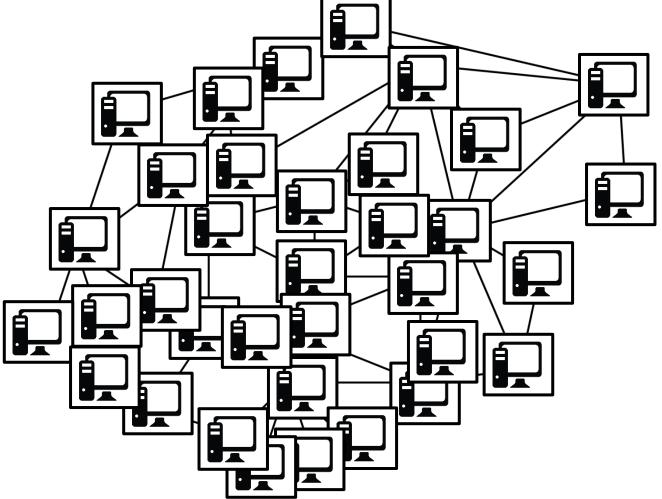
standard synchronous message-passing model of distributed computing

• undirected graph G = (V, E), n nodes, maximum degree Δ



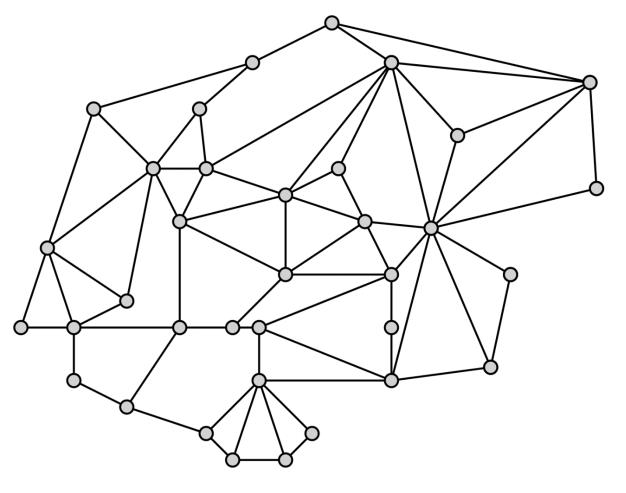
standard synchronous message-passing model of distributed computing

• undirected graph G = (V, E), n nodes, maximum degree Δ

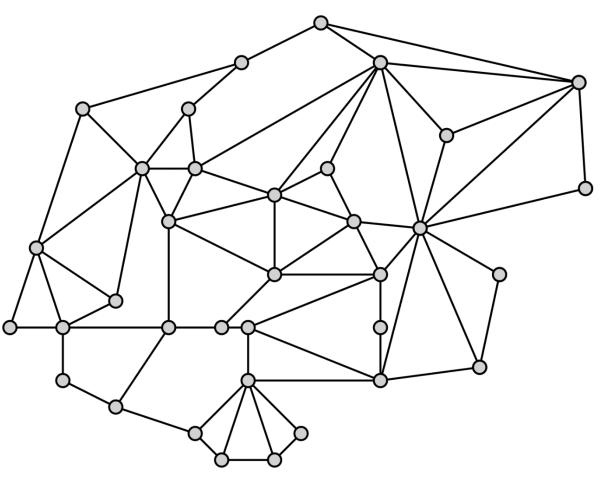


standard synchronous message-passing model of distributed computing

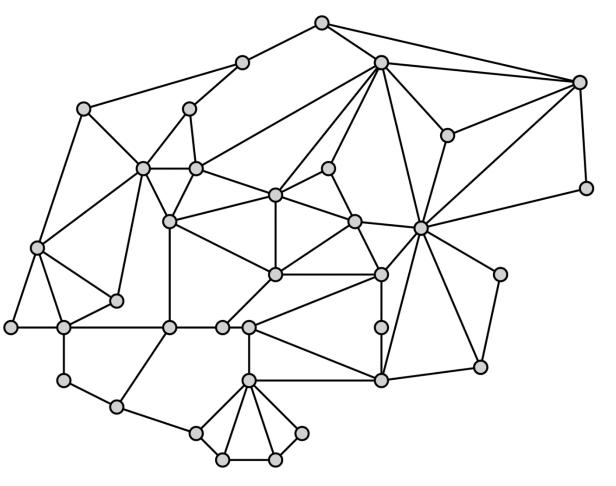
• undirected graph G = (V, E), n nodes, maximum degree Δ



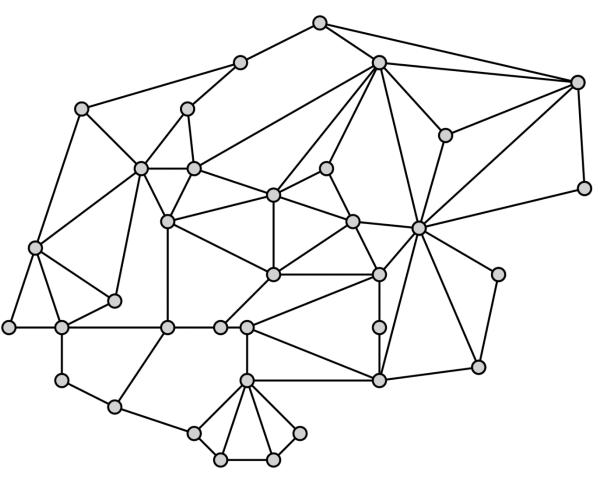
- undirected graph G = (V, E), n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors



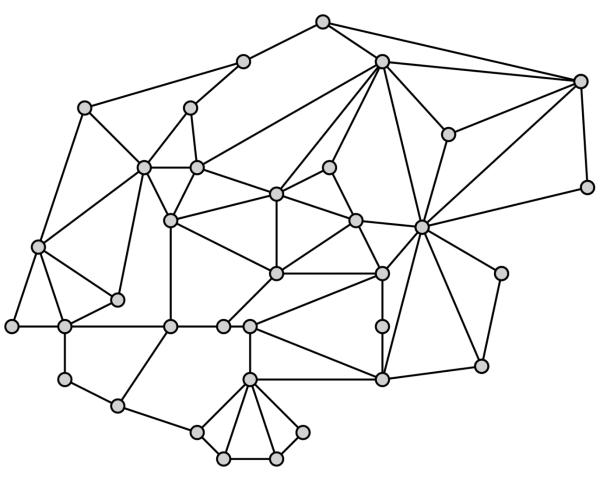
- undirected graph G = (V, E), n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size



- undirected graph G = (V, E), n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation

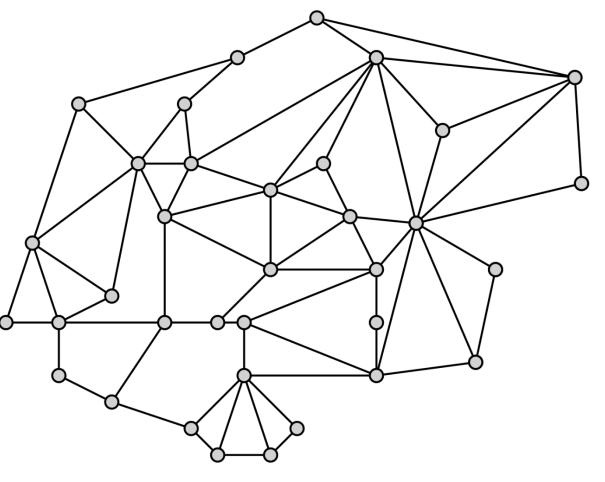


- undirected graph G = (V, E), n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation
- Round Complexity: number of rounds to solve the problem



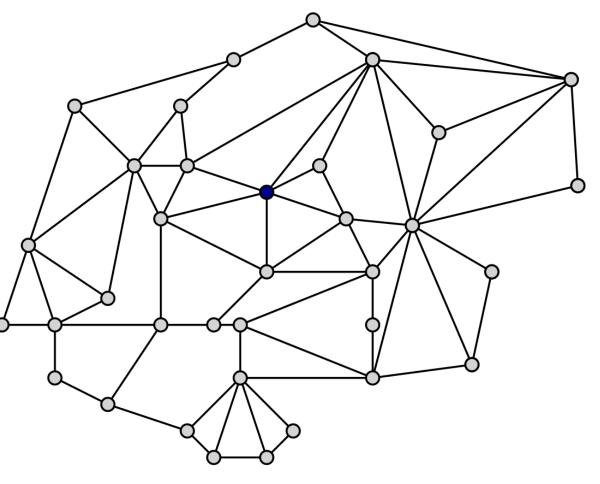
standard synchronous message-passing model of distributed computing

- undirected graph G = (V, E), n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation
- Round Complexity: number of rounds to solve the problem



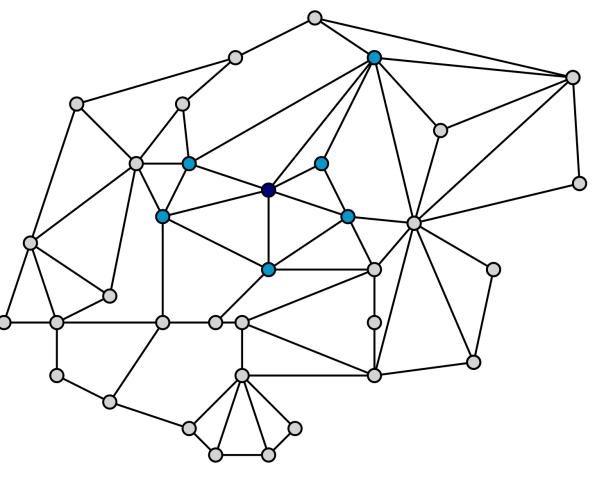
standard synchronous message-passing model of distributed computing

- undirected graph G = (V, E), n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation
- Round Complexity: number of rounds to solve the problem



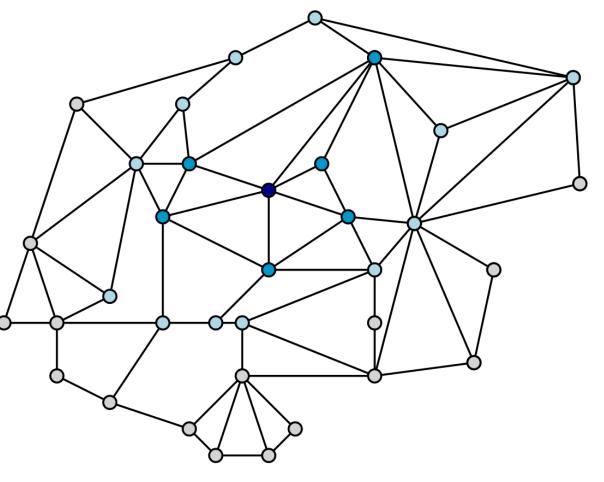
standard synchronous message-passing model of distributed computing

- undirected graph G = (V, E), n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation
- Round Complexity: number of rounds to solve the problem



standard synchronous message-passing model of distributed computing

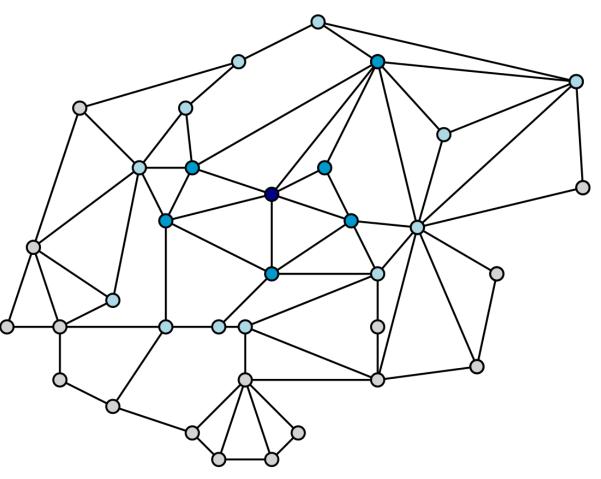
- undirected graph G = (V, E), n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation
- Round Complexity: number of rounds to solve the problem

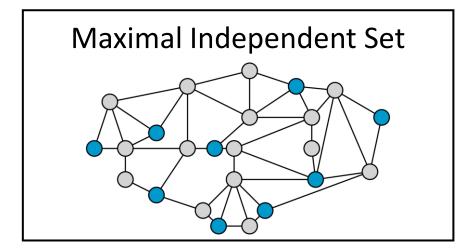


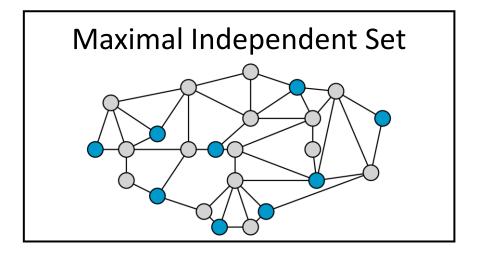
standard synchronous message-passing model of distributed computing

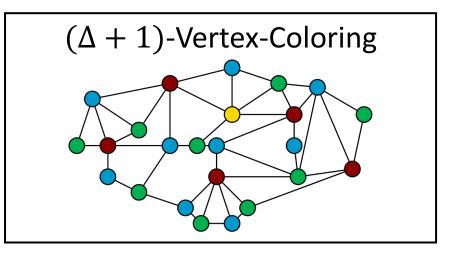
- undirected graph G = (V, E), n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation
- Round Complexity: number of rounds to solve the problem
 round complexity of a problem in the LOCAL

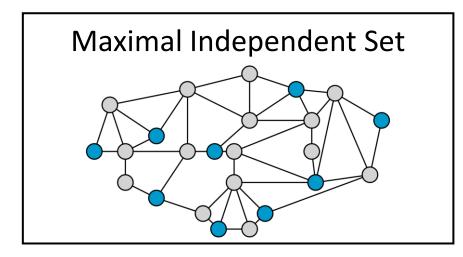
round complexity of a problem in the LOCAL model characterizes its locality every problem is trivially solvable in *O*(diameter) rounds

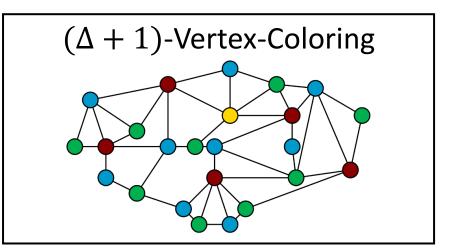


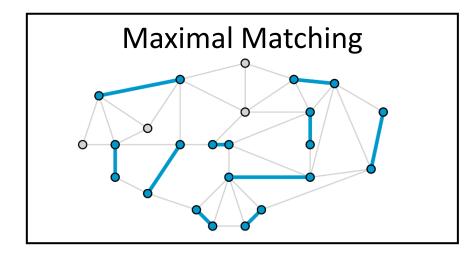


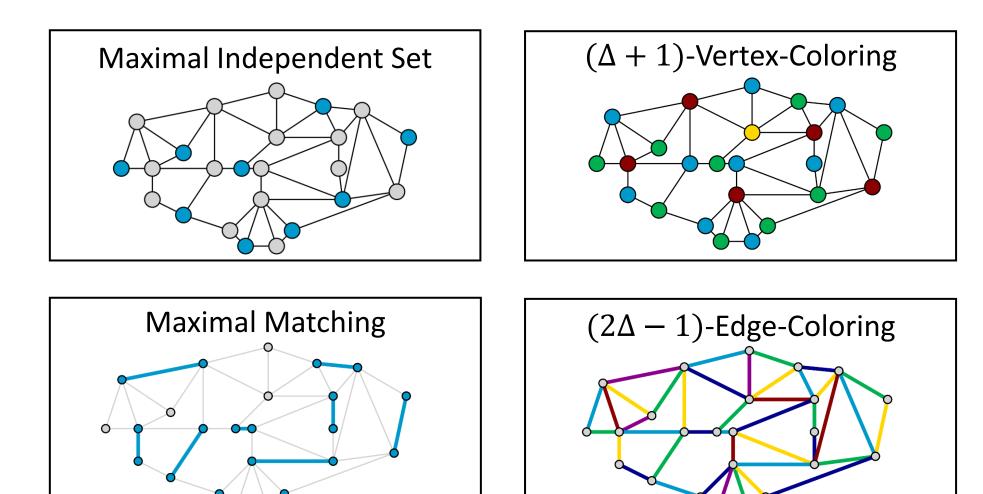


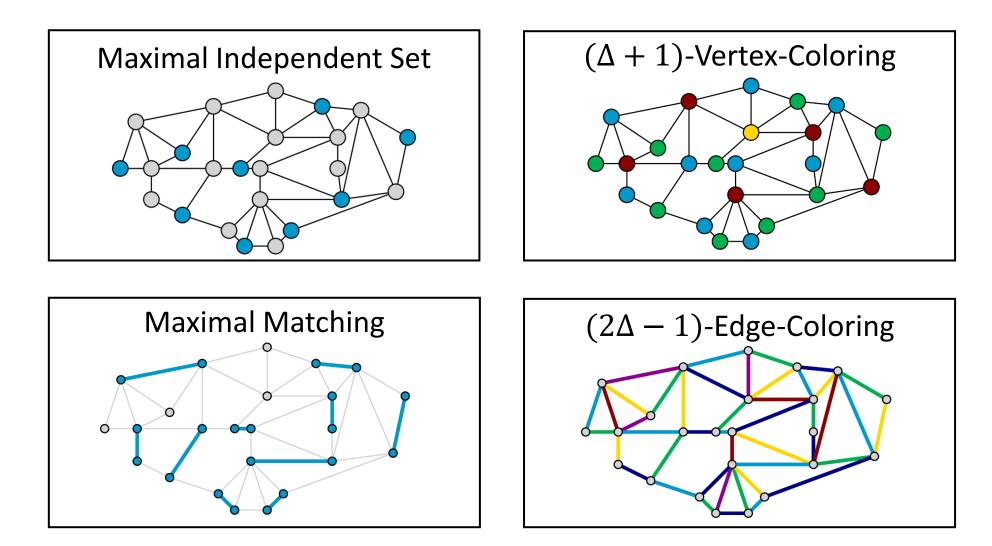




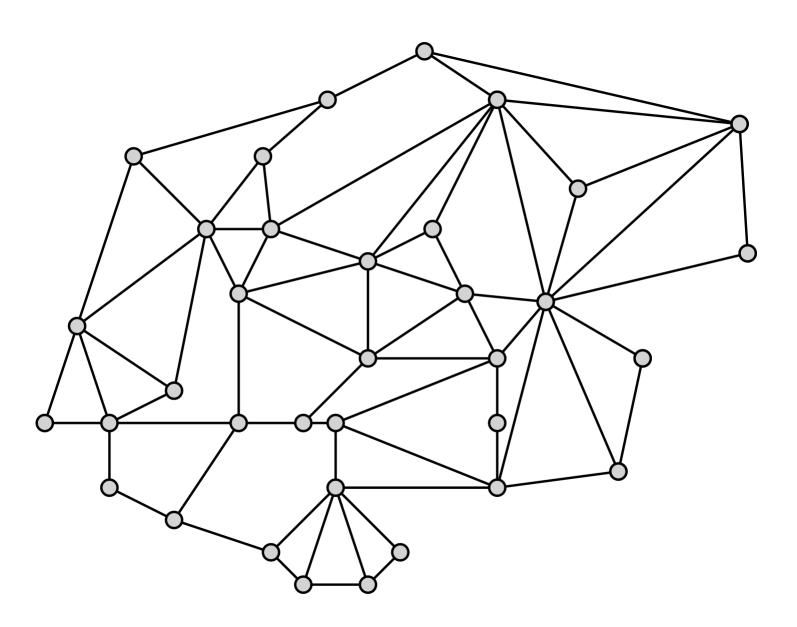


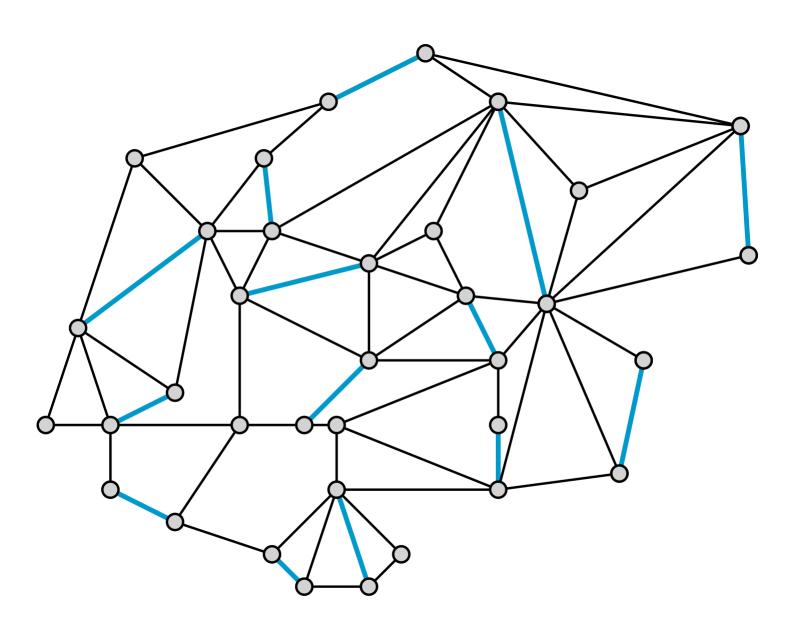




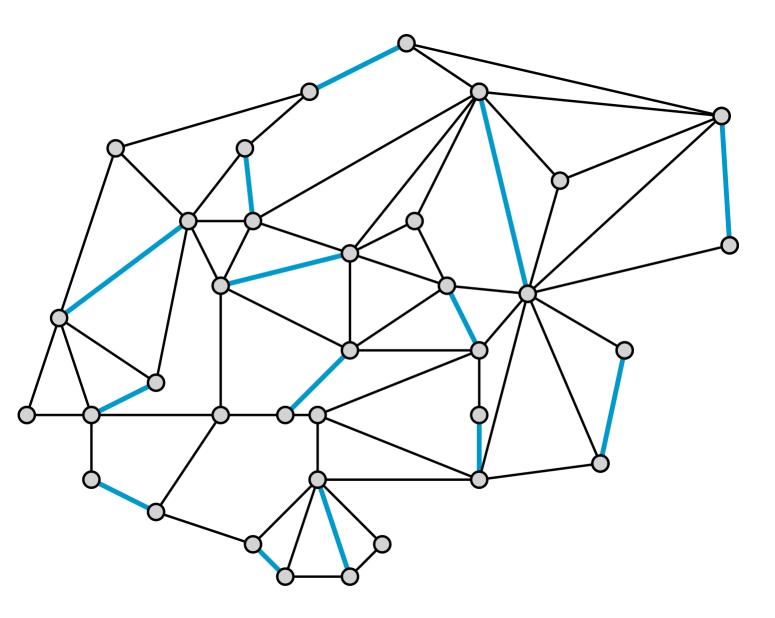


Easy centralized problems: greedy solutions.



