
The Locality of Maximal Matching

Manuela Fischer
ETH Zurich



Locality



Locality



Locality



Locality



Locality



LOCAL Model Linial [FOCS’87]



LOCAL Model Linial [FOCS’87]

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation 

• sends message to all its neighbors

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation 

• sends message to all its neighbors

• unbounded message size 

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation 

• sends message to all its neighbors

• unbounded message size 

• unbounded computation

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation 

• sends message to all its neighbors

• unbounded message size 

• unbounded computation

• Round Complexity: 
number of rounds to solve the problem

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation 

• sends message to all its neighbors

• unbounded message size 

• unbounded computation

• Round Complexity: 
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation 

• sends message to all its neighbors

• unbounded message size 

• unbounded computation

• Round Complexity: 
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation 

• sends message to all its neighbors

• unbounded message size 

• unbounded computation

• Round Complexity: 
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation 

• sends message to all its neighbors

• unbounded message size 

• unbounded computation

• Round Complexity: 
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

standard synchronous message-passing model of distributed computing



LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation 

• sends message to all its neighbors

• unbounded message size 

• unbounded computation

• Round Complexity: 
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

standard synchronous message-passing model of distributed computing

every problem is trivially solvable in 𝑶 𝐝𝐢𝐚𝐦𝐞𝐭𝐞𝐫 rounds
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(Δ + 1)-Vertex-ColoringMaximal Independent Set

Classic LOCAL Graph Problems

(2Δ − 1)-Edge-ColoringMaximal Matching

Easy centralized problems: greedy solutions. 
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Maximal Matching

Matching: 
set of non-incident edges 

Maximal:
no edge can be added

greedy property!
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LOCAL Algorithm Mimicking Sequential Algorithm

can take 𝛀 𝐝𝐢𝐚𝐦𝐞𝐭𝐞𝐫 rounds 
in worst case

Random Numbers:

𝑶 𝐥𝐨𝐠 𝒏 rounds w.h.p.
Luby [STOC’85]
F., Noever [SODA’18]
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𝔼 #removed edges per round ≥ 𝑐|𝐸𝑖| 𝑂 log 𝑛 rounds w.h.p.
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Our Result

deterministic 𝑂 log2 Δ ⋅ log 𝑛 -round Maximal Matching

improving over

𝑂 Δ + log∗ 𝑛  
Panconesi, Rizzi [DIST’01]

𝑂 log4 𝑛  
Hańćkowiak, Karoński, Panconesi [SODA’98, PODC'99]



Overview of Results

Maximal Matching

• Maximal Matching O log2 Δ ⋅ log n

• Randomized Maximal Matching    O log3 log n + log Δ   

Approximate Matching

• (2 + ε) - Approximate Maximum Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum Weighted Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum B-Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum Weighted B-Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• ε - Maximal Matching O log2Δ ⋅ log
1

ε

• 2 + ε - Approximate Minimum Edge Dominating Set O log2Δ ⋅ log
1

ε
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Gradual Rounding
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Factor-2-Rounding

Direct Rounding

Gradual Rounding

⊇
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Factor-2-Rounding

Direct Rounding

Gradual Rounding

⊇
using Locally Balanced Splitting,
inspired by 
Hańćkowiak, Karoński, Panconesi [SODA’98,PODC’99]
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Maximal Matching 
in Degree-2-Graph

𝑶(𝟏) rounds, 
𝑶(𝟏)-factor loss

Panconesi, Rizzi
[DIST’01]
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Constant - Approximate Matching      𝑂 log2 Δ rounds

Maximal

maximum matching size in remainder graph decreases by constant factor

after 𝑶(𝐥𝐨𝐠 𝒏) iterations, maximum matching size is 0, hence graph empty
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What is Locality of Maximal Matching?

Thank you!
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