Meta-Learning

DRL Seminar

Philippe Blatter
Overview

- Introduction to Meta-Learning
- Model-Agnostic Meta-Learning (MAML)
- Optimization-based approaches
- Meta-Learning in RL
Supervised Learning Paradigm

- Large datasets
- Large models
- Long training time

Transformer
([1] Vaswani et al. 2017)
Possible Problems

Large datasets might not be available

General-purpose AI

Long-tailed data

Finn et al. 2017
Example

2-way

Braque

Cezanne

3 shots

Braque or Cezanne?

Can we learn to learn?

Problem Setting

D^t_tr

D^t_ts

D

$D_{\text{meta-train}}$

D_1

D_2

\[2\] Finn et al. 2017
Problem Setting

Supervised learning:

\[\arg \max_{\phi} \log p(\phi|D) \]

Meta-learning:

\[\arg \max_{\phi} \log p(\phi|D, D_{\text{meta-train}}) \]

\[D = \{(x_1, y_1), \ldots, (x_k, y_k)\} \]

\[D_{\text{meta-train}} = \{D_1, \ldots, D_n\} \]

\[D_i = \{(x_1^i, y_1^i), \ldots, (x_k^i, y_k^i)\} \]

Meta-Learning Terminology

D^{tr}

D^{ts}

D_1

D_2

D

meta-training

θ^*

use θ^* find ϕ^*

Meta-Learning Problem

\[
\theta^* = \arg \max_{\theta} \log p(\theta | D_{\text{meta-train}})
\]

\[
\phi^* = \arg \max_{\phi} \log p(\phi | D, D_{\text{meta-train}}) = \arg \max_{\phi} \log p(\phi | D, \theta^*)
\]

adaptation
(Meta) Test-Time

Adaptation:

\[\phi^* = \arg\max_{\phi} \log p(\phi|D, \theta^*) \]

\[D^{tr} \]

\[x^{tr}, y^{tr} \]

\[M_{tr} \]

\[D^{ts} \]

\[x^{ts}, y^{ts} \]

\[M_{ts} \]

(Meta) Training-Time

Meta-Learning:

\[\theta^* = \arg \max_{\theta} \log p(\theta | D_{\text{meta-train}}) \]

Complete Meta-Learning Problem

Meta-learning: \[\theta^* = \arg \max_{\theta} \log p(\theta | D_{\text{meta-train}}) \]

Adaptation: \[\phi^* = \arg \max_{\phi} \log p(\phi | D, \theta^*) \]

Learn \(\theta \) such that \(\phi_i = f_\theta(D_i^{tr}) \) is good for \(D_i^{ts} \) for all tasks \(i \)

\[\theta^* = \arg \max_{\theta} \sum_{i=1}^{n} \log p(\phi_i | D_i^{ts}) \]

where \(\phi_i = f_\theta(D_i^{tr}) \)

Model-Agnostic Meta-Learning (MAML)

\[\min_{\theta} \sum_{\text{task } i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, D_i^{\text{tr}}, D_i^{\text{ts}})) \]

\[\theta \] parameter vector being meta-learned

\[\phi_i^* \] optimal parameter vector for task i

Model-Agnostic Meta-Learning

“In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task.”

\[\phi \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, D_{tr}^{tr}) \]

pre-trained parameters

training data for new task

Fine-tuning [test-time]

Meta-learning

\[\min_{\theta} \sum_{\text{task } i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, D_{i}^{tr}), D_{i}^{ts}) \]

\[\phi_i \]

Understanding the Effectiveness of MAML

- Rapid Learning: large representational changes occur during adaptation to new task

- Feature Reuse: Meta-initialization already contains highly useful features that can be reused for new tasks

Freezing Layer Representations

Performance hardly changes.