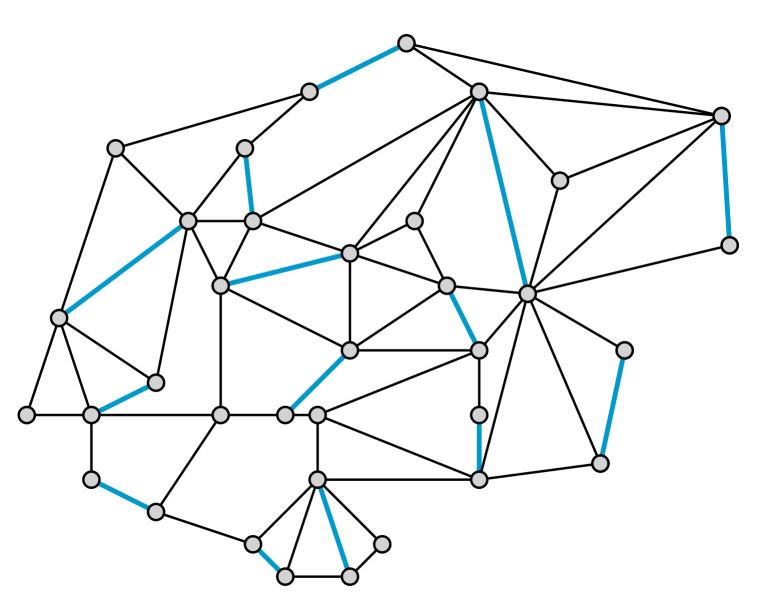


Matching: set of non-incident edges



Matching: set of non-incident edges

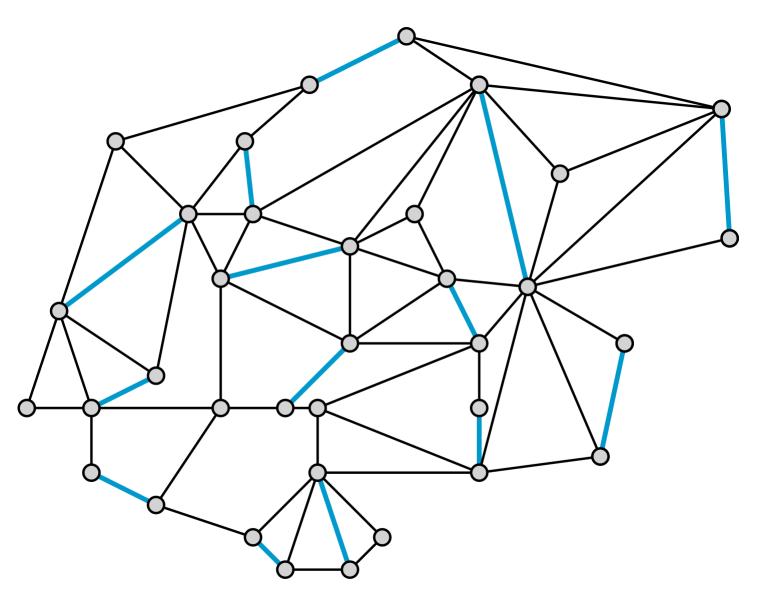
Maximal: no edge can be added



<u>Matching:</u> set of non-incident edges

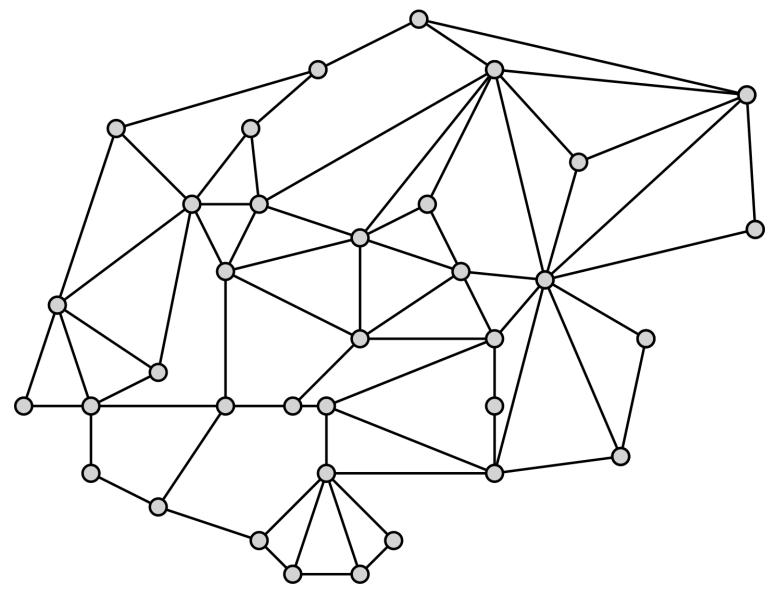
<u>Maximal:</u> no edge can be added

greedy property!

