
Distributed
 Computing

FS 2011 Prof. R. Wattenhofer
Stephan Holzer

Principles of Distributed Computing

Exercise 10

1 Counting with Asynchronous Wake-up

Recall the counting problem in dynamic networks presented in the lecture. Communication is
synchronous, message size arbitrary, and each node has an unique identifier. We want all nodes
to learn the number of nodes n.

We assume that the dynamic graph G = (V,E) is 2-interval connected, i.e., for any two
subsequent rounds r, r + 1, the (“static”) graph (V,E(r) ∩ E(r + 1)) is connected.

Now we drop the assumption from the lecture that all nodes wake up at the same time. Instead,
some node u ∈ V wakes up by itself, while all other nodes start executing the respective algorithm
when they receive the first message.

a) Show that anything that can be done if a single node u starts the computation and all other
nodes are woken up when they receive the first message, can also be done if nodes can also
wake up spontaneously, without receiving a message. Note that nodes still wake up upon
receiving the first message if they are not awake by that time.

b) Devise an algorithm that receives an input k and lets u decide whether k ≤ n or k > n
within O(k) rounds.

Hint: Make u wake up all nodes and collect all identifiers assuming that we have
less than k nodes. With a little extra time, one will see more than k identifiers
if n > k.

c) Use your algorithm as a subroutine for an algorithm that determines n up to a factor 2 in
O(n) time. Can n also be determined exactly?

2 Token Dissemination

Suppose node u holds n tokens and a message may carry at most a constant number of tokens.
We require that all nodes learn all tokens.

Suppose a token dissemination algorithm exhibits the following “reasonable” behaviour. Nodes
decide what to broadcast in round r based on the round number and the set of tokens they know.
In particular, once a node knows all tokens, its schedule depends only on the round number.
Show that even though the graph is 1-interval connected, it may take Ω(n2) time until a correct
algorithm (from this restricted class) terminates.

