Generative models model the joint probability distribution $P(X, Y)$ over the input X and output Y.

Generative models can be used to **generate** examples.

Deep Generative Models

They are generative models that use deep learning, e.g. GPT-1/2/3, VAEs, GANs.

(a) GPT2 [6] generates text from the given prompt

(b) Imaginary celebrities generated by Progressive GAN [3]
Graphs are used to model data containing relations among distinct entities.

Graph generation aims to generate graphs with some desired properties.

Figure: Schematic comparison of material discovery paradigms [7]
Challenges

- **Discreteness:** Graphs are discrete structures
- **Variability:** Graphs can be of different sizes
- **Ordering:** Graph nodes and edges are unordered
Working with graphs as adjacency matrices helps tackle the **discreteness** problem.

This leads to two popular classes of deep graph generators:

- **Single-Shot**: Outputs the entire adjacency matrix at once
- **Autoregressive**: Sequentially outputs each row of the adjacency matrix
SINGLE-SHOT MODELS
These tackle the **variability** problem by fixing a maximum size for the graph. Then they prune the adjacency matrix.

Different models tackle the **ordering** problem in different ways.

We study the following single-shot models:

- GraphVAE [8]
- MolGAN [1]
SINGLE-SHOT MODELS

GRAPHVAE
GraphVAE uses a Variational Autoencoder [4] (VAE) setup.
GraphVAE Encoder

It is a GNN that takes $G = (A, E, F)$ and the graph properties y.

It models $q_\phi(z|G)$ for the latent vector z.
GraphVAE Decoder

It is an MLP that takes a latent vector z and the graph properties y.

It models $p_\theta(G|z)$ with the **probabilistic adjacency matrix** \tilde{A} and the class probabilities \tilde{E}, \tilde{F}.
The PAM \tilde{A} is of size $k \times k$, where k is the maximum graph size.

Each element is a sigmoid probability, which is \textit{thresholded} during inference.
The diagonal element \tilde{A}_{ii} shows whether to keep node i.

The off-diagonal element \tilde{A}_{ij} shows whether to keep edge $i \to j$.
During training, the decoder will be fed $z \sim q_\phi(z|G)$.

During inference, it will be fed $z \sim \mathcal{N}(0, I)$.

The decoder loss consists of the cross-entropy loss for \(\tilde{A} \), \(\tilde{E} \) and \(\tilde{F} \).

However, due to the ordering problem, the node orders between \(\tilde{G} \) and \(G \) can differ.
Approximate graph matching is used to assign nodes from \tilde{G} to nodes in G.

This gives us $X \in \{0, 1\}^{k \times n}$, where $X_{ij} = 1$ iff node $i \in \tilde{G}$ is assigned to node $j \in G$.

However, it is very slow.
GraphVAE Decoder Loss

The cross-entropy losses are now calculated for the following:

\[A'_{k \times k} = XAX^T - \tilde{A}_{k \times k} \]
\[E_{n \times n} - \tilde{E}'_{n \times n} = X^T \tilde{E}X \]
\[F_n - \tilde{F}'_n = X^T \tilde{F} \]

The final decoder loss is a weighted sum of these loss terms.
GraphVAE Results

Figure: GraphVAE inputs (in green) and outputs
SINGLE-SHOT MODELS

MolGAN
It is an MLP that takes a latent vector $z \sim \mathcal{N}(0, 1)$.

It generates the PAM A and the node attributes X.
MolGAN tackles the **variability** problem using the PAM.

During inference, instead of pruning the PAM, they **sample** from the probabilities.
It is a GNN that takes the PAM A and the node attributes X.

It returns the **reward** for the input molecule’s properties.
It is another GNN that takes the PAM A and the node attributes X.

It predicts whether its inputs are from the dataset or generated by the generator.
The generator aims to fool the discriminator, while the discriminator aims to catch the generator.

\[\mathcal{L}_{GAN}(\text{Disc}(G), \text{Disc}(\text{Gen}(z))) \]

The generator aims to minimize the GAN loss, while the discriminator aims to maximize it.
The GAN loss is:

\[\mathcal{L}_{GAN}(\text{Disc}(G), \text{Disc}(\text{Gen}(z))) \]

The generator’s outputs must pass through the discriminator before interacting with the ground-truth.
Since the discriminator is a GNN, it is invariant to node ordering.

Thus, the ordering problem does not affect MolGAN.
MolGAN Results

Figure: QM9 samples vs MolGAN outputs
GraphVAE vs MolGAN

<table>
<thead>
<tr>
<th></th>
<th>GraphVAE</th>
<th>MolGAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Encoder-decoder</td>
<td>Generator-discriminator</td>
</tr>
<tr>
<td>PAM</td>
<td>Thresholding</td>
<td>Sampling</td>
</tr>
<tr>
<td>Graph-matching</td>
<td>Required, expensive</td>
<td>None</td>
</tr>
<tr>
<td>Convergence</td>
<td>VAEs are easier to train</td>
<td>GANs are hard to train</td>
</tr>
</tbody>
</table>
Autoregressive Models
Autoregressive models tackle the **variability** problem by generating the rows of the adjacency matrix **sequentially**.

They can decide to stop generating by outputting a special token.
These models usually deal with the **ordering** problem by considering **all** node orders from a set of canonical orderings.