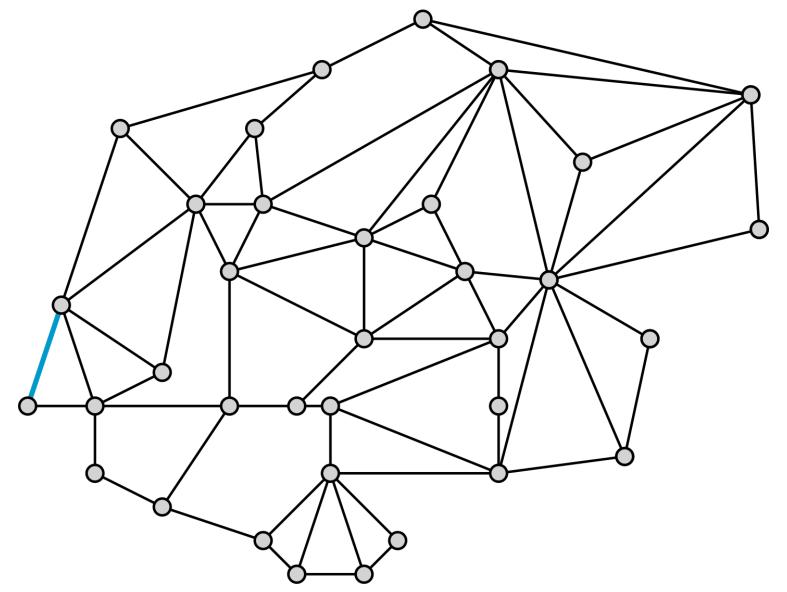


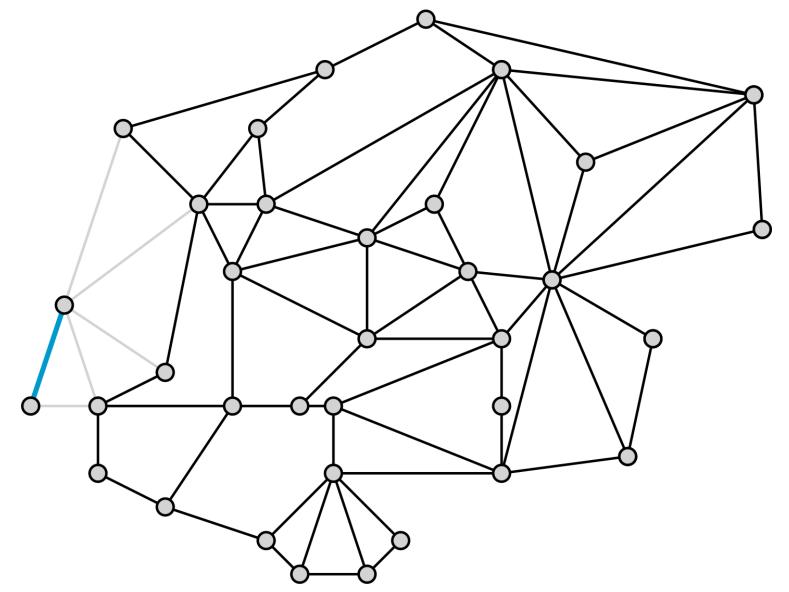
Centralized (Sequential) Algorithm

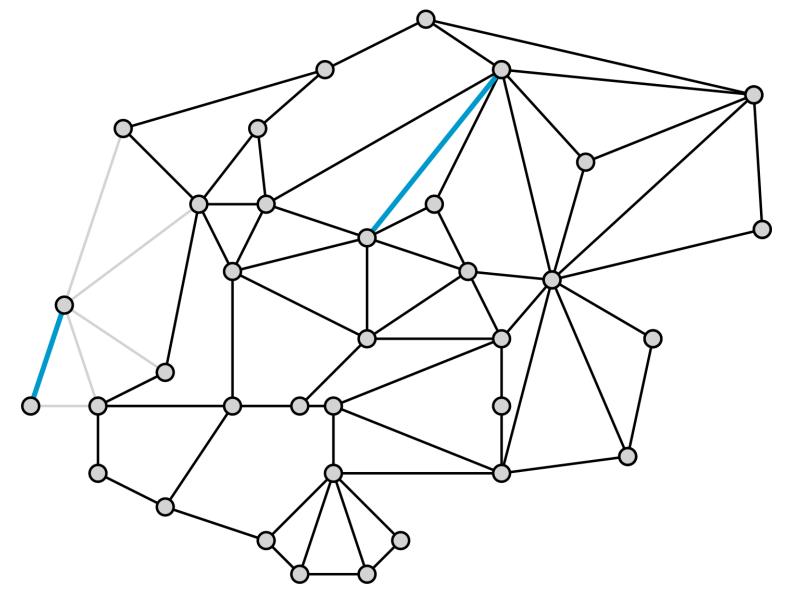
Centralized (Sequential) Algorithm

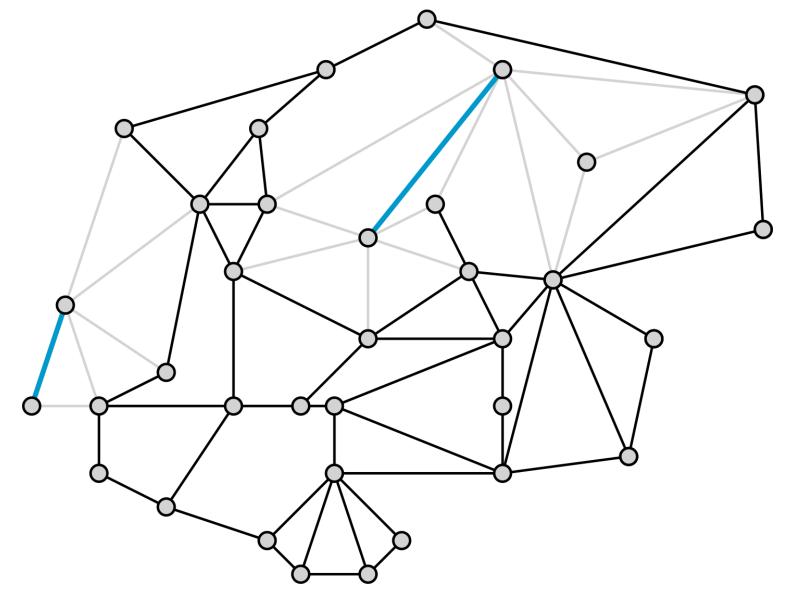


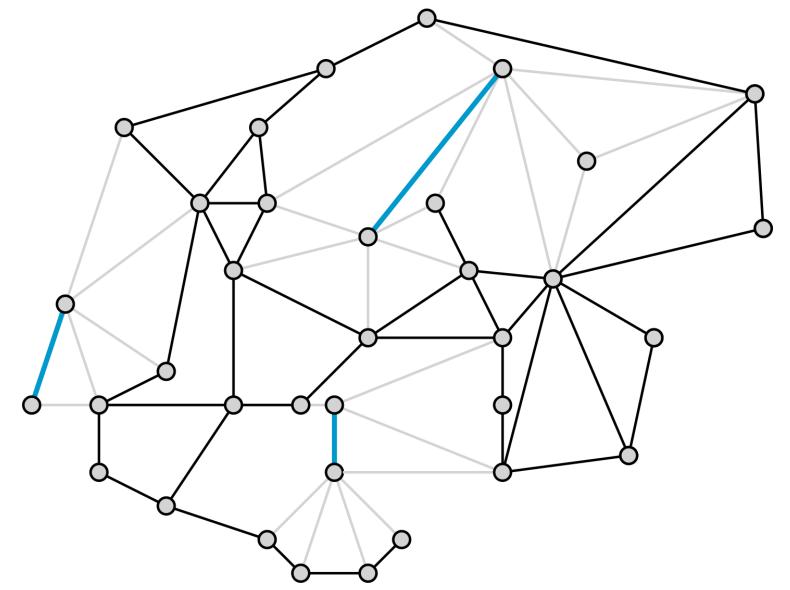
Centralized (Sequential) Algorithm

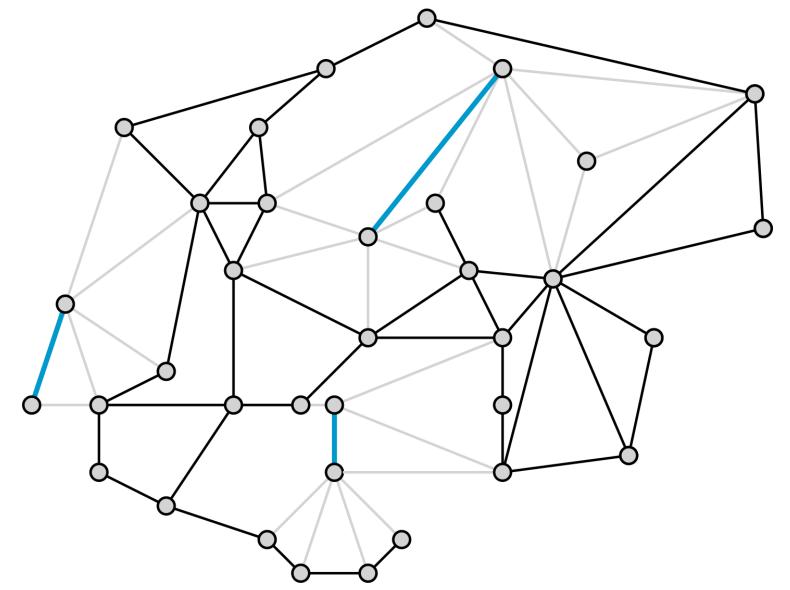


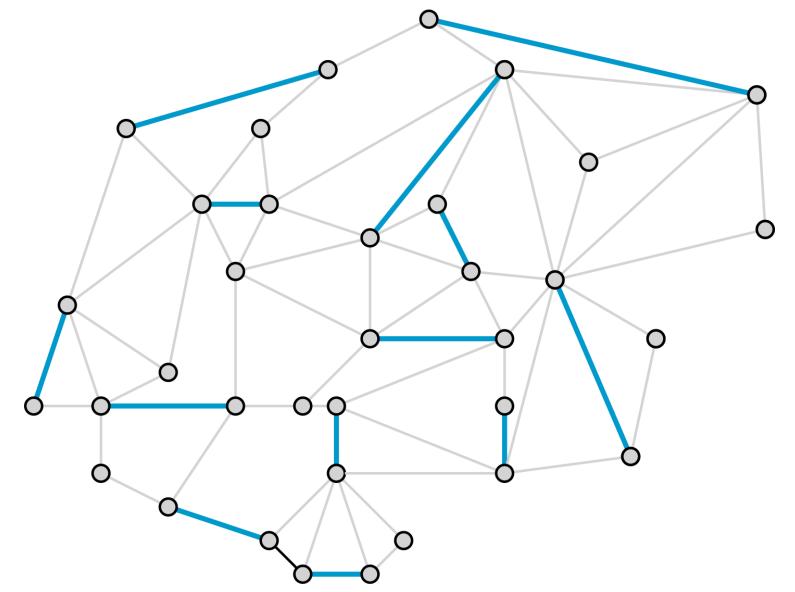


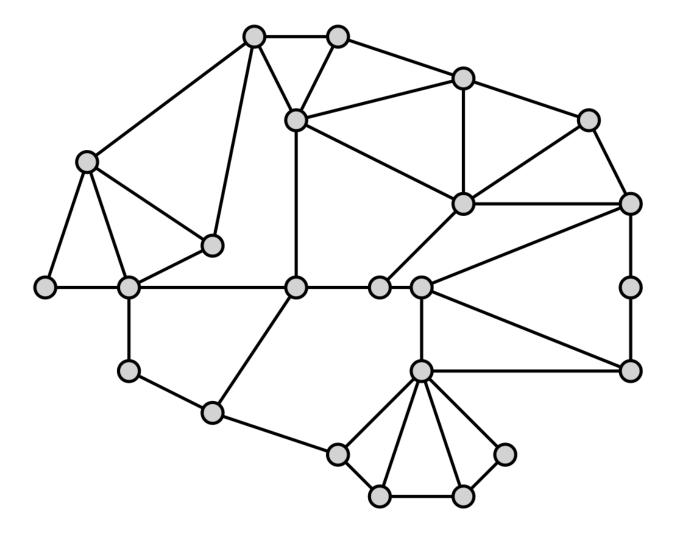


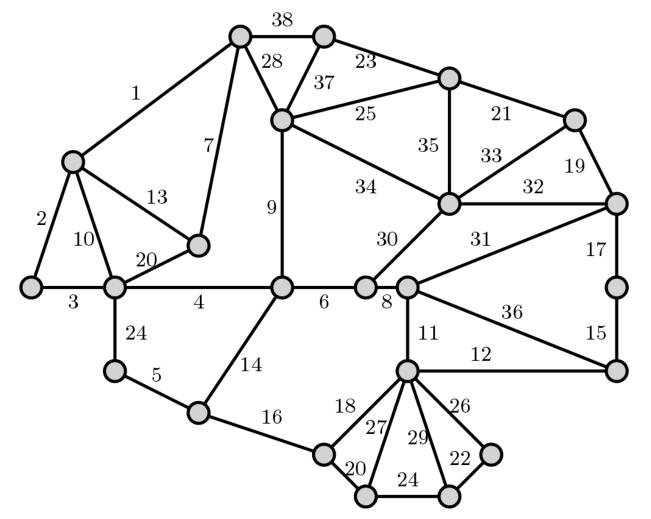


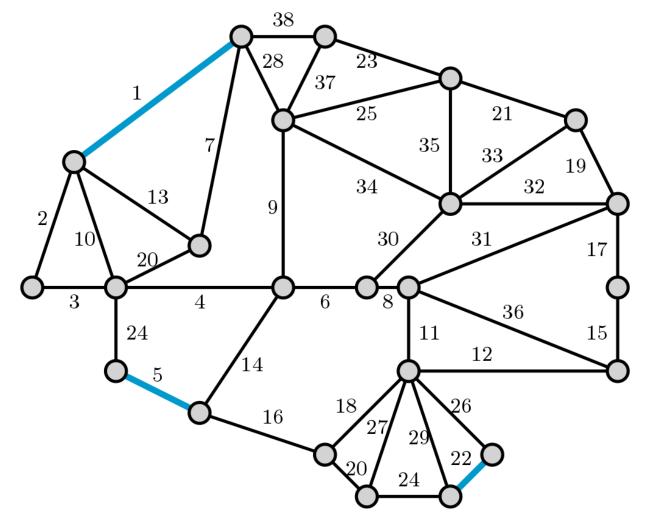


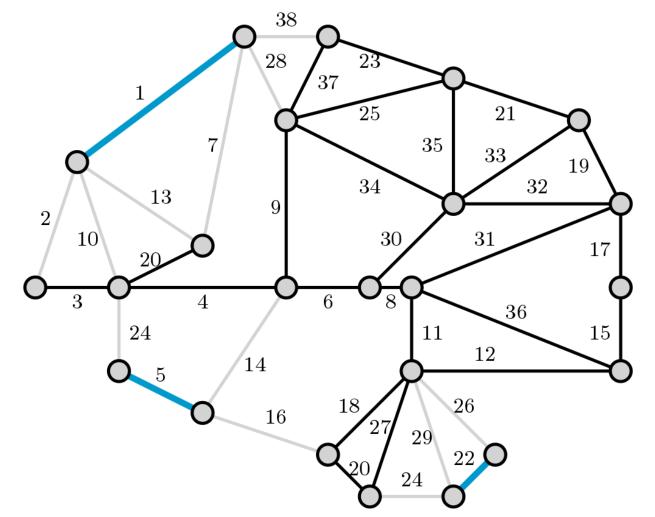


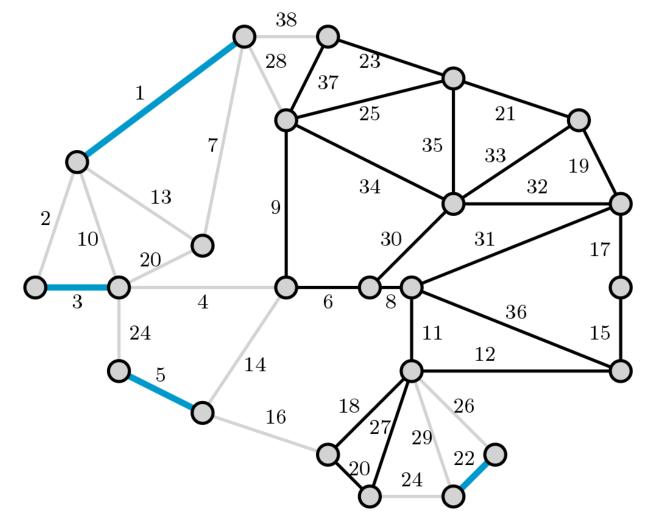


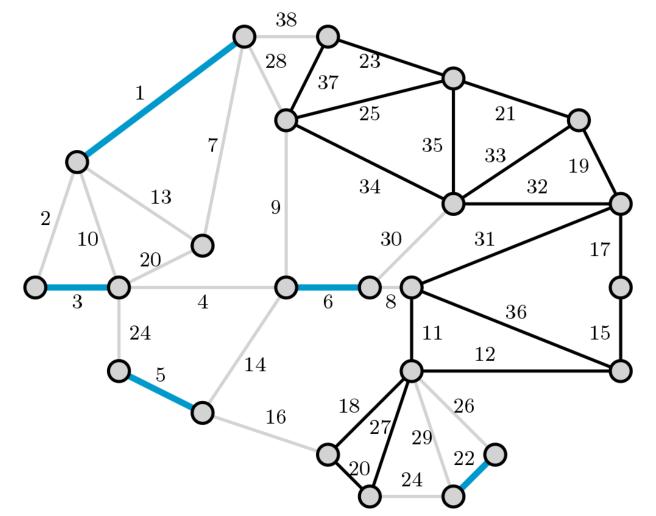


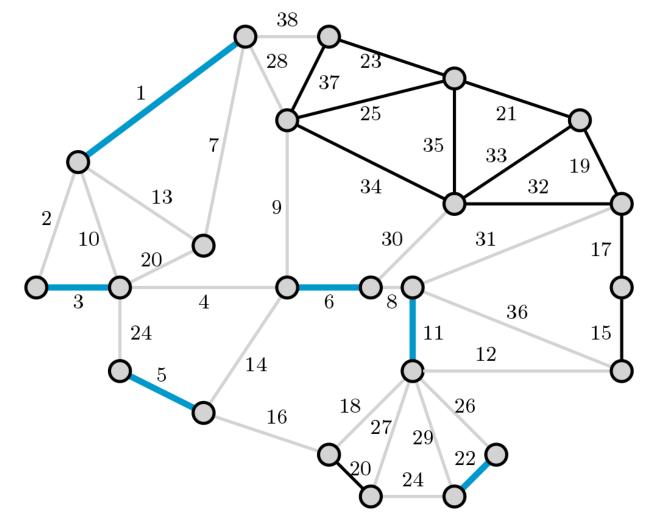


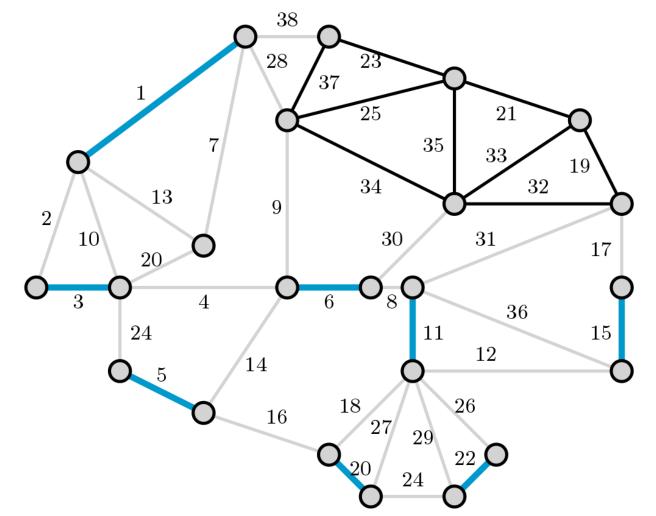


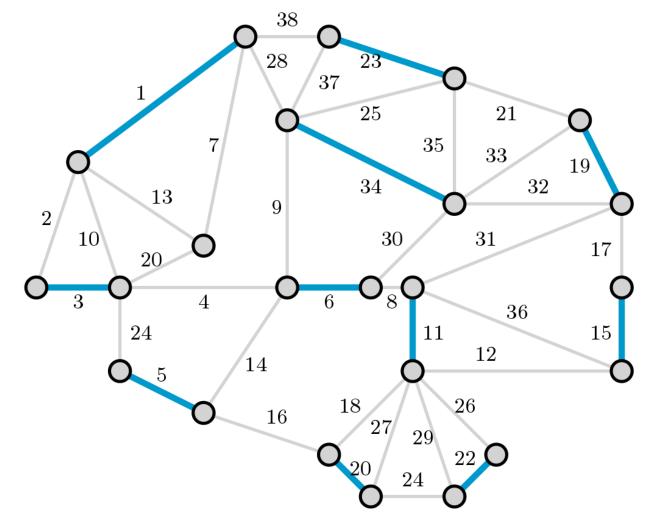


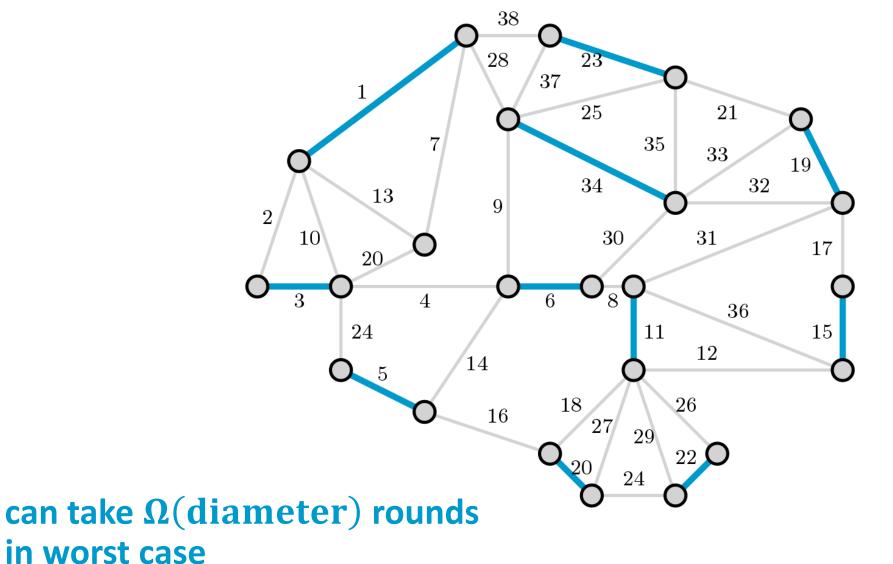


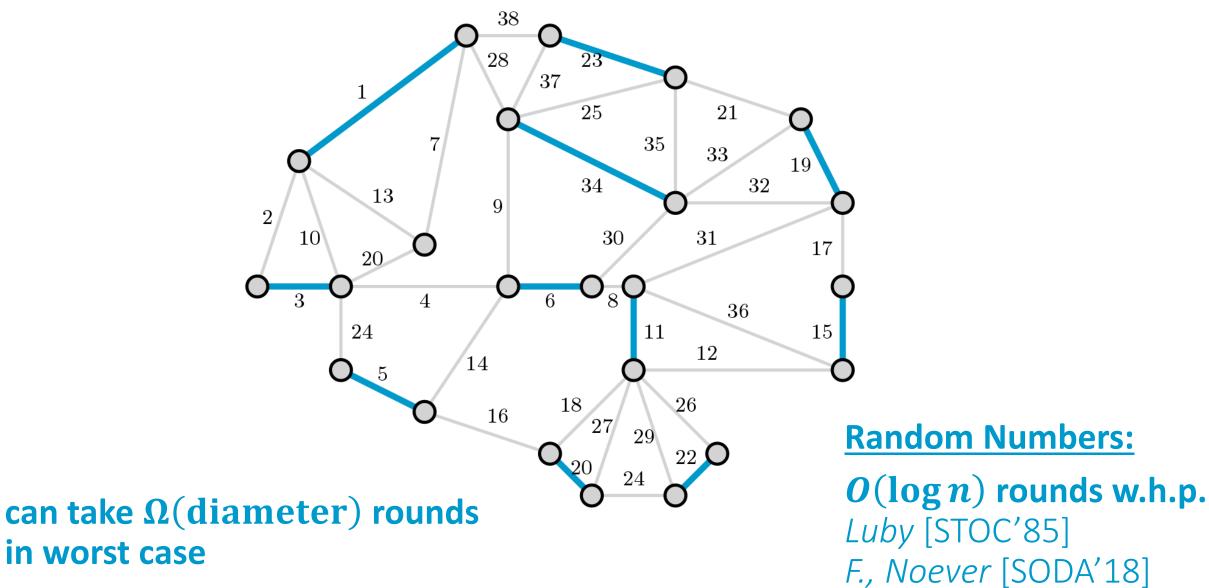


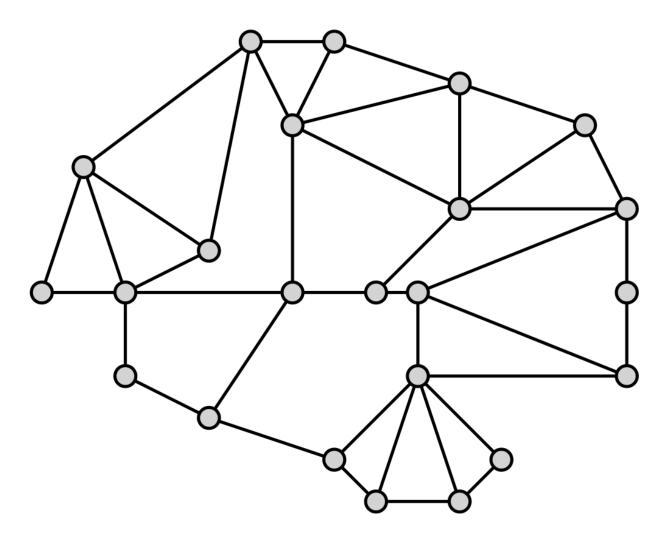


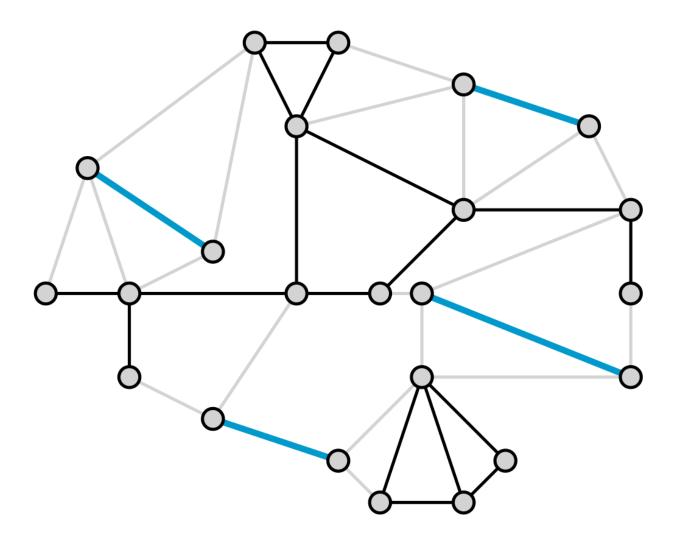


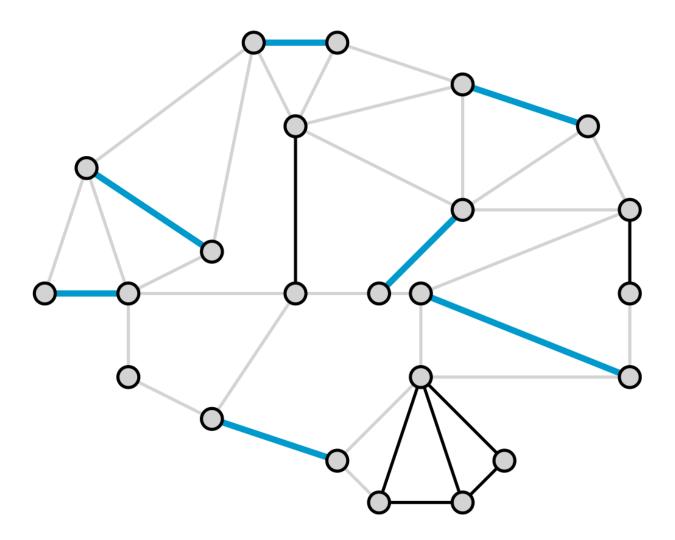


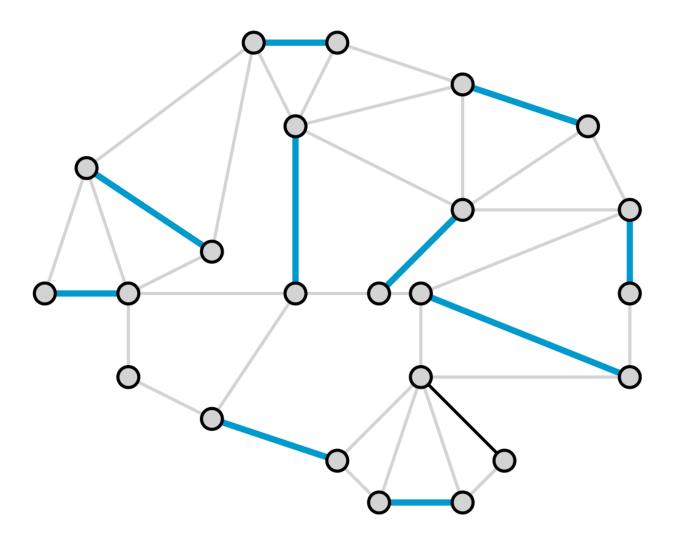


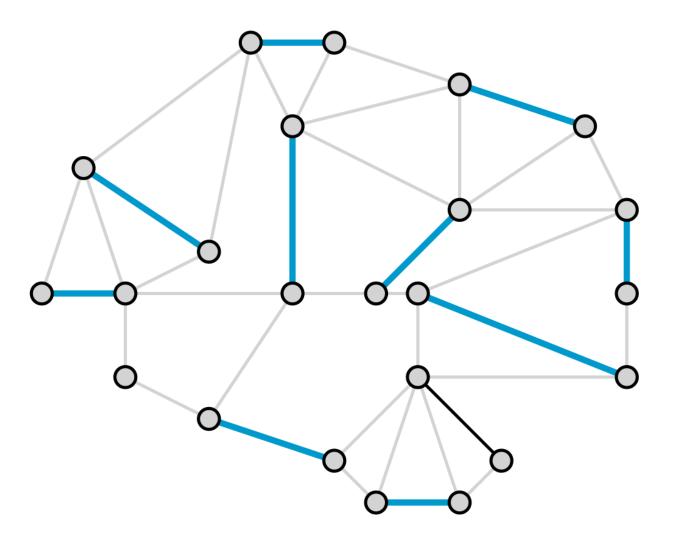




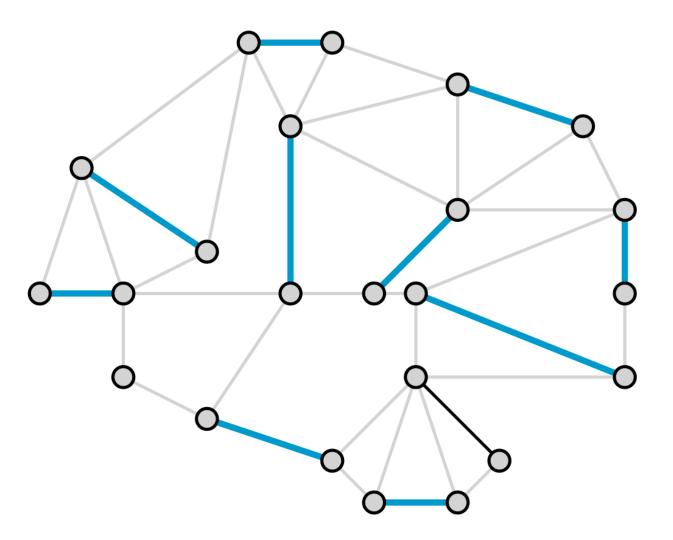








 $\mathbb{E}[$ #removed edges per round $] \geq c|E_i|$



 $\mathbb{E}[\text{#removed edges per round}] \ge c|E_i|$ $O(\log n)$ rounds w.h.p.

Our Result

<u>deterministic</u> $O(\log^2 \Delta \cdot \log n)$ -round Maximal Matching

<u>deterministic</u> $O(\log^2 \Delta \cdot \log n)$ -round Maximal Matching

improving over

Our Result

<u>deterministic</u> $O(\log^2 \Delta \cdot \log n)$ -round Maximal Matching

improving over

O(log⁴ *n*) Hańćkowiak, Karoński, Panconesi [SODA'98, PODC'99] **Our Result**

<u>deterministic</u> $O(\log^2 \Delta \cdot \log n)$ -round Maximal Matching

improving over

O(log⁴ *n*) Hańćkowiak, Karoński, Panconesi [SODA'98, PODC'99]

 $O(\Delta + \log^* n)$ Panconesi, Rizzi [DIST'01]

Overview of Results

Maximal Matching

- Maximal Matching
- Randomized Maximal Matching

Approximate Matching

- $(2 + \varepsilon)$ Approximate Maximum Matching
- $(2 + \epsilon)$ Approximate Maximum Weighted Matching
- $(2 + \varepsilon)$ Approximate Maximum B-Matching
- $(2 + \varepsilon)$ Approximate Maximum Weighted B-Matching
- ε Maximal Matching
- $(2 + \varepsilon)$ Approximate Minimum Edge Dominating Set

 $O(\log^2 \Delta \cdot \log n)$ $O(\log^3 \log n + \log \Delta)$

$$O\left(\log^2 \Delta \cdot \log \frac{1}{\epsilon} + \log^* n\right)$$
$$O\left(\log^2 \Delta \cdot \log \frac{1}{\epsilon} + \log^* n\right)$$

$$O\left(\log^2 \Delta \cdot \log \frac{1}{\epsilon} + \log^* n\right)$$
$$O\left(\log^2 \Delta \cdot \log \frac{1}{\epsilon} + \log^* n\right)$$

$$O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon}\right)$$
$$O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon}\right)$$

 $O(\log^2 \Delta)$ rounds

 $O(\log^2 \Delta)$ rounds

 $O(\log^2 \Delta)$ rounds

I) 4 - Approximate Fractional Matching

 $O(\log \Delta)$ rounds

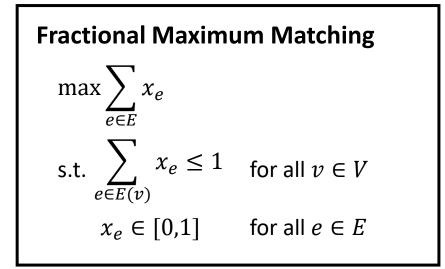
I) 4 - Approximate Fractional Matching

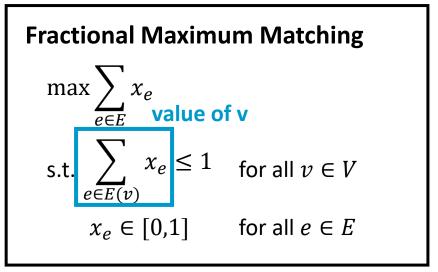
 $O(\log \Delta)$ rounds

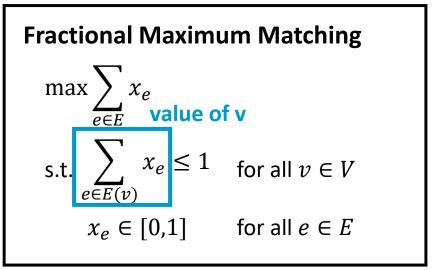
II) Rounding Fractional Bipartite Matching

 $O(\log^2 \Delta)$ rounds, O(1) loss

 $O(\log \Delta)$ rounds

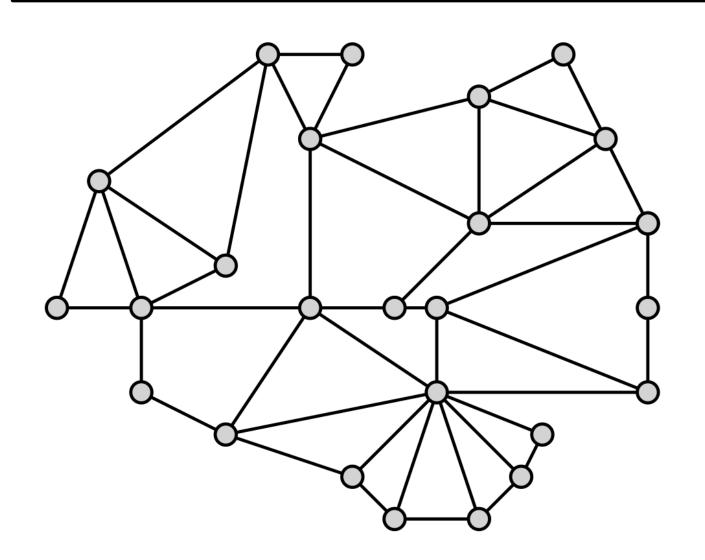






LOCAL Greedy Algorithm
$x_e = 2^{-\lceil \log \Delta \rceil}$ for all $e \in E$
repeat until all edges are blocked
mark half-tight nodes
block its edges
double value of unblocked edges

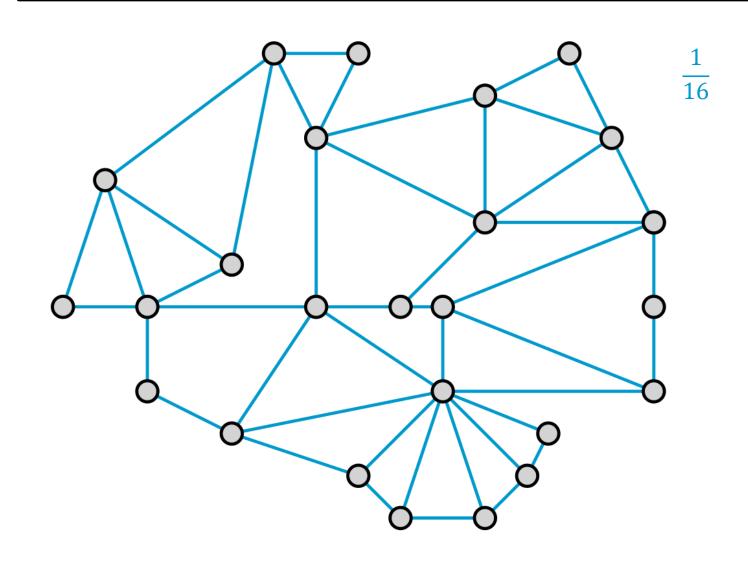
$O(\log \Delta)$ rounds



Fractional Maximum Matching
$$\max \sum_{e \in E} x_e$$

 $value of v$ $s.t.$ $\sum_{e \in E(v)} x_e \leq 1$
 $x_e \in [0,1]$ for all $v \in V$ $x_e \in [0,1]$

