ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation

Presentation by Alec Pauli
Session-based Recommendation Systems
Recommender Systems

YouTube:
• 168,055,344,000 hours of video
• Enough to watch for more than 200’000 lives

Amazon:
• 350 million products
• Enough to buy every day around 12000 products

* Based on a life expectancy of 80 years
We have to cool them down to ~273°C to be able to capture anything at all.
Amazon

514 Billions * 1% * 10% = 0.5 Billion
Recommender Systems

Content-based
Future interactions are predicted based on the characteristics of a specific item.

Collaborative filtering
Finds similar actions taken by other users.
Session based recommender Systems

No login required
As a session is normally a short continuous interaction with the service already are able to predict without a large history

High quality datasets
With the rising popularity of new social networks and content platforms new datasets were open-sourced/collected

Privacy regulations
For example, GDPR makes storing large datasets more complicated. Even more important is the new E-Privacy regulation

Deep Learning advances
Naturally fits into paradigms of Deep learning. Thus advances in Deep Learning such as RNNs can be directly applied
Recommender Systems are dynamic systems.
Catastrophic forgetting

Learning task 1

Learning task 2

Learning task f
Catastrophic cartoon solution

Learning task 2
Ader

How to split available space

Which datapoints
Sample Dataset

Stock items

Dataset
Split on the available space
Selection of Exemplars of the 🎈 class
Selection of Exemplars of the 🎍 class
Open questions

- How do we compute the loss for training?
- Which type of network is used?
KD - Loss
CE - Loss
Combination
Model – SASRec – Previous models

Markov Chain

• Good at short term realtionships

Recurrent Neuronal Network

Perform best with long term semantics
Model – SASRec – High level idea

SASRec
Tries to combine the strengths of MC and RNN’s via an attention mechanism
Adaptively Distilled Exemplar Replay

\[S = D_{t-1} \]

Recommender Network \(f(w_0) \)

Predict action

\[S = D_t \cup E_{t-1} \]

Recommender Network \(f(w_1) \)

Predict action

\[S = D_{t+1} \cup E_t \]

Recommender Network \(f(w_2) \)

Predict action
Experiments

Recall@k:

\[
\text{Element 1} \quad \text{Element 2} \quad \text{Element 3} \\
\text{Element 4} \quad \text{Element 5} \\
\ldots \\
\ldots \\
\ldots \\
\frac{\text{#in first k}}{\text{#total}}
\]

MRR@k:

\[
\text{Element 1} \\
\text{Element 2} \\
\text{Element 3} \\
\text{Element 4} \\
\text{Element 5} \\
\frac{1}{\text{#total}} \sum_{i=1}^{\text{#total}} \frac{1}{\text{corresp. m}}
\]
Comparison against Ader

- Finetune
- Dropout
- Joint
- EWC
Dropout

Figure 1. Networks trained with dropout tend to forget at a slower rate. The lines represent the evolution of the validation accuracy of the first task, as networks learn new tasks.
EWC model
Diginetica

Click stream data of e-commerce site

5 Months
YouChoose

Click stream data of different e-commerce site

6 Months

Less dynamic
YouChoose Diginetica

For YouChoose the update interval is daily and for Diginetica weekly

Still Youchoose has around 4 times more Actions in each interval
Results of the Diginetica dataset

Performance on DIGINETICA with 30k exemplars

Recall@20

Recall@10

- Finetune
- Dropout
- EWC
- Joint
- Ader
Results of the Diginetica dataset

Performance on DIGINETICA with 30k exemplars
Results of the YOOCHOOSE dataset

Performance on Youchoose with 30k exemplars

Recall@20

Recall@10
Results of the YOOCHOOSE dataset

Performance on YouChoose with 30k exemplars

- MRR@20
- MRR@10
Performance over the weeks

DIGINETICA

YOOCHOOSE

Recall@20(%) vs week

MRR@20(%) vs day

- Finetune
- Dropout
- EWC
- Joint
- ADER
Effect of exemplar size
Ablation study

random

loss

herding

equal

fix

Ader
Ablation study
Personal opinion

How to use space
Generally good written
Better than a upper baseline
Herding technique
Exemplar sizes

Diginetica
Around 50’000 samples per iteration

YouChoose
Around 200’000 samples per iteration
Main sources:

- https://towardsdatascience.com/introduction-to-recommender-systems-1-971bd274f421
- https://www.google.com/search?client=safari&rls=en&q=session+based+recommender+springer&ie=UTF-8&oe=UTF-8
- https://github.com/kang205/SASRec
Backup Slides / Support for discussion
CE Loss

Cross entropy according to current data

\[L_{CE}(\theta_t) = -\frac{1}{|D_t|} \sum_{(x, y) \in D_t} \sum_{i=1}^{|I_t|} \delta_{i=y} \cdot \log(p_i) \]
KD Loss

\[L_{KD}(\theta_t) = -\frac{1}{|E_{t-1}|} \sum_{(x,y)\in E_{t-1}} \sum_{i=1}^{I_{t-1}} \hat{p}_i \cdot \log(p_i), \]
Total Loss

\[L_{ADER} = L_{CE} + \lambda_t \cdot L_{KD}, \quad \lambda_t = \lambda_{base} \sqrt{\frac{|I_{t-1}|}{|I_t|} \cdot \frac{|E_{t-1}|}{|D_t|}} \]

Small if either a lot of new actions are available or a lot of new data
Algorithm for choosing exemplars

Pseudoalgorithm for selection in loop t:

For all items y:

\[P_y = \text{elements with the same } y \]

\[\mu = \text{Average of the } y \text{ according to the output of the model} \]

for k from 1 to number of elements to store for this action

\[\argmin_{x \in P_y} \left| \mu - \frac{1}{k} (\phi(x) + \sum_{j=1}^{k-1} \phi(x_j)) \right| \]

Use the union of all elements chosen
Important training parameters

- SASRec used 150 hidden units and 2 stacked self-attention blocks
- Batch size is 256 for Diginetica and 512 for YOOCHOOSE
- The Adam Optimizer was used with a learning rate of 5e-4
- Train default was 100 epochs that were lowered if Recall@20 didn’t improve for 5 epochs