-> Feature Reuse

\[D^{tr} \rightarrow \theta^* \rightarrow \phi^* \rightarrow y^{ts} \]

\[D^{ts} \rightarrow x^{ts} \]

Representational Similarity Experiments

- Measure changes in the latent representations learned by the NN during adaptation using Canonical Correlation Analysis (CCA)

- Highly similar representations in the body of the network
 - \(\text{CCA}(L1,L2) \)
 - \(\Rightarrow \) No functional change
 - \(\Rightarrow \) No rapid learning

ANIL Algorithm: Almost no Inner Loop (Adaptation)

- Similar Performance to MAML

\[\min_{\theta} \sum_{i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, D_{i}^{tr}, D_{i}^{ts})) \]

\[\phi_{i} \]

MAML

\[\theta^{*}_{T_{b}} = \left(\theta_{1} - \alpha \frac{\partial L_{T_{b}}(\theta)}{\partial \theta_{1}}, \theta_{2} - \alpha \frac{\partial L_{T_{b}}(\theta)}{\partial \theta_{2}}, \theta_{\text{head}} - \alpha \frac{\partial L_{T_{b}}(\theta)}{\partial \theta_{\text{head}}} \right) \]

\[\text{Task}_{T_{b}} \quad \theta = (\theta_{1}, \theta_{2}, \theta_{\text{head}}) \]

\[\theta^{*}_{T_{d}} \quad \text{Task}_{T_{d}} \]

\[\theta^{*}_{T_{c}} \quad \text{Task}_{T_{c}} \]

ANIL

\[\theta^{*}_{T_{b}} = \left(\theta_{1}, \theta_{2}, \theta_{\text{head}} - \alpha \frac{\partial L_{T_{b}}(\theta)}{\partial \theta_{\text{head}}} \right) \]

\[\text{Task}_{T_{b}} \quad \theta = (\theta_{1}, \theta_{2}, \theta_{\text{head}}) \]

\[\theta^{*}_{T_{d}} \quad \text{Task}_{T_{d}} \quad \theta^{*}_{T_{d}} \quad \text{Task}_{T_{c}} \]

Learning to learn by gradient descent by gradient descent

hand-designed features → learned features

hand-designed optimization algorithms → learned optimization algorithms

“Casting algorithm design as a learning problem”

Learning to learn by gradient descent

Learning to learn by gradient descent by gradient descent

hand-designed optimization algorithms

learned optimization algorithms

“Casting algorithm design as a learning problem”

\[\theta_{t+1} = \theta_t - \alpha_t \nabla f(\theta_t) \]

\[\theta_{t+1} = \theta_t + g_t(\nabla f(\theta_t), \phi) \]

Learning to learn by gradient descent
by gradient descent

Learning to learn by gradient descent by gradient descent

Quadratics

Loss

- ADAM
- RMSprop
- SGD
- NAG
- LSTM

Step

MNIST

[MNIST, 200 steps]

Learning to learn by gradient descent

Andrychowicz et al. 2016

Meta-Learning in RL

Meta-Learning in RL

Reinforcement learning:

$$\theta^* = \arg \max_{\theta} E_{\pi_{\theta}(\tau)}[R(\tau)]$$

$$= f_{RL}(M) \quad M = \{S, A, P, r\}$$

\[\text{MDP}\]

Meta-reinforcement learning:

$$\theta^* = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $$\phi_i = f_{\theta}(M_i)$$

\[\text{MDP for task } i\]

"We view the learning process of the agent itself as an objective, which can be optimized using standard RL algorithms."

RL² – Fast RL via Slow RL

Policy is modeled by a RNN

RL2 – Fast RL via Slow RL

Environment is modeled by a MDP

RL² – Fast RL via Slow RL

next state, action, reward and termination flag

RL2 – Fast RL via Slow RL

RL² – Fast RL via Slow RL

Hidden state is kept

Diagram showing the flow of states and actions in two episodes:
- **Episode 1:** States s_0, s_1, s_2, s_3, s_0, s_1, s_2 with actions a_0, a_1, a_2, a_0, a_1, a_0, a_1 and rewards r_0, d_0, r_1, d_1, r_2, d_2, r_0, d_0, r_1, d_1.
- **Episode 2:** States s_0, s_1, s_2, s_3, s_0, s_1, s_2 with actions a_0, a_1, a_2, a_0, a_1, a_0, a_1 and rewards r_0, d_0, r_1, d_1, r_2, d_2, r_0, d_0, r_1, d_1.

MDP 1 (Trial 1): s_0, s_1, s_2, s_3, s_0, s_1, s_2

MDP 2 (Trial 2): s_0, s_1, s_2, s_3, s_0, s_1, s_2

RL² – Fast RL via Slow RL

Second trajectory is almost always shorter

Generalizes to larger mazes

Thought Experiment

We assumed that learning optimization algorithms was better than hand-designing optimization algorithms. But why do we think that hand-designing meta-learning algorithms is optimal and why don’t we meta-meta-learn them?

METACEPTION
References