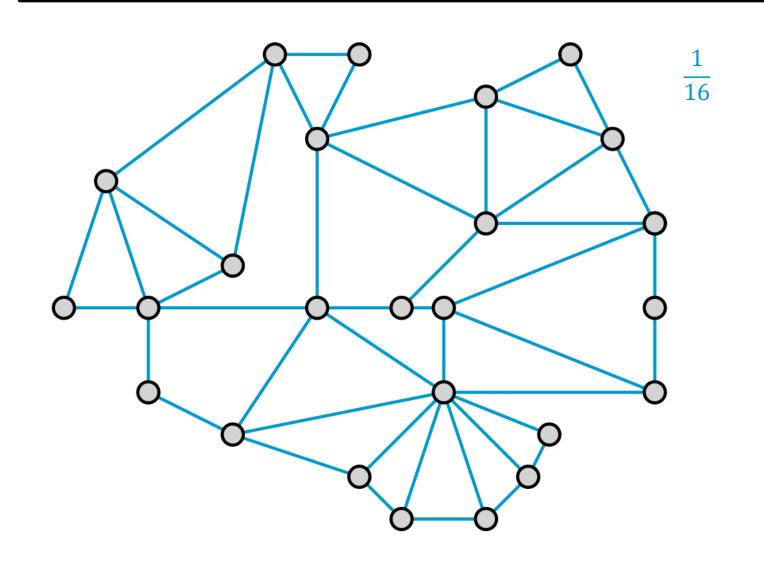
LOCAL Greedy Algorithm $x_e = 2^{-\lceil \log \Delta \rceil}$ for all $e \in E$ repeat until all edges are blockedmark half-tight nodesblock its edgesdouble value of unblocked edges



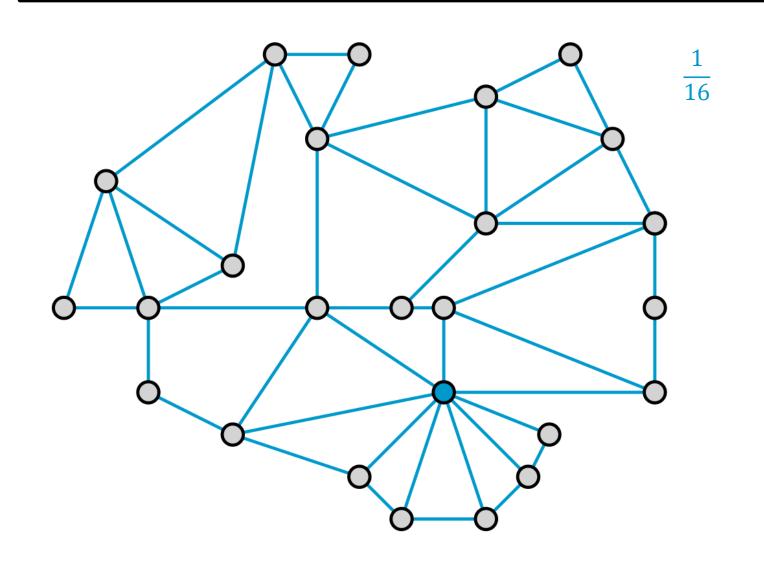
Fractional Maximum Matching
$$\max \sum_{e \in E} x_e$$

value of v $s.t.$ $\sum_{e \in E(v)} x_e \leq 1$
 $x_e \in [0,1]$ for all $v \in V$ $x_e \in [0,1]$

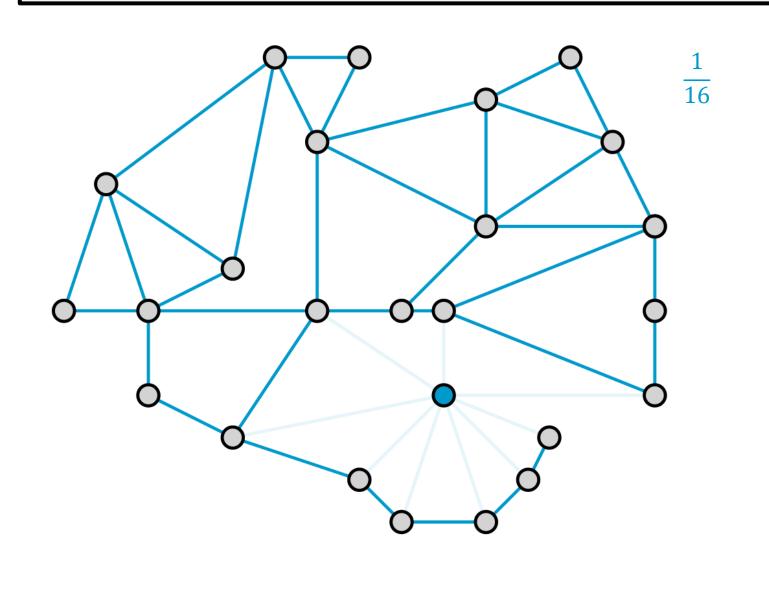
LOCAL Greedy Algorithm
$x_e = 2^{-\lceil \log \Delta \rceil}$ for all $e \in E$
repeat until all edges are blocked
mark half-tight nodes
block its edges
double value of unblocked edges



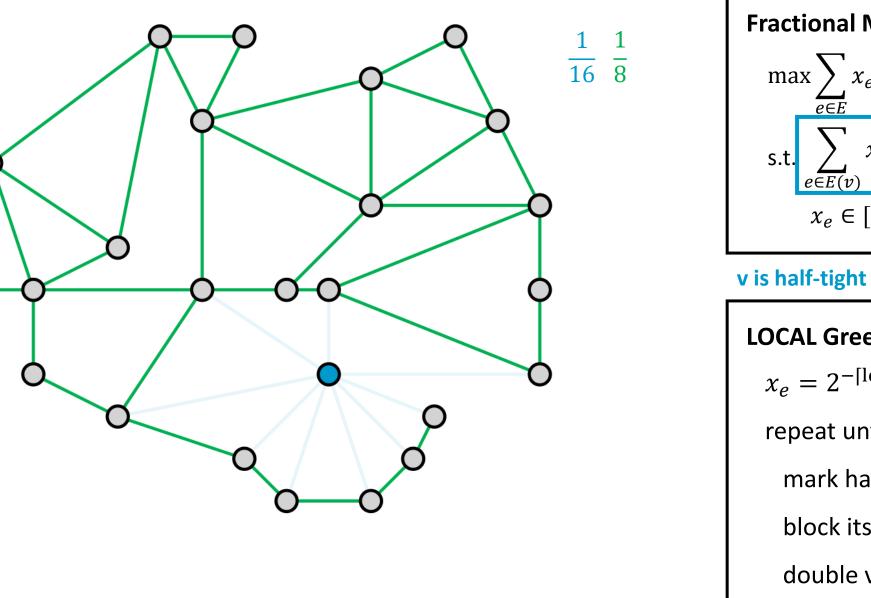
Fractional Maximum Matching
$\max \sum_{e \in E} x_e$ value of v
$e \in E$ value of v
s.t. $\sum_{e \in E(v)} x_e \le 1$ for all $v \in V$
$x_e \in [0,1]$ for all $e \in E$
v is half-tight if its value is $\geq \frac{1}{2}$
LOCAL Greedy Algorithm
$x_e = 2^{-\lceil \log \Delta \rceil}$ for all $e \in E$
repeat until all edges are blocked
mark half-tight nodes
block its edges
double value of unblocked edges

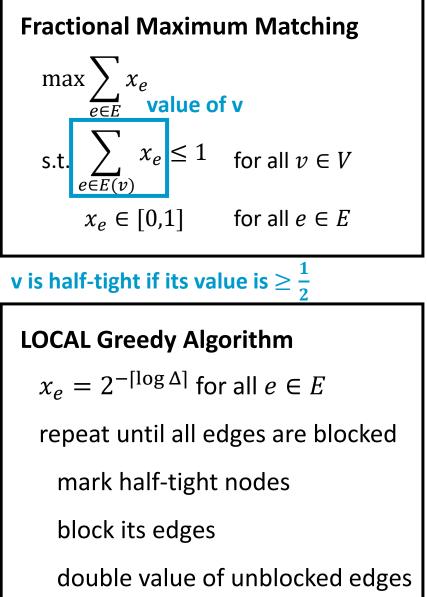


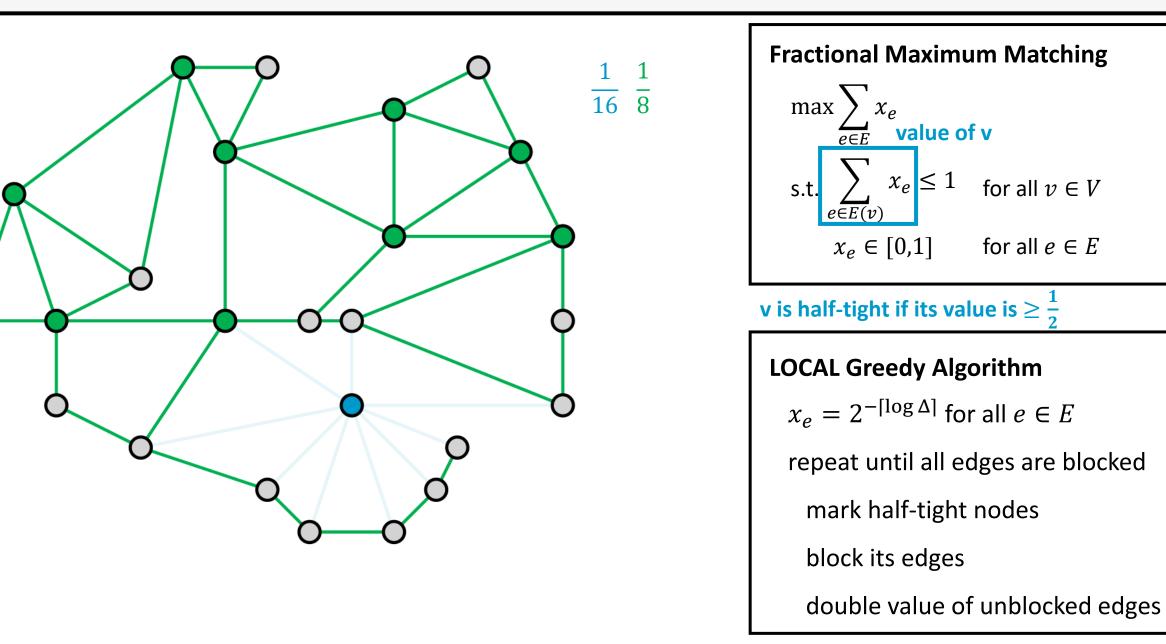
Fractional Maximum Matching
$\max \sum x_e$
$e \in E$ value of v
s.t. $\sum_{e \in E(v)} x_e \leq 1$ for all $v \in V$
$x_e \in [0,1]$ for all $e \in E$
v is half-tight if its value is $\geq \frac{1}{2}$
LOCAL Greedy Algorithm
$x_e = 2^{-\lceil \log \Delta \rceil}$ for all $e \in E$
repeat until all edges are blocked
mark half-tight nodes
block its edges
double value of unblocked edges

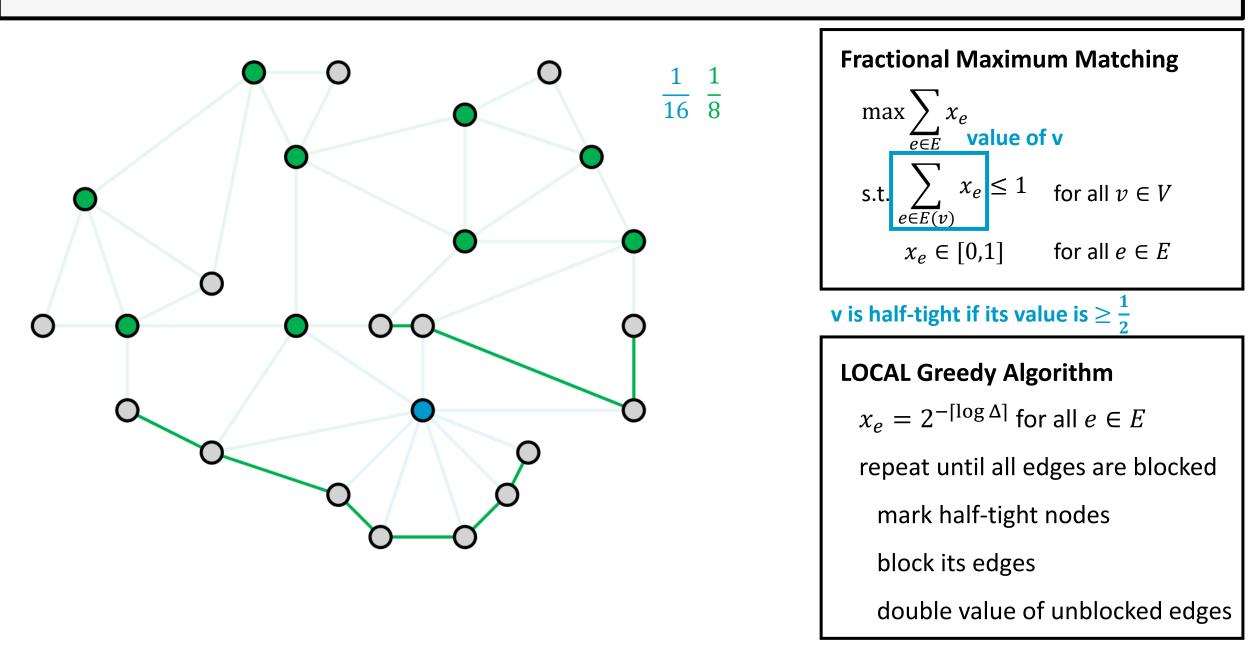


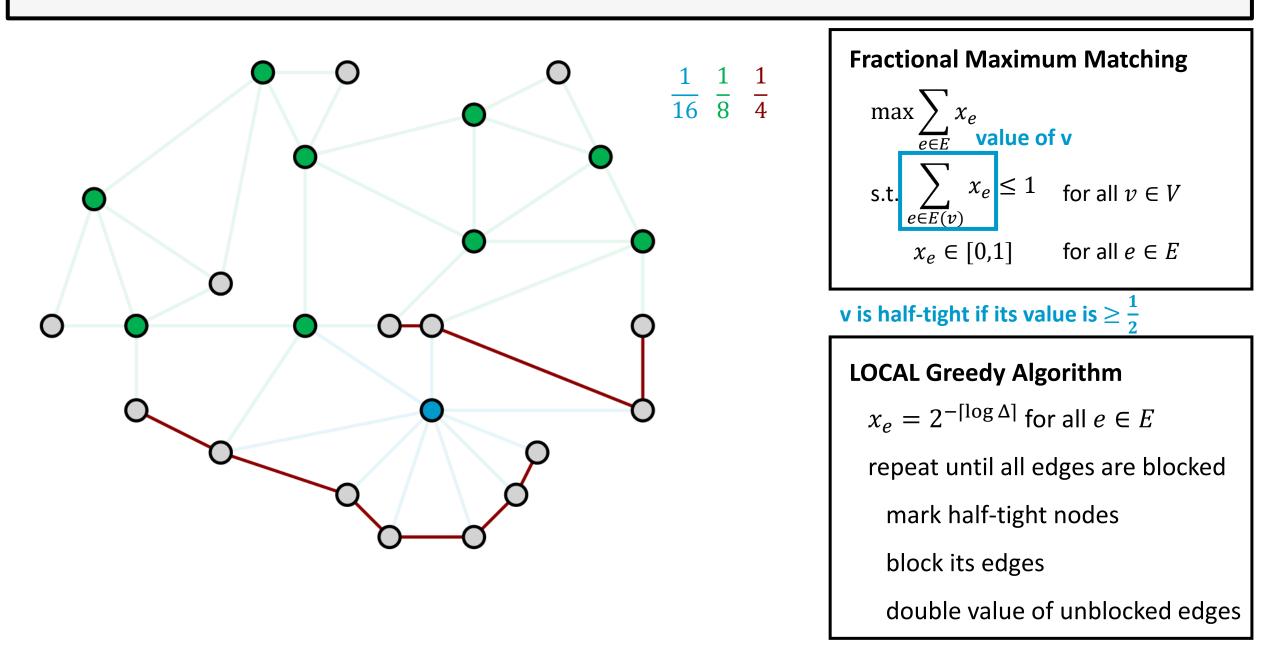
Fractional Maximum Matching
$\max \sum x_e$
$e \in E$ value of v
s.t. $\sum_{e \in E(v)} x_e \le 1$ for all $v \in V$
$x_e \in [0,1]$ for all $e \in E$
v is half-tight if its value is $\geq \frac{1}{2}$
LOCAL Greedy Algorithm
$x_e = 2^{-\lceil \log \Delta \rceil}$ for all $e \in E$
repeat until all edges are blocked
mark half-tight nodes
block its edges
double value of unblocked edges

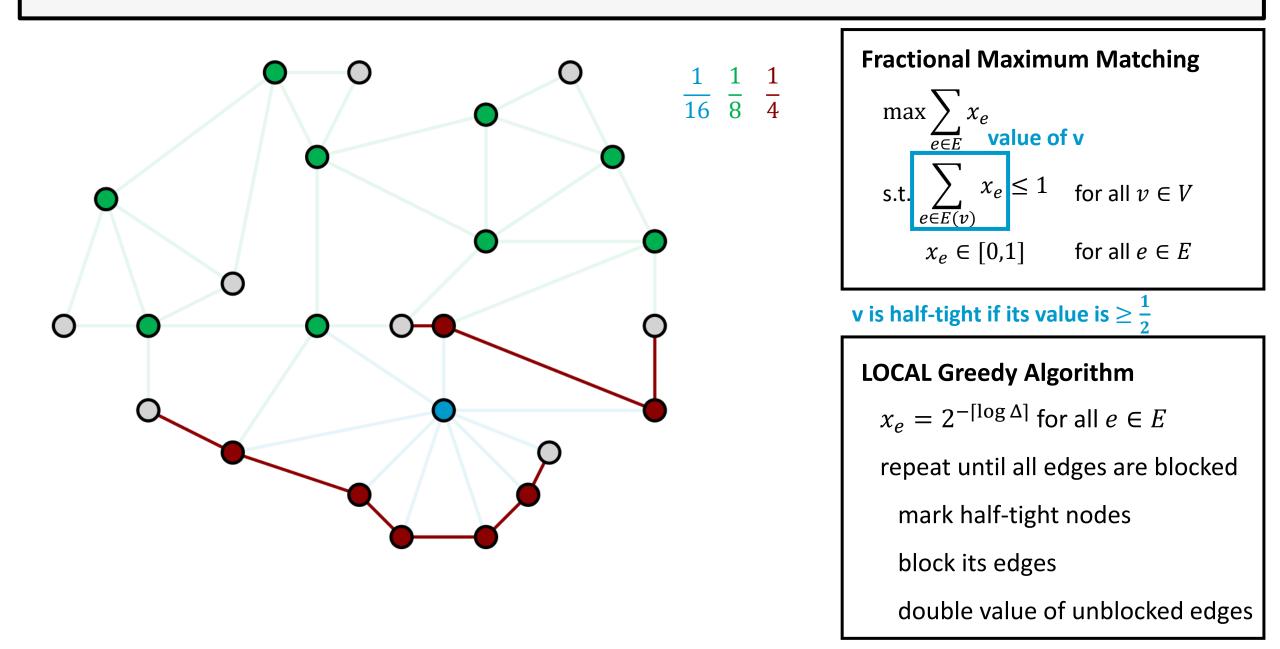


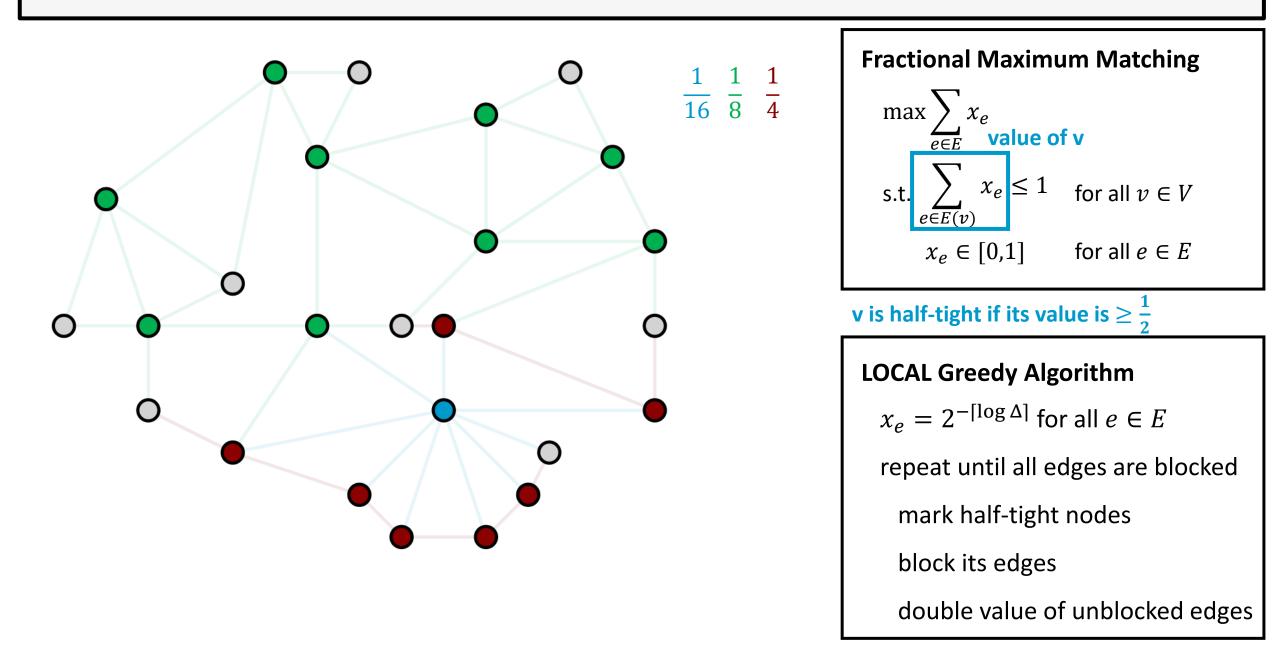










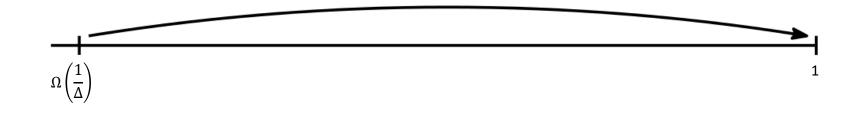


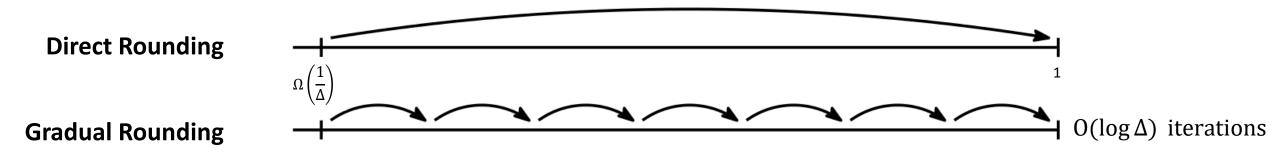
 $O(\log \Delta)$ rounds

II) Rounding Fractional Bipartite Matching

 $O(\log^2 \Delta)$ rounds, O(1) loss

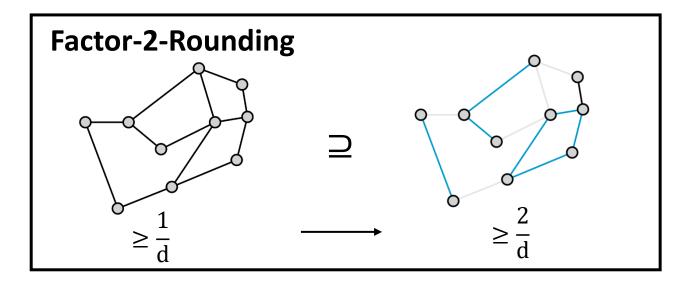
 $O(\log^2 \Delta)$ rounds

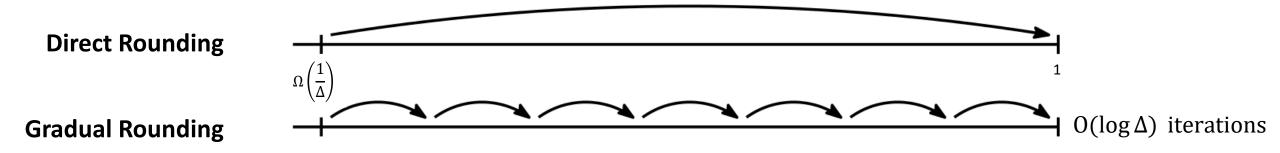


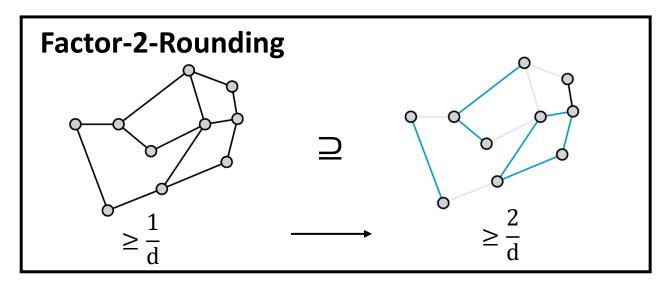


II) Rounding Fractional Bipartite Matching

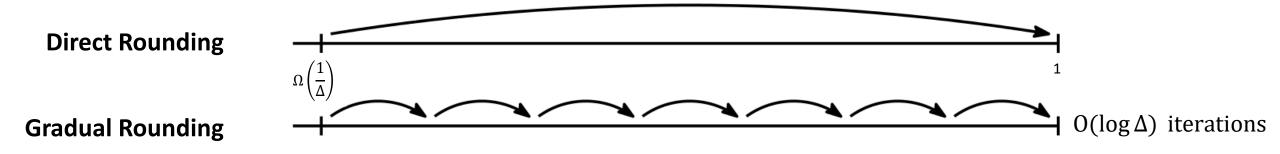
$O(\log^2 \Delta)$ rounds, O(1) loss







using Locally Balanced Splitting, inspired by Hańćkowiak, Karoński, Panconesi [SODA'98,PODC'99]