We study the following autoregressive models:

- GraphRNN [9]
- GRAN [5]
Autoregressive Models

GraphRNN
GraphRNN uses Gated Recurrent Units (GRUs) in a hierarchical setup.
Let the sequence of rows of the adjacency matrix be S^π. A **graph-level** RNN generates nodes by modelling $p(S^\pi_i | S^\pi_{<i})$.

These variable-length sequences help solve the **variability** problem.
To capture complex edge dependencies, $p(S_i^\pi | S_{<i}^\pi)$ is decomposed as:

$$p(S_i^\pi | S_{<i}^\pi) = \prod_{j=1}^{i-1} p(S_{i,j}^\pi | S_{i,<j}^\pi, S_{<i}^\pi)$$

This is done using an edge-level RNN to generate edges of each node.
GraphRNN is optimized using SGD to maximize $p(G)$:

$$
p(G) = \sum_{\pi \in \Pi} p(S^\pi)
$$

Π is the set of all orderings. Thus, it solves the ordering problem.

However, $|\Pi| = O(N!)$. Hence, GraphRNN restricts it to a set of canonical orderings based on BFS.
Multiple node orderings can map to the same BFS ordering.

Considering only unique BFS orderings, $|\Pi_{BFS}|$ can drop substantially.
More Benefits of BFS

v_6 will be added to the BFS queue just after v_3 is removed.

Thus, the gap between v_3 and v_6 in the BFS order cannot exceed the max size of the BFS queue.
More Benefits of BFS

If we know the max size M of the BFS queue, then the edge-level RNN can **skip** $(0, \ldots, i - M - 1)$.
GraphRNN Results

Figure: GraphRNN results on various datasets
AUTOREGRESSIVE MODELS

GRAN
Graph Recurrent Attention Networks (GRANs) are a family of RNN-based models with attention.
GRANs use the same loss and setup as GraphRNN:

\[p(G) = \sum_{\pi \in Q} p(L^\pi) \geq \sum_{\pi \in \tilde{Q}} p(L^\pi) \]

where \(\tilde{Q} \subseteq Q \)

However, instead of using BFS for \(\tilde{Q} \), they use a combination of various techniques.
GRAN Architecture

Downsides of hierarchical RNNs:

- RNNs suffer from vanishing gradients.
- Each graph-level RNN step cannot be run in parallel.

Thus, GRANs use a GNN at the graph-level to generate edges.
GNN Setup

The GNN uses the graph generated in the previous step to generate B new nodes.
The initial node representations of the GNN are:

\[h_i^0 = \begin{cases}
 WL_i^\pi + b & \text{i} \leq B(t - 1) \\
 0 & \text{otherwise}
\end{cases} \]

Here, \(L_i^\pi \in \mathbb{R}^N \), where \(N \) is the maximum size of the graph.
The GNN update step uses a GRU (RNN) cell:

\[h_{i}^{r+1} = \text{GRU}(h_{i}^{r}, \sum_{j \in \mathcal{N}(i)} a_{ij}^{r} m_{ij}^{r}) \]

Here, \(m_{ij}^{r} \)'s are a transformation of \((h_{i}^{r}, h_{j}^{r}) \), while \(a_{ij}^{r} \)'s are attention weights.
After R message-passing rounds, $p(L_{b_t}^{\pi} | L_{b<t}^{\pi})$ is modelled as a mixture model:

$$p(L_{b_t}^{\pi} | L_{b<t}^{\pi}) = \sum_{k=1}^{K} \alpha_k \prod_{i \in b_t} \prod_{1 \leq j \leq i} \theta_{kij}$$

Here, θ_{kij}’s are another transformation of (h_i^r, h_j^r), while α_k’s are mixture probabilities.
A higher value of B improves generation speed, while a lower value of B improves accuracy.

Thus, the authors propose “strided sampling” to balance these.
After generating B rows, they **only keep** the first S rows. The next block is generated from the $(S + 1)$-th row.

However, during training, they fix $S = 1$.
Figure: GRAN for Protein Graphs
<table>
<thead>
<tr>
<th></th>
<th>GraphRNN</th>
<th>GRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Hierarchical RNNs</td>
<td>GNN with attention and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNN updates</td>
</tr>
<tr>
<td>Edge Updates</td>
<td>Single-row updates</td>
<td>Strided sampling</td>
</tr>
<tr>
<td>Graph Size</td>
<td>Variable</td>
<td>Fixed maximum size</td>
</tr>
<tr>
<td>Ordering</td>
<td>BFS-based</td>
<td>Mixture of orderings</td>
</tr>
</tbody>
</table>
SUMMARY

- Major challenges — discreteness, variability, & ordering
- Working with the adjacency matrix — tackles discreteness
- Two popular approaches — single-shot & autoregressive
Approach Comparison

<table>
<thead>
<tr>
<th></th>
<th>Single-Shot</th>
<th>Autoregressive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variability</td>
<td>PAM Quantization</td>
<td>Sequential generation</td>
</tr>
<tr>
<td>Ordering</td>
<td>Varies</td>
<td>Canonical Orderings</td>
</tr>
<tr>
<td>Graph Size</td>
<td>Fixed maximum size</td>
<td>Usually variable</td>
</tr>
<tr>
<td>Speed</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>
Model Comparison

Grid

Train

GraphVAE

GraphRNN

GRAN (Ours)

Protein
Thank You!