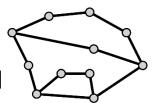


Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:

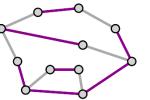
2-edge-coloring so that every node roughly balanced



Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:

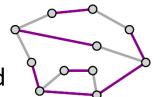
2-edge-coloring so that every node roughly balanced

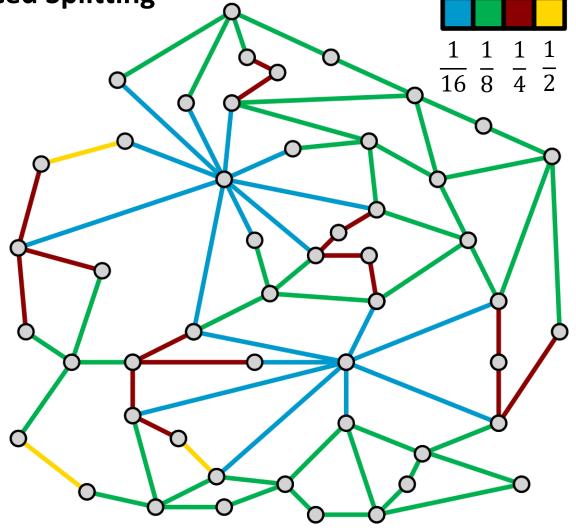


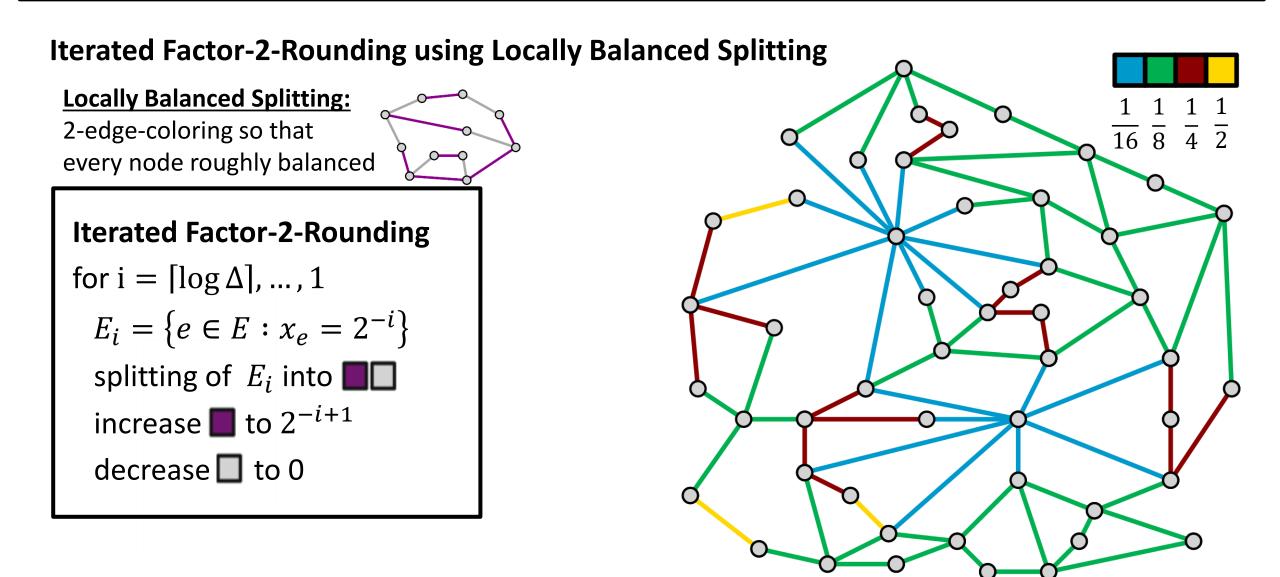
Iterated Factor-2-Rounding using Locally Balanced Splitting

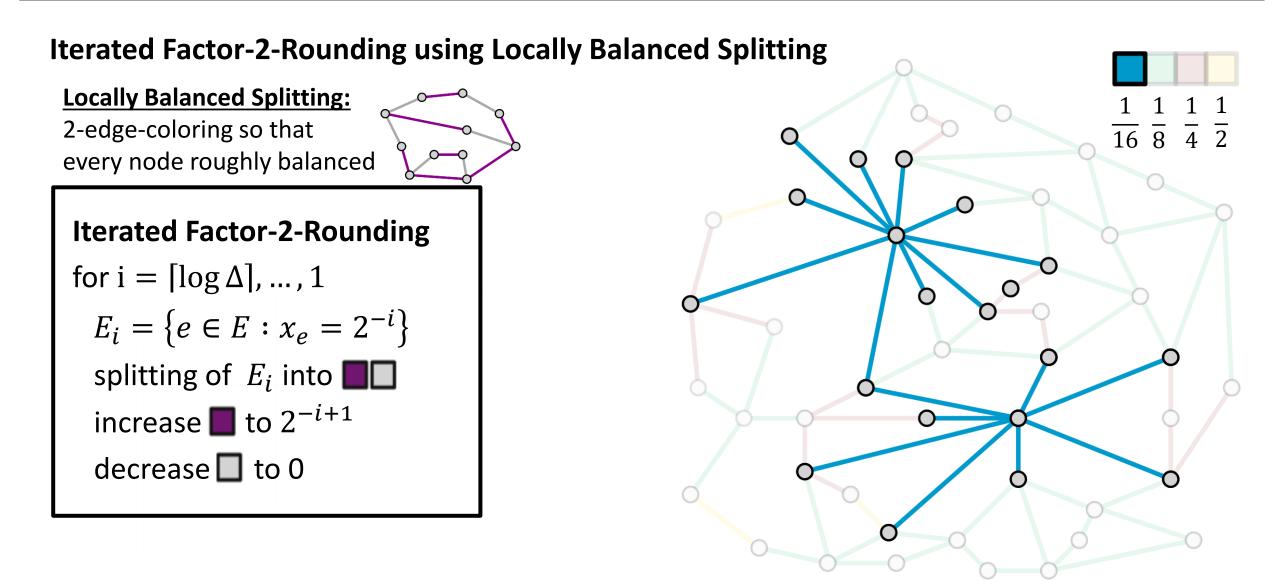
Locally Balanced Splitting:

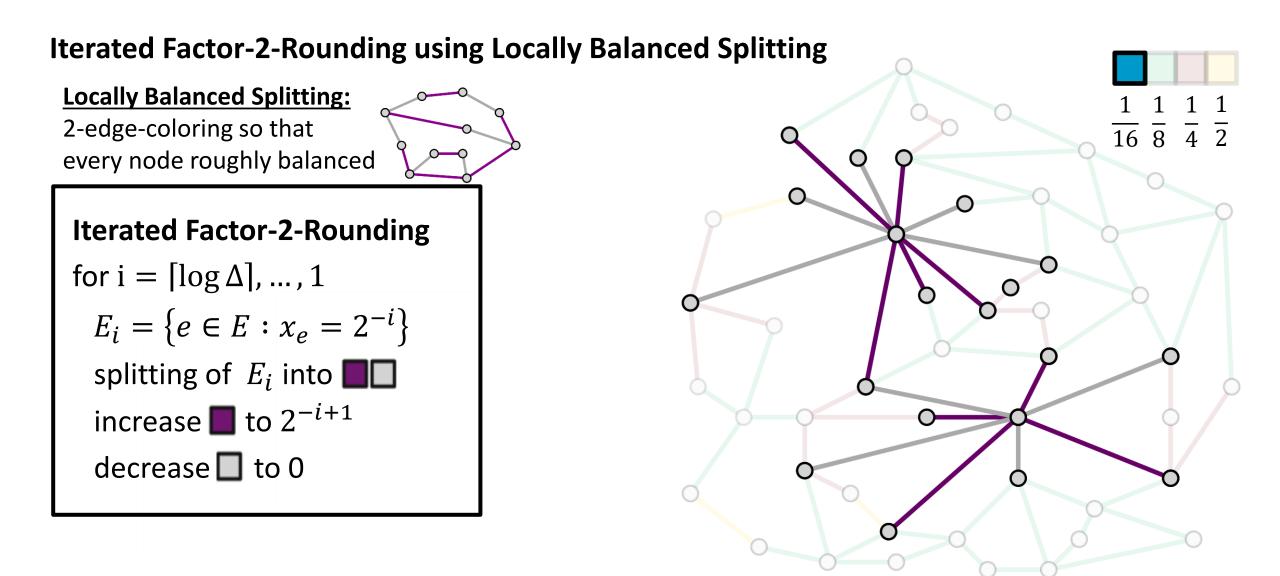
2-edge-coloring so that every node roughly balanced

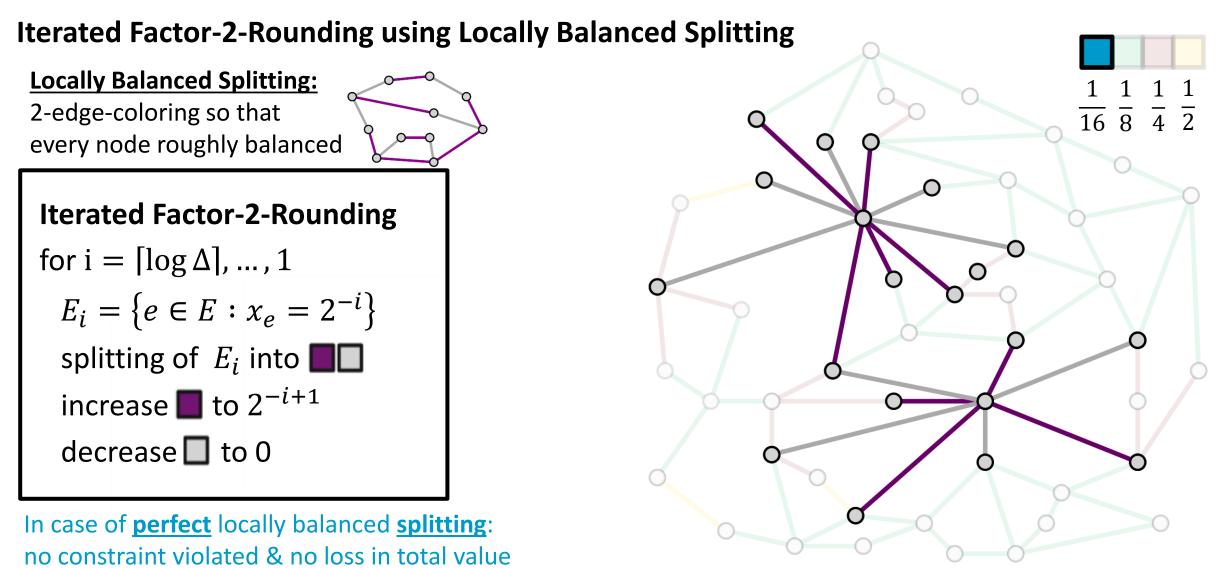


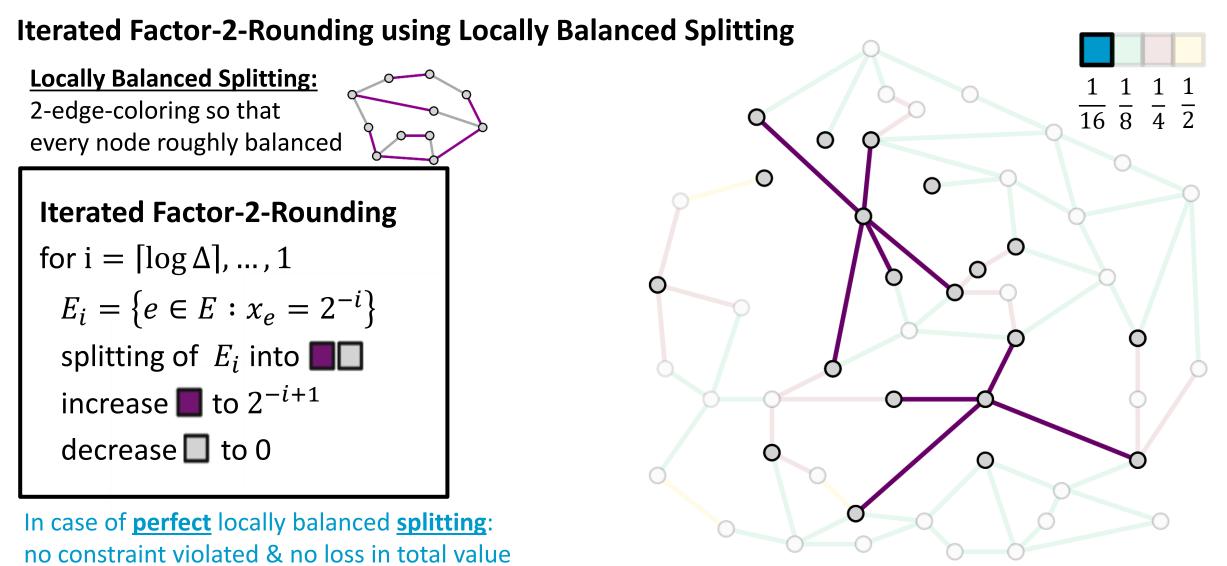


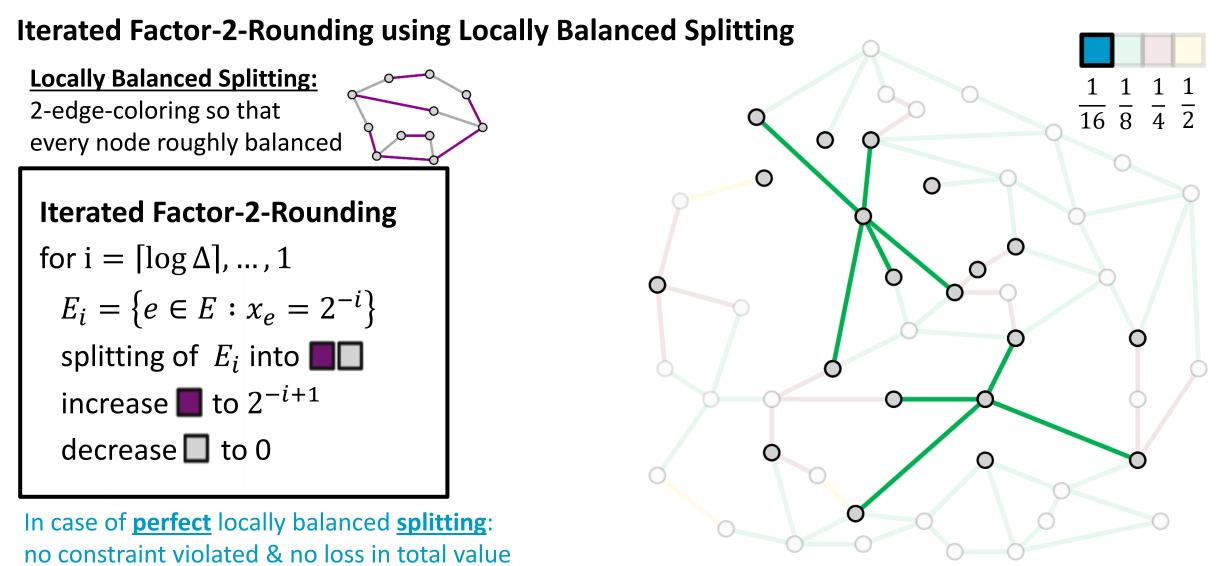


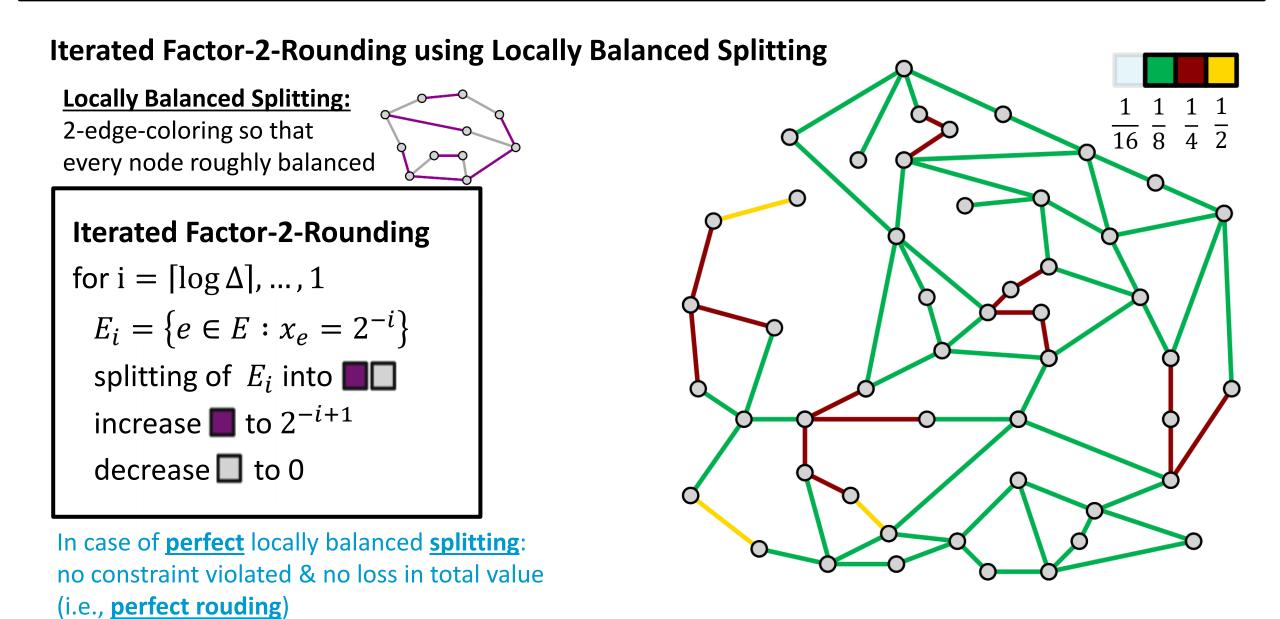


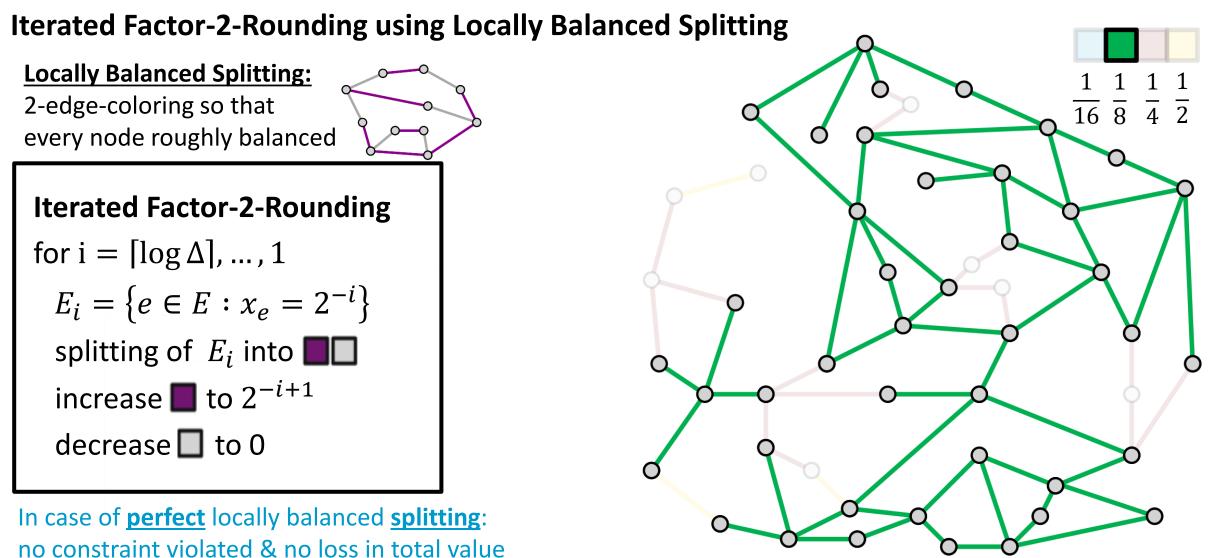


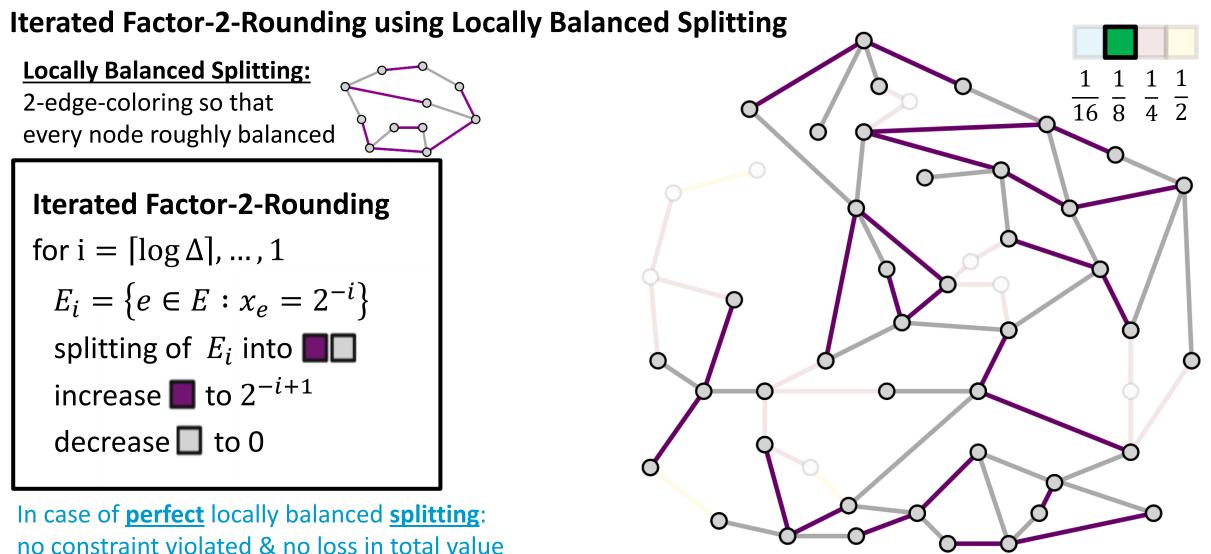


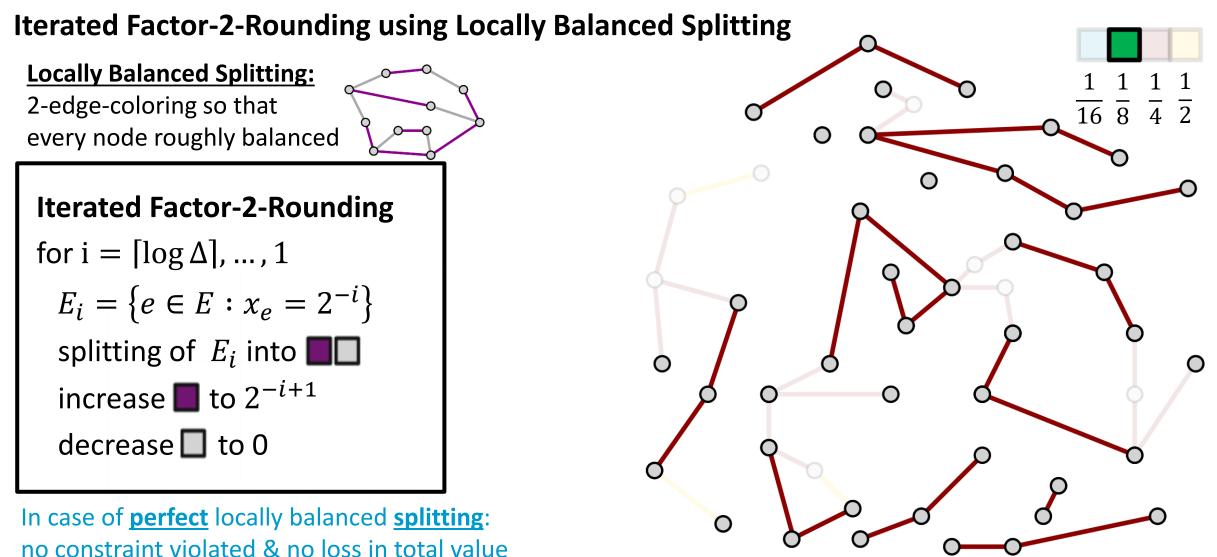


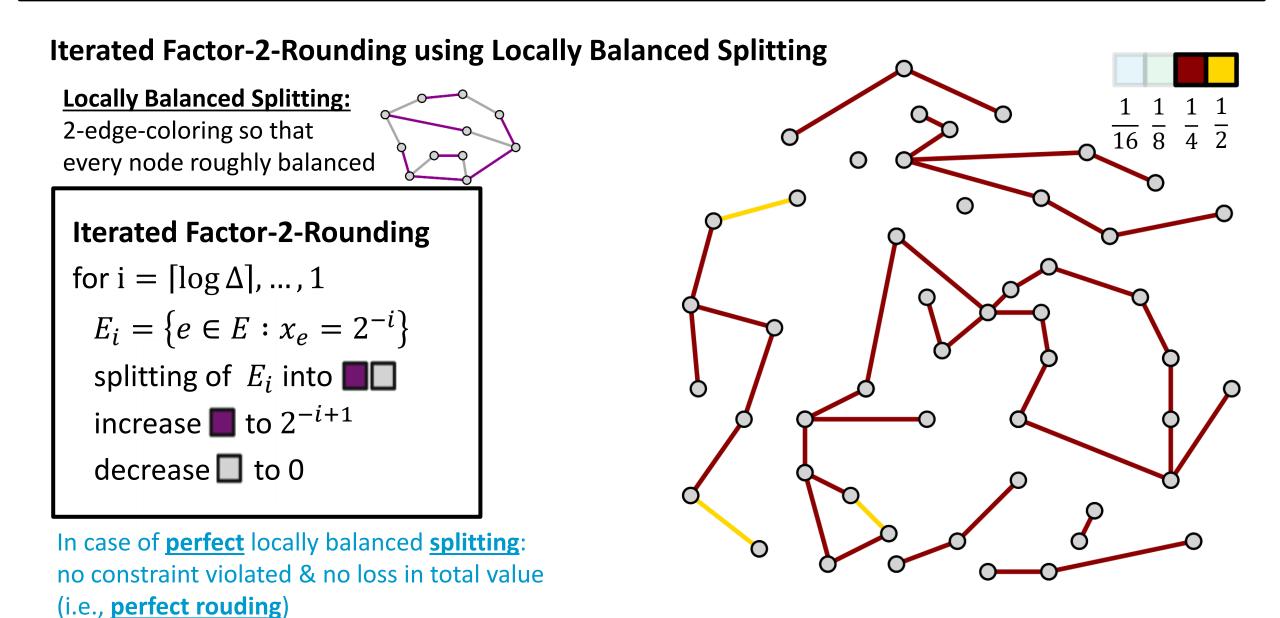


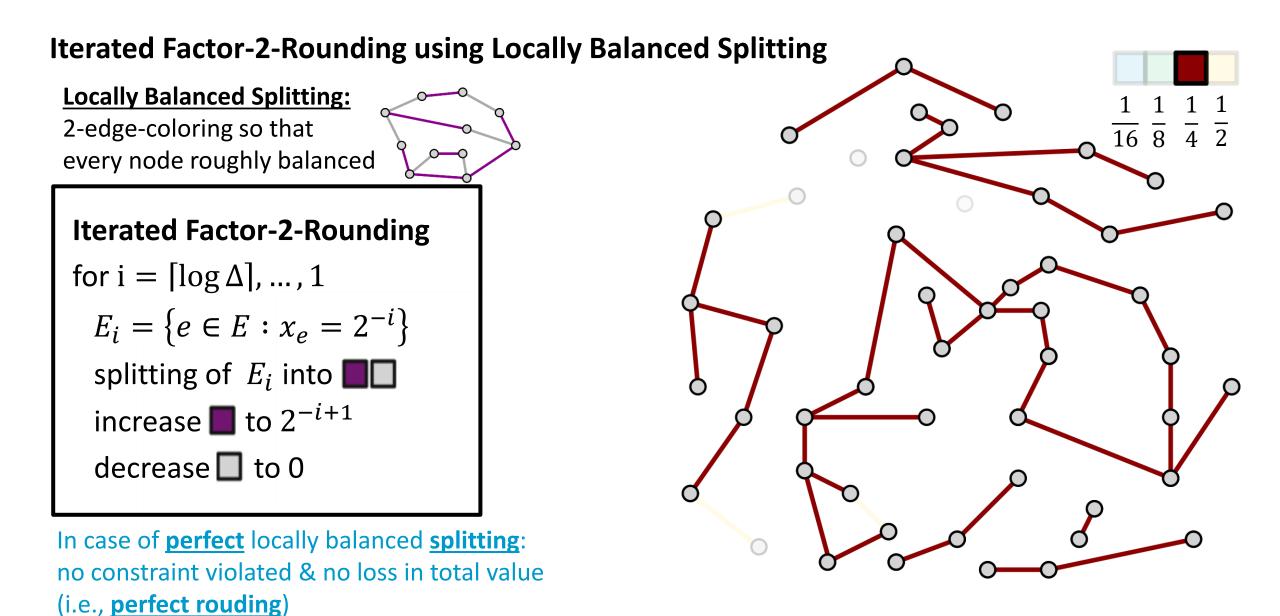


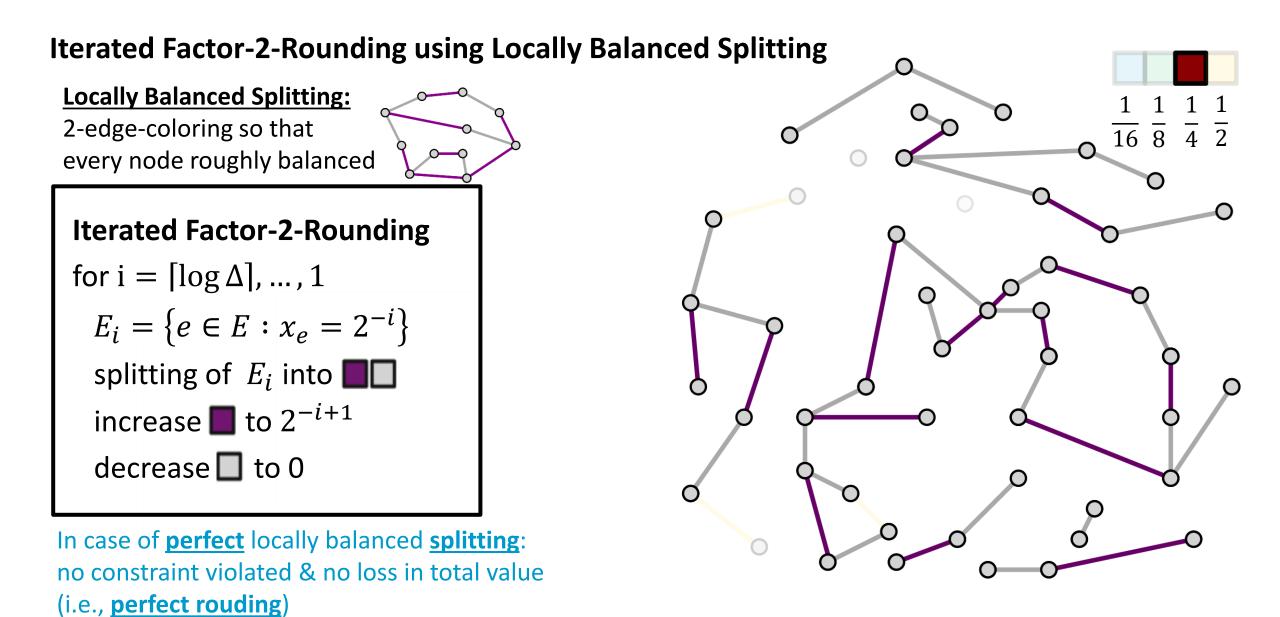


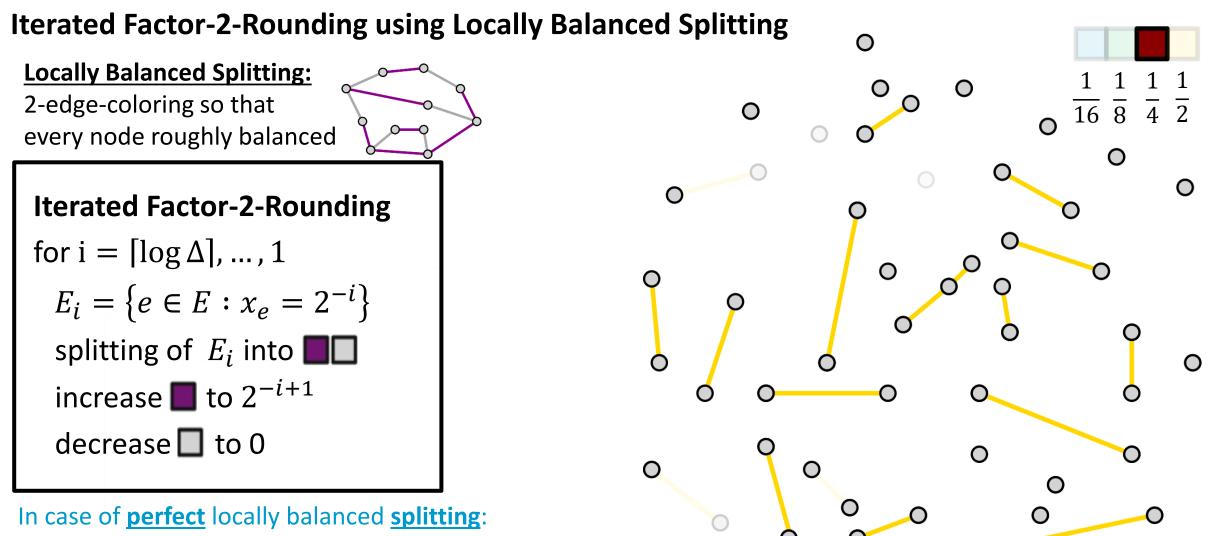




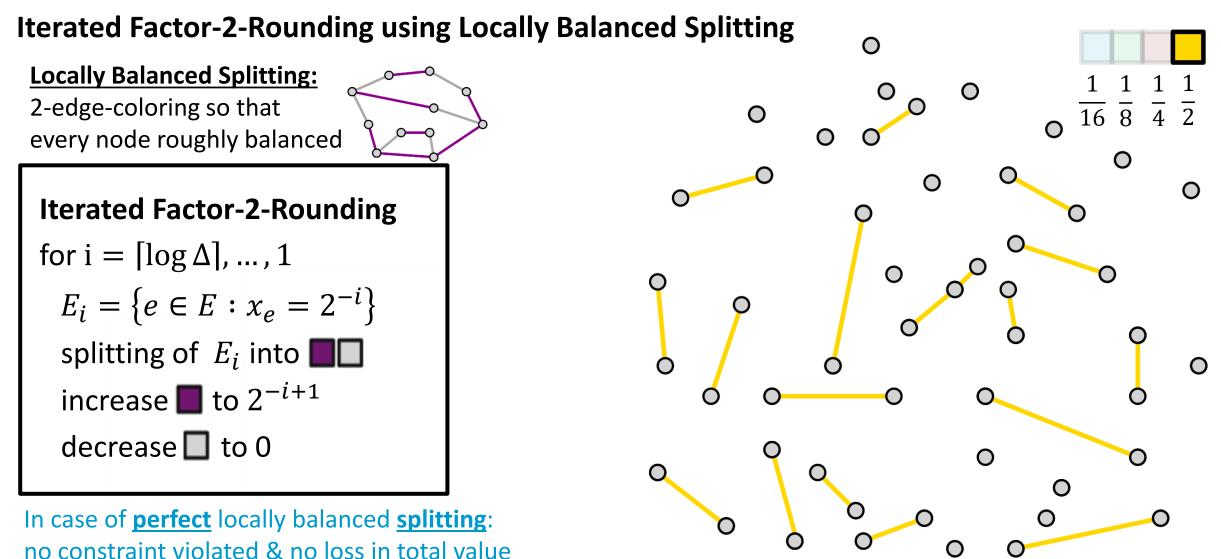




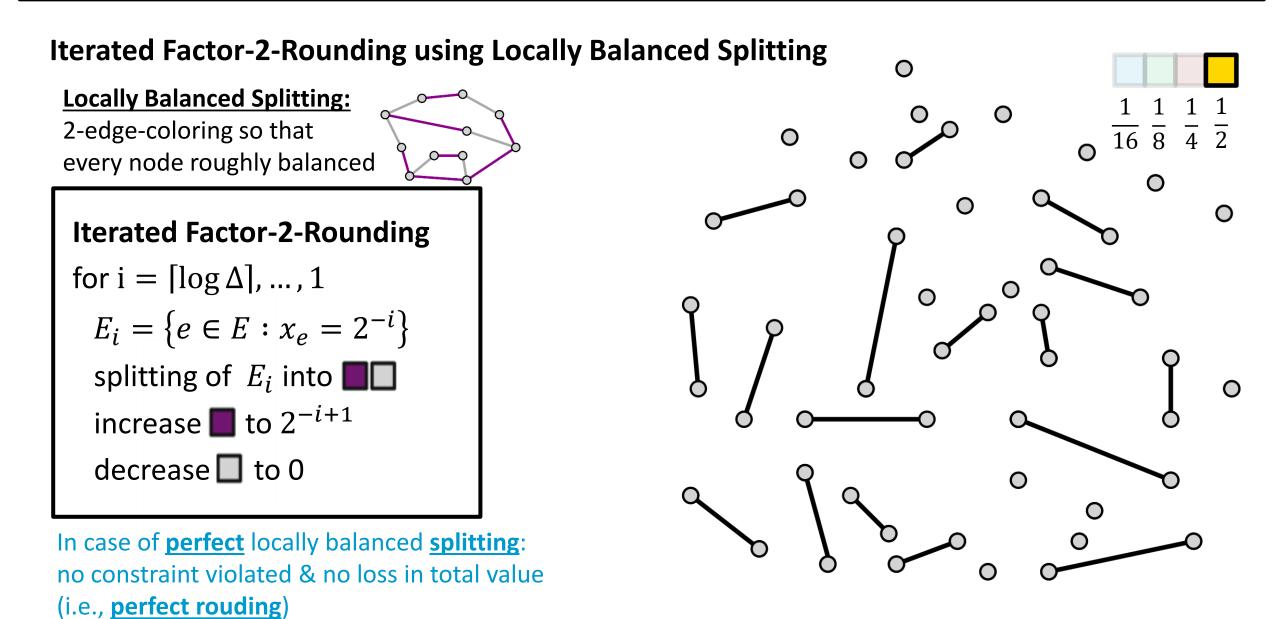




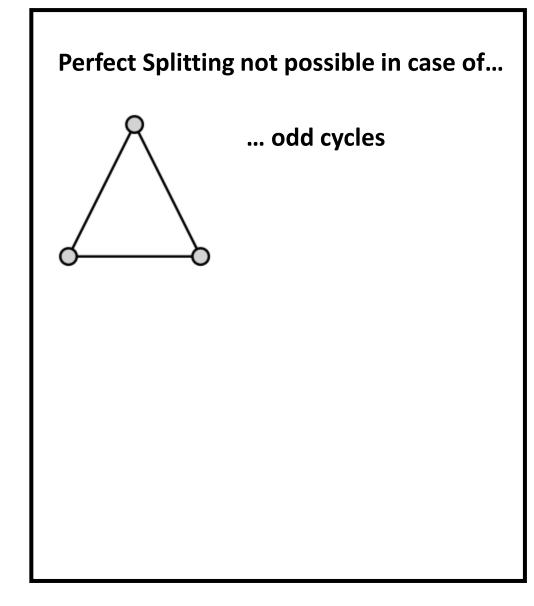
no constraint violated & no loss in total value (i.e., **perfect rouding**)

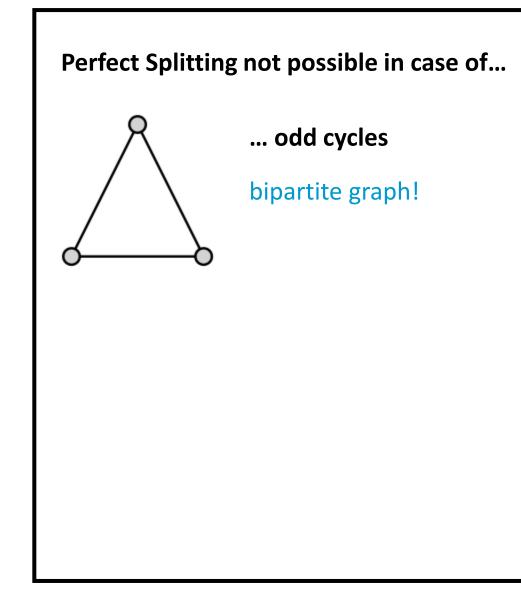


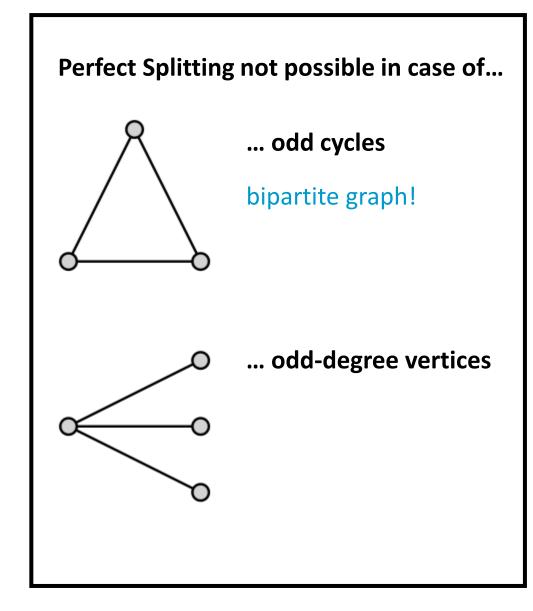
(i.e., **perfect rouding**)

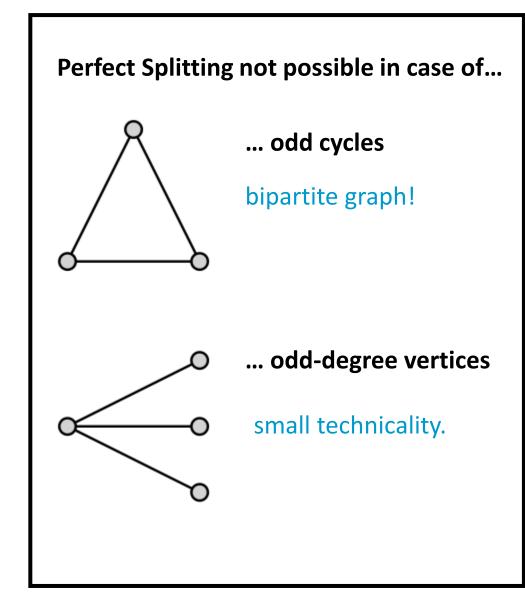


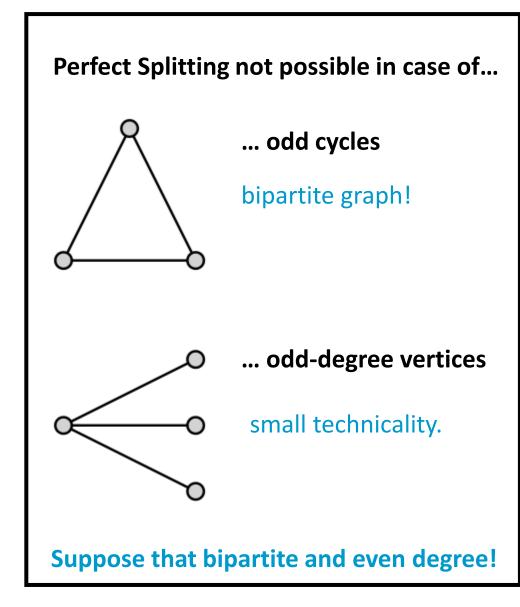
Perfect Splitting not possible in case of...









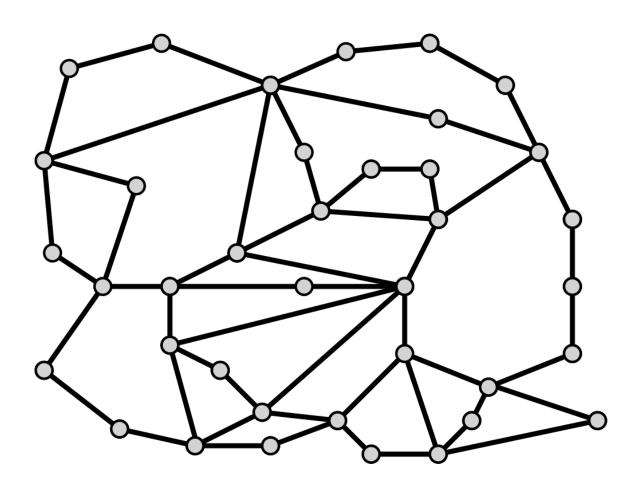


Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate

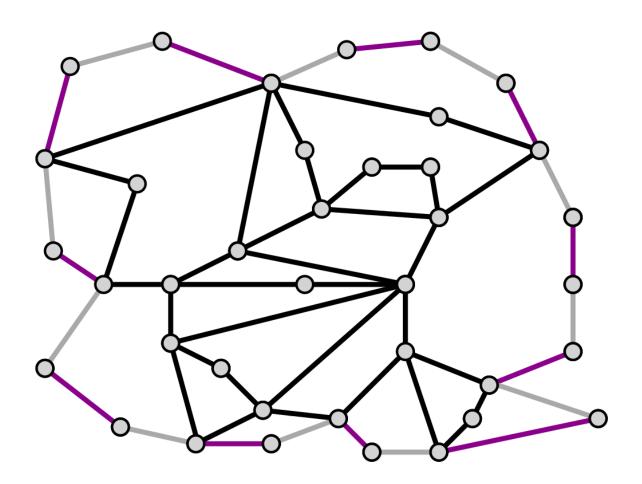
Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate



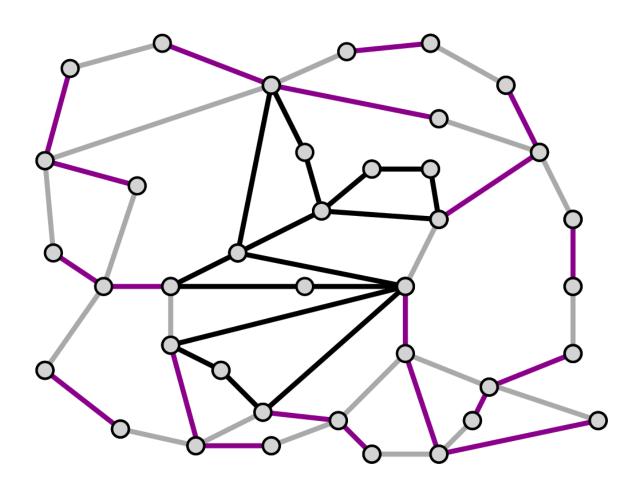
Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate



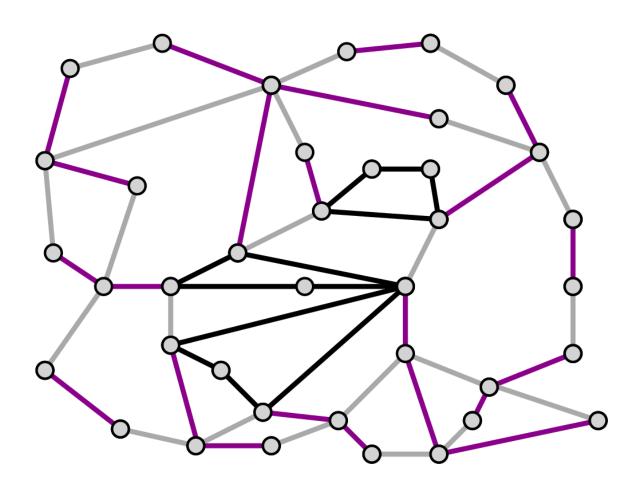
Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate



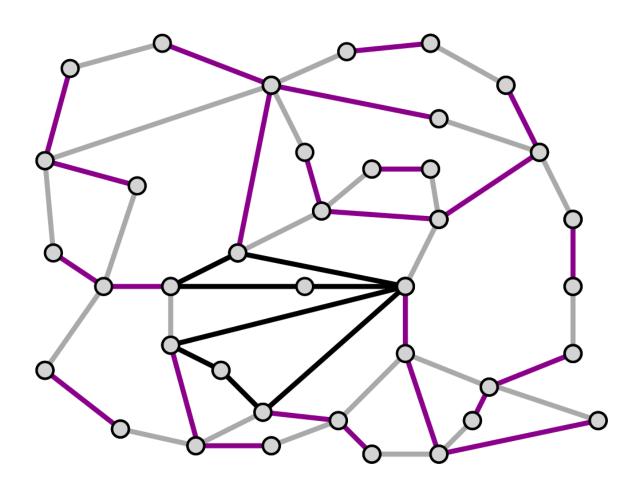
Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate



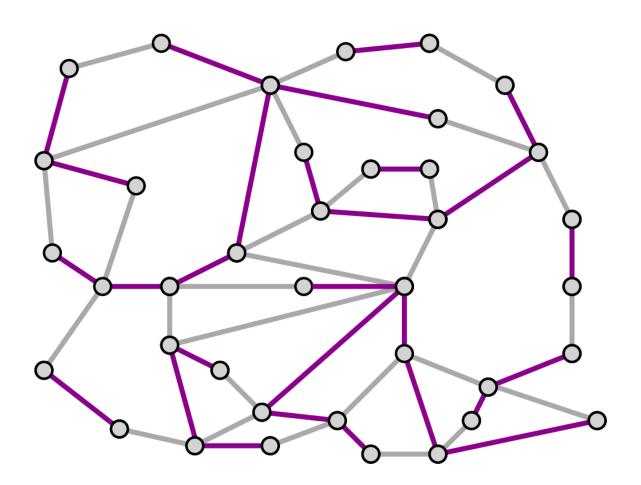
Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate



Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate



Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

LOCAL Almost-Perfect Splitting*

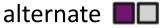
Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0

 - alternate **I** in between

Sequential Perfect Splitting*

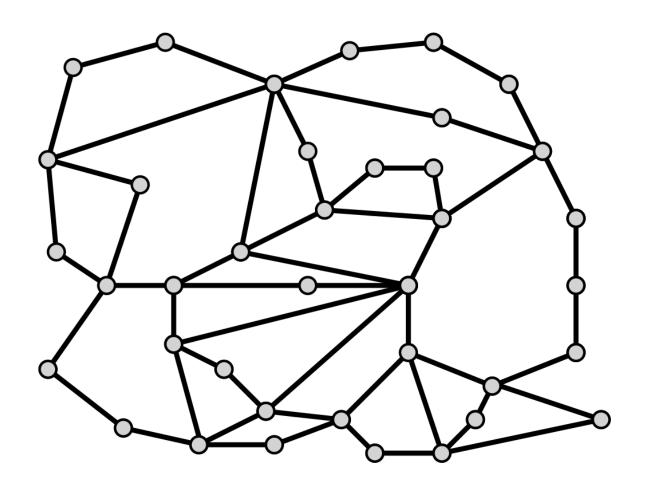
Repeat until all edges colored pick arbitrary cycle



LOCAL Almost-Perfect Splitting*

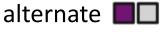
Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between



Sequential Perfect Splitting*

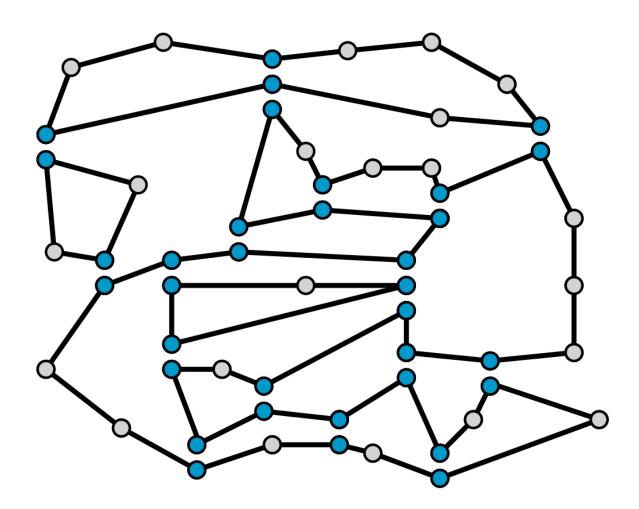
Repeat until all edges colored pick arbitrary cycle



LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between



Sequential Perfect Splitting*

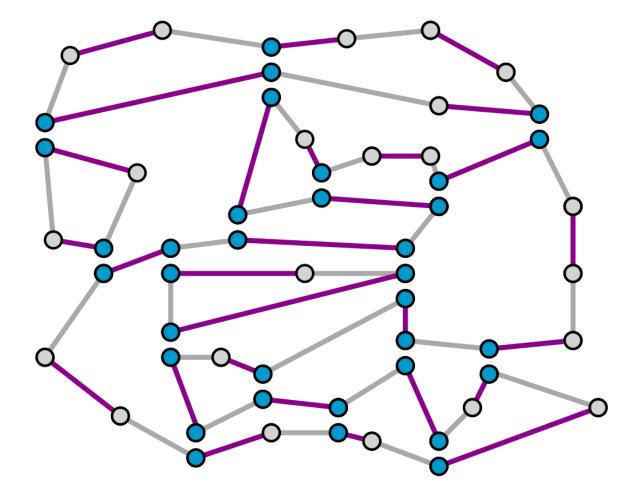
Repeat until all edges colored pick arbitrary cycle

alternate 🔳

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between



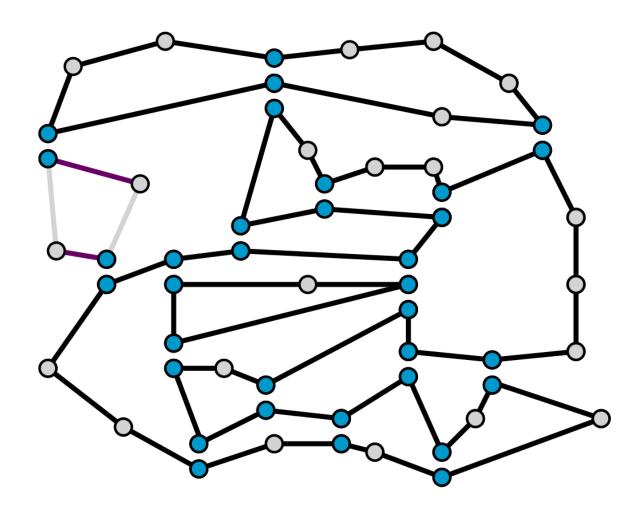
Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

LOCAL Almost-Perfect Splitting*

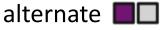
Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between



Sequential Perfect Splitting*

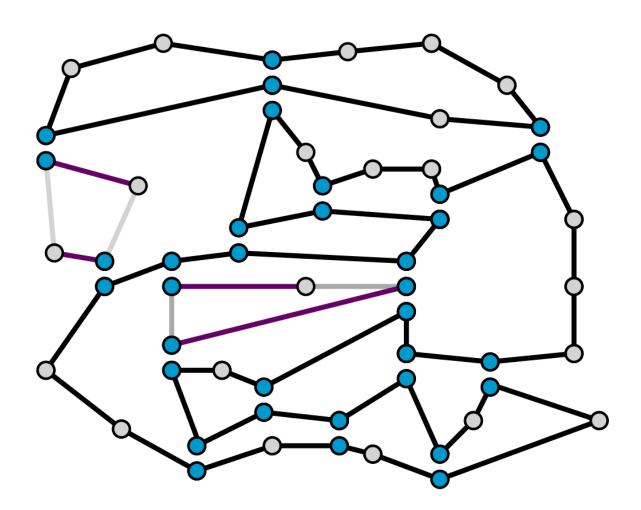
Repeat until all edges colored pick arbitrary cycle



LOCAL Almost-Perfect Splitting*

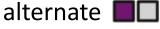
Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between



Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

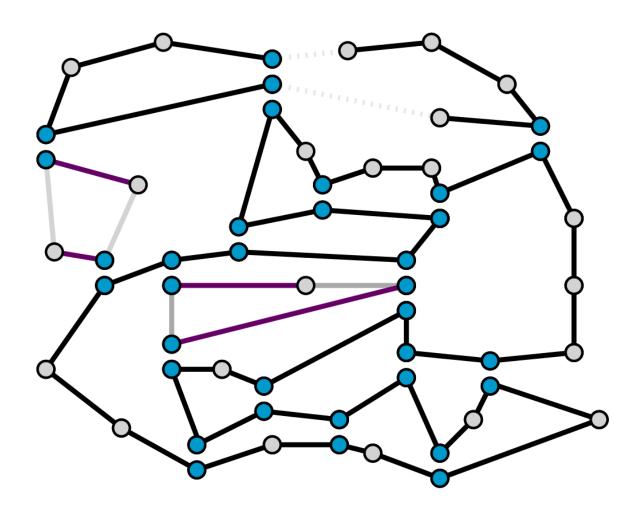


LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

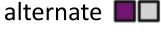
- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0

 - alternate **E** in between



Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

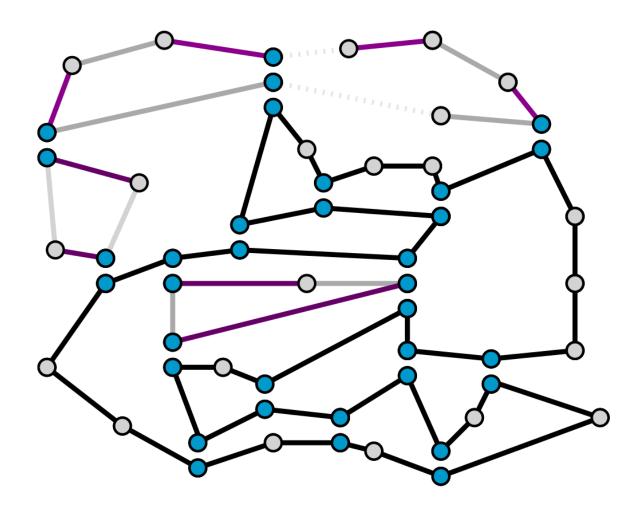


LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0

 - alternate **E** in between



Sequential Perfect Splitting*

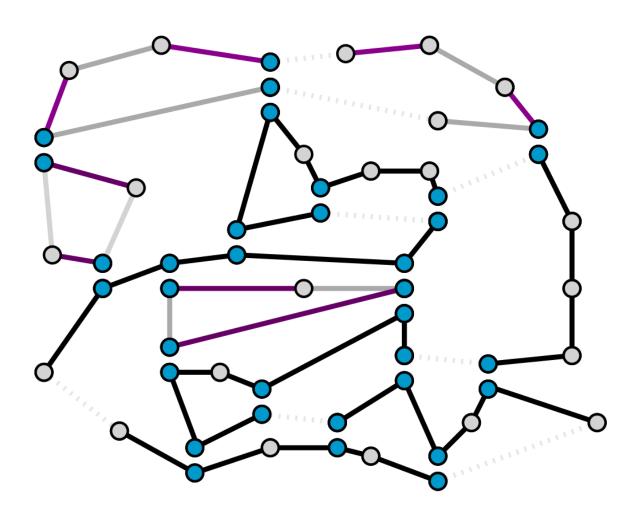
Repeat until all edges colored pick arbitrary cycle

alternate

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between



Sequential Perfect Splitting*

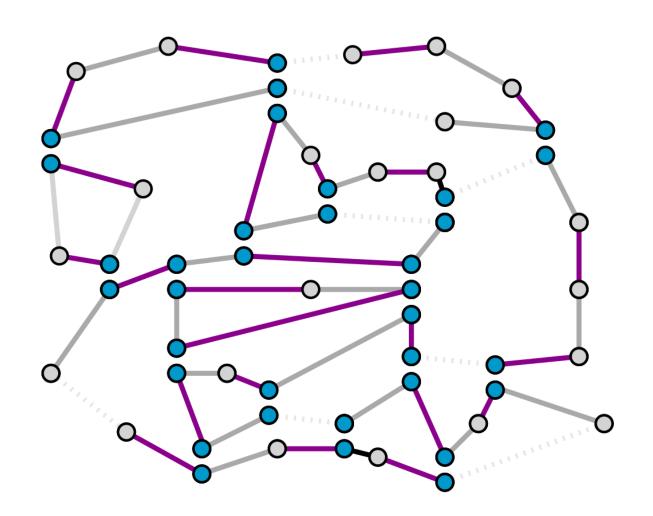
Repeat until all edges colored pick arbitrary cycle

alternate

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between



Sequential Perfect Splitting*

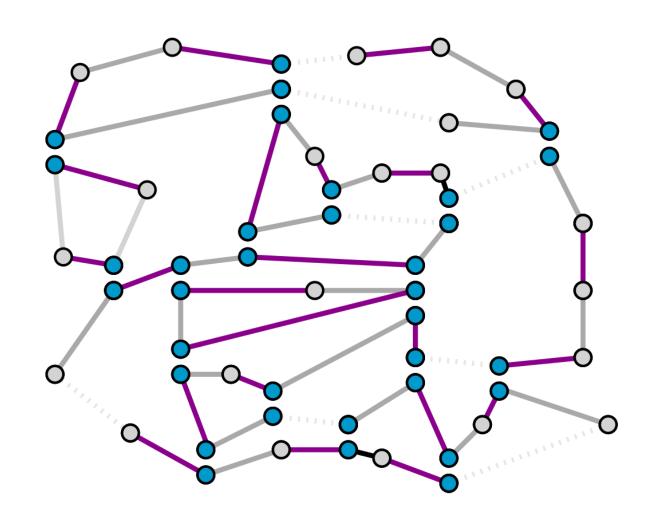
Repeat until all edges colored pick arbitrary cycle alternate

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **<u>Short cycles</u>** of length $O(\log \Delta)$
 - alternate
- B) Long cycles

chop at length $\Theta(\log \Delta)$ set boundary to 0 $\Theta\left(\frac{1}{\log \Delta}\right)$ loss alternate \square in between



Sequential Perfect Splitting*

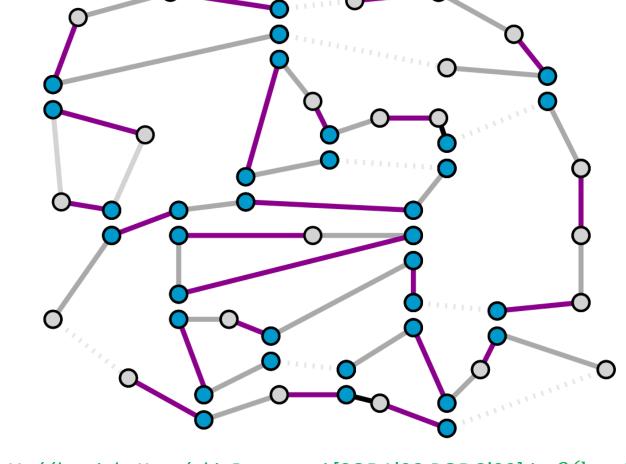
Repeat until all edges colored pick arbitrary cycle alternate

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) Short cycles of length $O(\log \Delta)$
 - alternate
- B) <u>Long cycles</u>

chop^{*}at length $\Theta(\log \Delta)$ set boundary to 0 $\Theta\left(\frac{1}{\log \Delta}\right)$ loss alternate \square in between



* by Hańćkowiak, Karoński, Panconesi [SODA'98,PODC'99] in $O(\log \Delta)$

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate

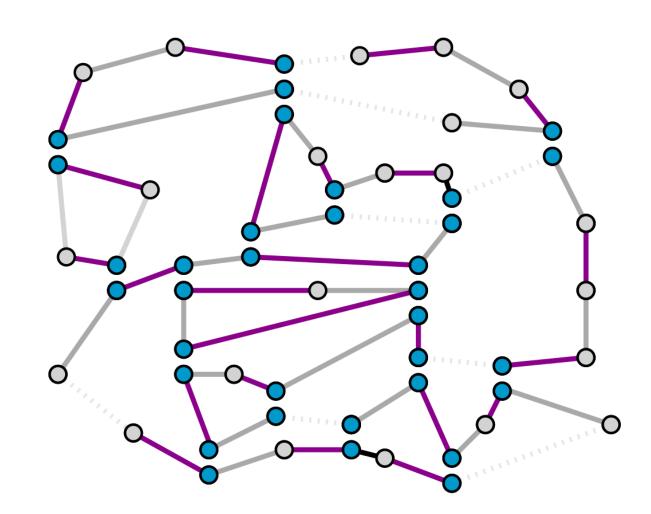
LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

A) **<u>Short cycles</u>** of length $O(\log \Delta)$

alternate

chop*at length $\Theta(\log \Delta)$ set boundary to 0 $\Theta\left(\frac{1}{\log \Delta}\right)$ loss alternate in between



* by Hańćkowiak, Karoński, Panconesi [SODA'98,PODC'99] in $O(\log \Delta)$

Over all $O(\log \Delta)$ rounding iterations, total loss still constant!

I) 4-Approximate Fractional Matching

 $O(\log \Delta)$ rounds

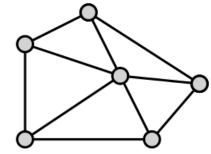
II) Rounding Fractional Bipartite Matching

 $O(\log^2 \Delta)$ rounds, O(1) loss

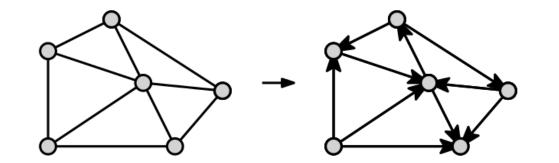
 $O(\log^2 \Delta)$ rounds

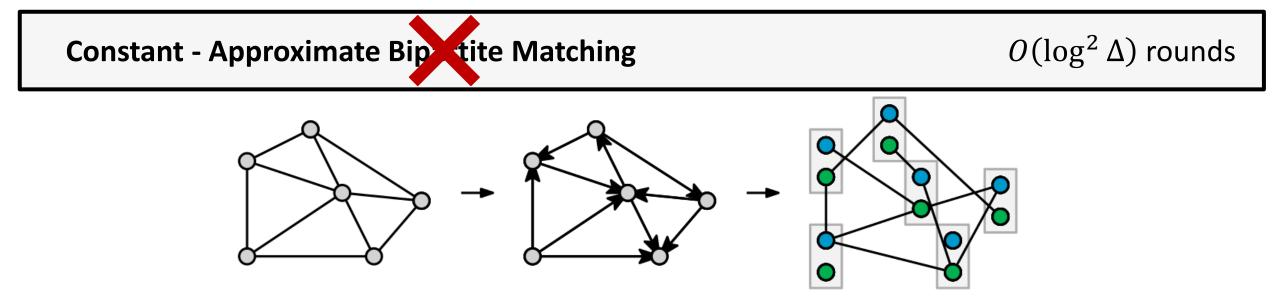
 $O(\log^2 \Delta)$ rounds

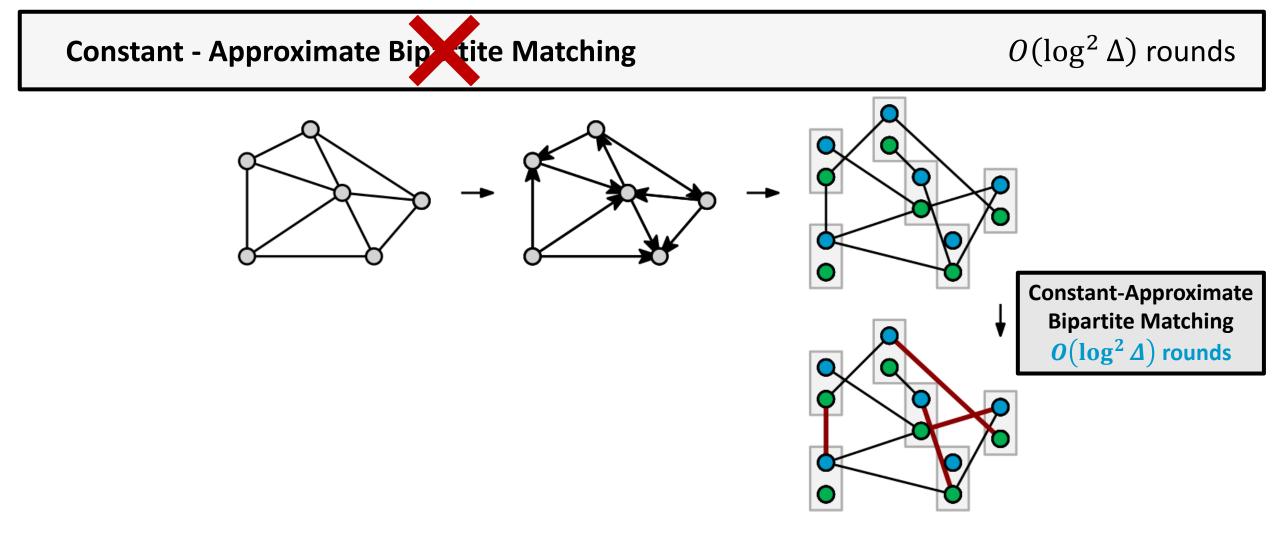
 $O(\log^2 \Delta)$ rounds

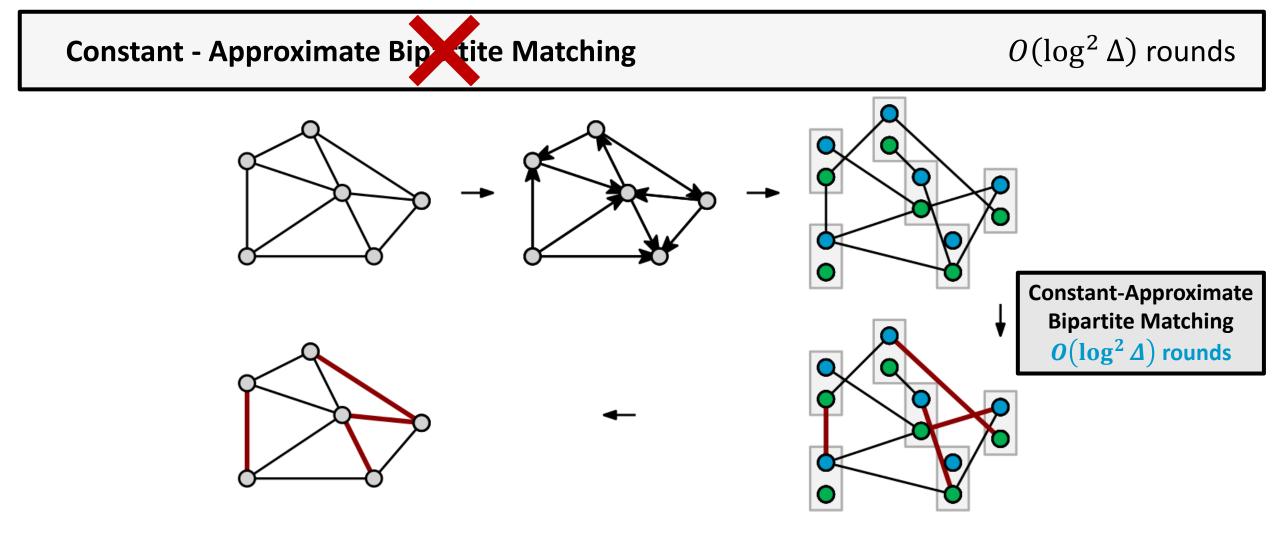


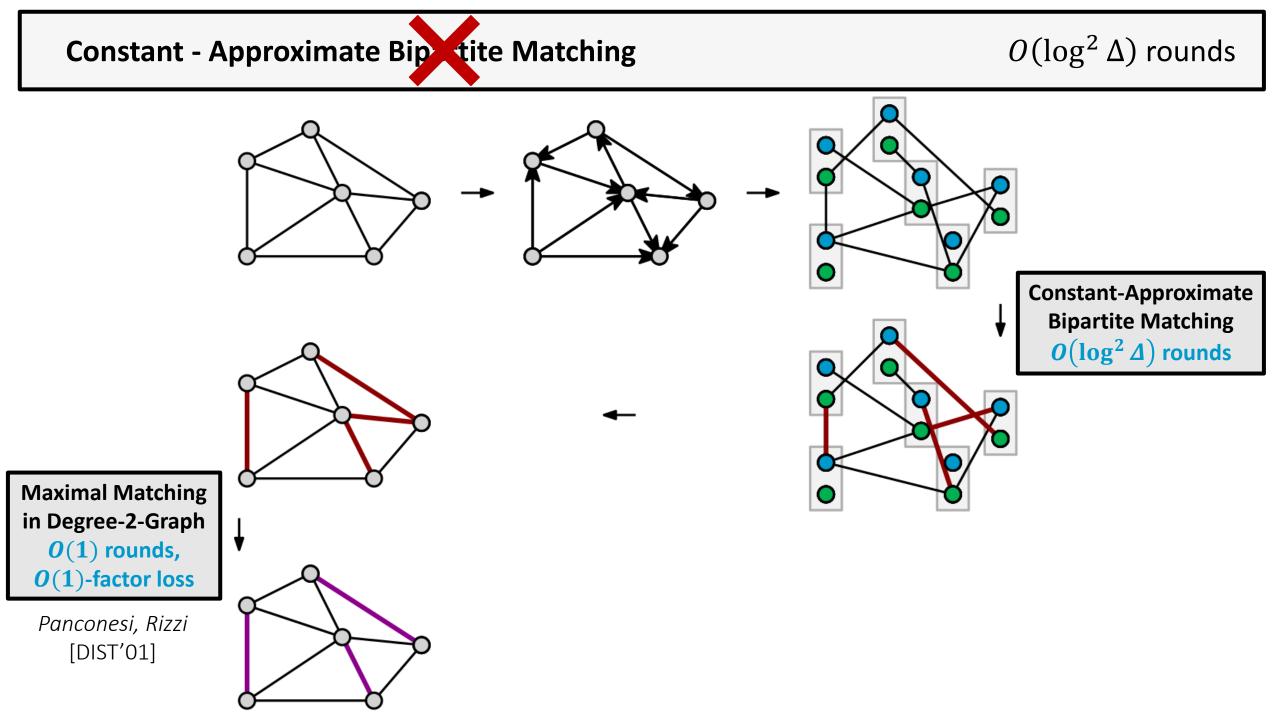
 $O(\log^2 \Delta)$ rounds











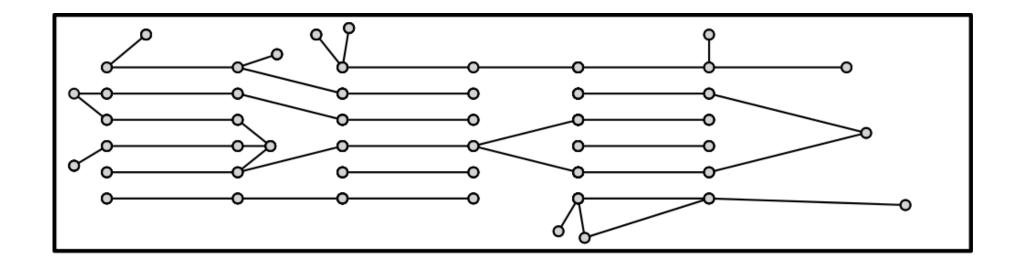
Maximal

 $O(\log^2 \Delta \cdot \log n)$

 $O(\log^2 \Delta)$ rounds

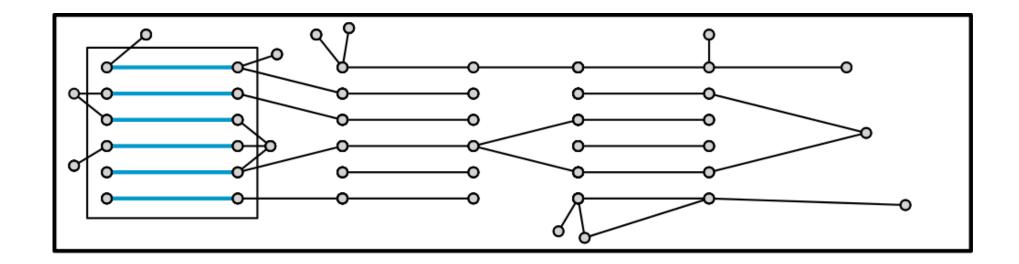
 $O(\log^2 \Delta)$ rounds

Maximal



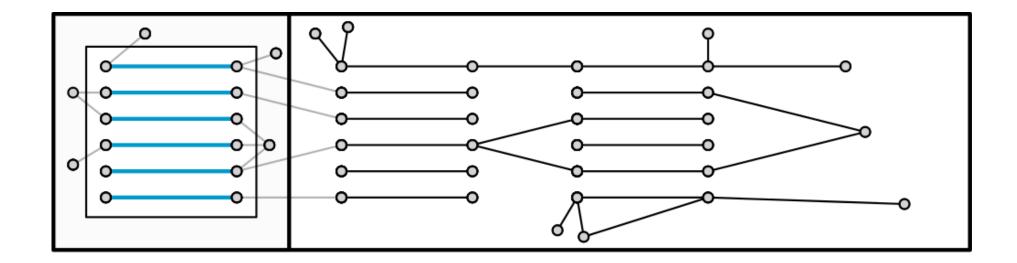
 $O(\log^2 \Delta)$ rounds

Maximal



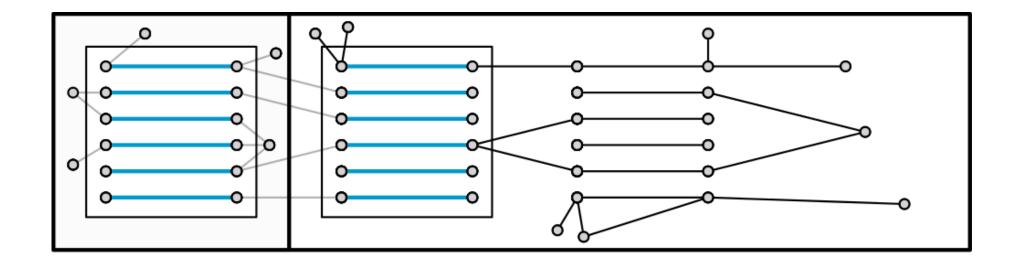
Maximal

 $O(\log^2 \Delta)$ rounds



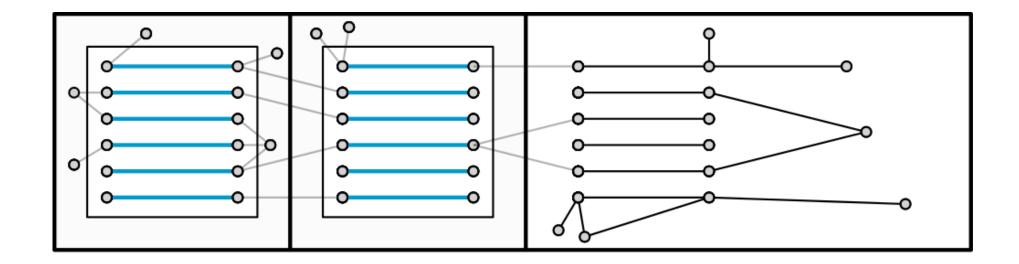
Maximal

 $O(\log^2 \Delta)$ rounds



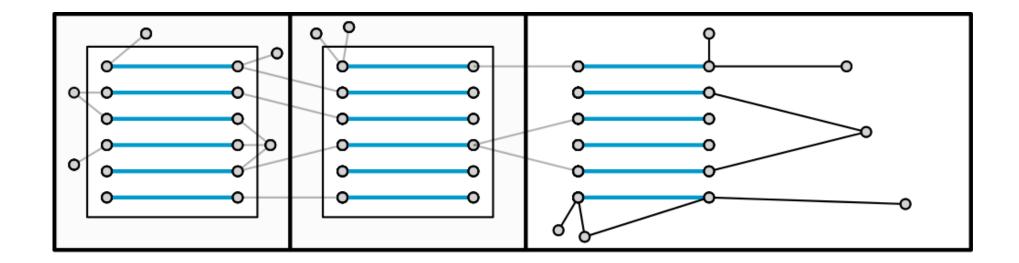
Maximal

 $O(\log^2 \Delta)$ rounds



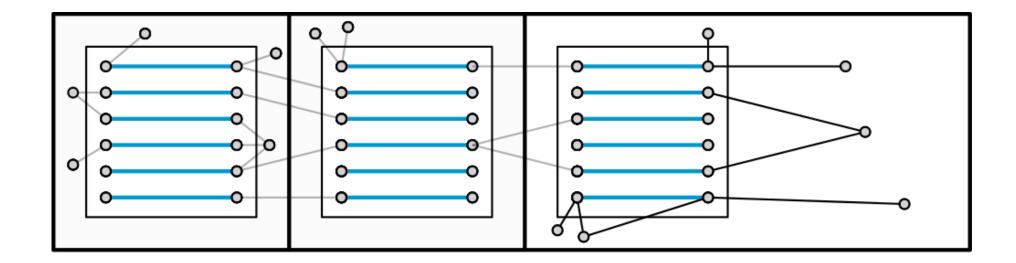
Maximal

 $O(\log^2 \Delta)$ rounds



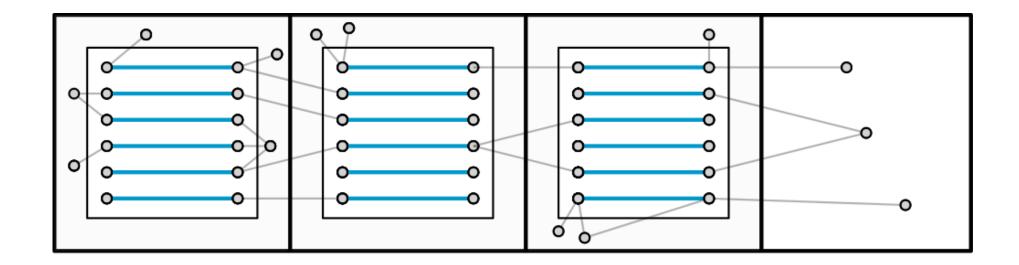
Maximal

 $O(\log^2 \Delta)$ rounds



Maximal

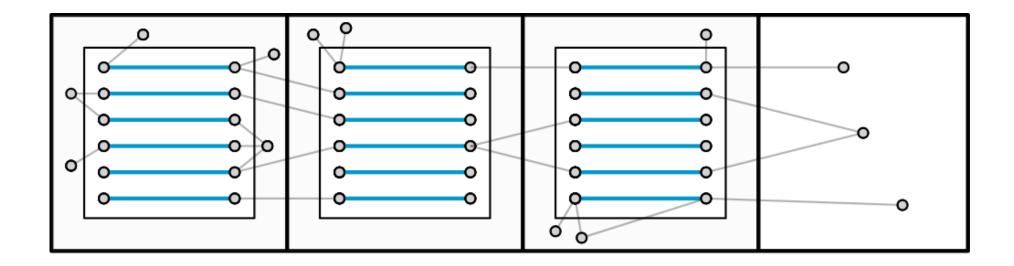
 $O(\log^2 \Delta)$ rounds



Maximal

 $O(\log^2 \Delta)$ rounds

$O(\log^2 \Delta \cdot \log n)$

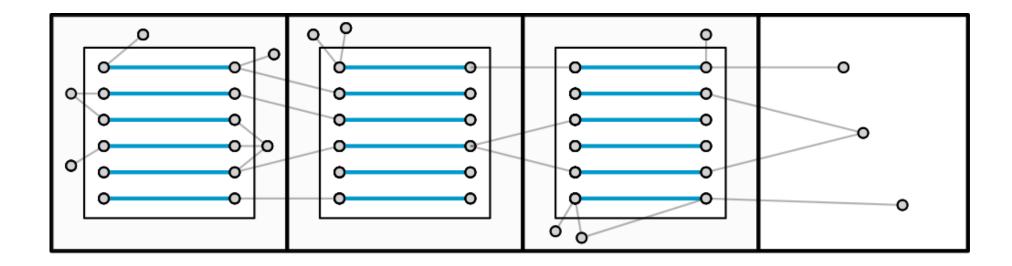


maximum matching size in remainder graph decreases by constant factor

Maximal

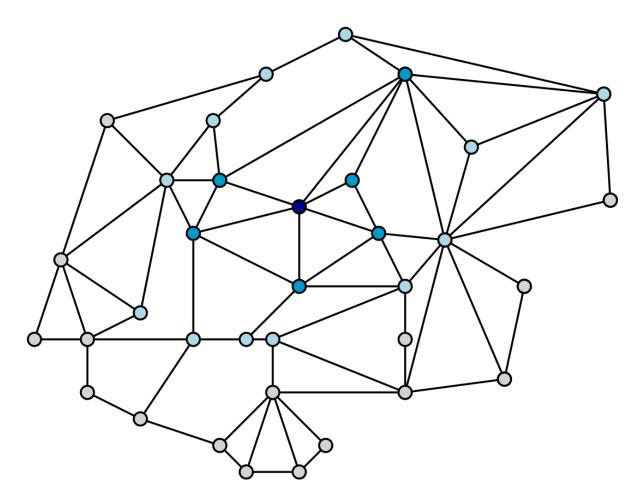
 $O(\log^2 \Delta)$ rounds

$$O(\log^2 \Delta \cdot \log n)$$



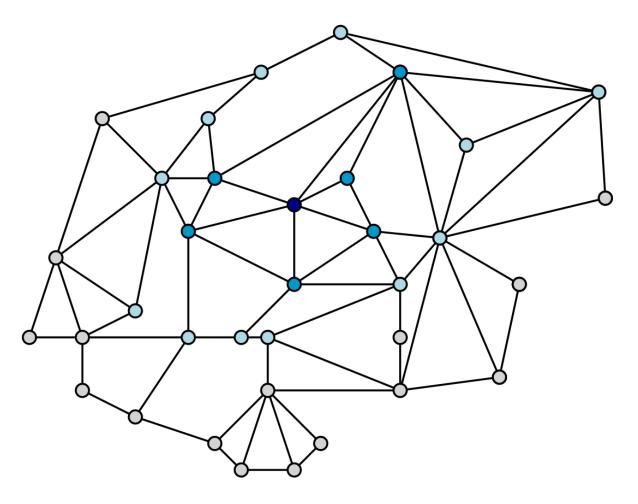
maximum matching size in remainder graph decreases by constant factor

after $O(\log n)$ iterations, maximum matching size is 0, hence graph empty



<u>Open Question:</u> $O(\log \Delta \cdot \log n)$?

What is Locality of Maximal Matching?



Thank you!

<u>Open Question:</u> $O(\log \Delta \cdot \log n)$?

What is Locality of Maximal Matching?