Stochastic Planning in Games

Peter Müller
Why Games?

0 0 0
0 O X
X X

0 0
0 O
X X

- Chess board
- Tic Tac Toe
- Maze game
Tic-Tac-Toe

1 1 0 0 0
1 0 1 -1 0 -1 -1 0 0 1 1 -1 -1
1 0 1 -1 0 -1 -1 0 0 1 1 -1 -1
Tic-Tac-Toe
COMPLETE MAP OF OPTIMAL TIC-TAC-TOE MOVES

YOUR MOVE IS GIVEN BY THE POSITION OF THE LARGEST RED SYMBOL ON THE GRID. WHEN YOUR OPPONENT PICKS A MOVE, ZOOM IN ON THE REGION OF THE GRID WHERE THEY WENT. REPEAT.
Chess

- Branching Factor: 35
- Game Length: 80
Evaluation Function

White: 2x Bishop (3 points) + 5x Pawn (1 point) = 11 points
Evaluation Function

White: 2x Bishop (3 points) + 5x Pawn (1 point) = 11 points

Black: 1x Rook (5 points) + 1x Pawn (1 point) = 6 points
Evaluation Function

White: 2x Bishop (3 points) + 5x Pawn (1 point) = 11 points

Black: 1x Rook (5 points) + 1x Pawn (1 point) = 6 points

Eval: 11 - 6 = 5 points
Evaluation Function

White: 2x Bishop (3 points) + 5x Pawn (1 point) = 11 points

Black: 1x Rook (5 points) + 1x Pawn (1 point) = 6 points

Eval: 11 - 6 = 5 points

Equal

Black advantage (min player) Equal White advantage (max player)
Evaluation Function

White: 2x Bishop (3 points) + 5x Pawn (1 point) = 11 points

Black: 1x Rook (5 points) + 1x Pawn (1 point) = 6 points

Eval: 11 - 6 = 5 points

-2 -1 0 +1 +2

Black advantage (min player) Equal White advantage (max player)
Max

```
3
/  
-/  3  5  1
```

This is a binary tree diagram with nodes labeled with the values -1, 3, 5, and 1.
Min

1. 3
2. 3 5 1
3. -1 3 5 1

Max

1. 3
2. 5
3. -6 -4
Min

3

Max

3

3

5

≥5

-1

3

5

Gray
\[\min \geq 5 \]
Min

Max

\[\text{Max: } \geq 5 \]

\[\text{Min: } \geq 5 \]
Go

- Branching Factor: 250
- Game Length: 150
Monte Carlo Tree Search
Monte Carlo Tree Search

1. Selection (Tree Traversal)

\[UCB1(s_i) = \frac{w_i}{n_i} + C \sqrt{\frac{\ln N}{n_i}} \]

2. Expansion

3. Simulation (Rollout)

4. Backpropagation
Monte Carlo Tree Search

Exploitation vs. Exploration

• Exploit promising actions
• Explore little known actions
Monte Carlo Tree Search

Exploitation vs. Exploration

• Exploit promising actions
• Explore little known actions

\[UCB1(s_i) = \frac{w_i}{n_i} + C \sqrt{\frac{\ln N}{n_i}} \]
Monte Carlo Tree Search

1. Selection (Tree Traversal)

\[UCB1(s_i) = \frac{w_i}{n_i} + C \sqrt{\frac{\ln N}{n_i}} \]

2. Expansion

3. Simulation (Rollout)

4. Backpropagation
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2\sqrt{\frac{\ln N}{n_i}} \]

- \(s_0 \)
 - \(w_0 = 0 \)
 - \(n_0 = 0 \)
- \(s_1 \)
 - \(w_1 = 0 \)
 - \(n_1 = 0 \)
- \(s_2 \)
 - \(w_2 = 0 \)
 - \(n_2 = 0 \)
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]

- \(s_0 \) with \(w_0 = 0 \) and \(n_0 = 0 \)
- \(s_1 \) with \(w_1 = 0 \) and \(n_1 = 0 \)
- \(s_2 \) with \(w_2 = 0 \) and \(n_2 = 0 \)
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

UCB1(s_i) = \frac{w_i}{n_i} + 2\sqrt{\frac{\ln N}{n_i}}
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2\sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2\sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2\sqrt{\frac{\ln N}{n_i}} \]

- \(s_0 \) with 1 child:
 - \(s_1 \):
 - \(w_1 = 1 \)
 - \(n_1 = 1 \)
 - \(s_2 \):
 - \(w_2 = 0 \)
 - \(n_2 = 0 \)
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

$UCB1(s_i) = \frac{w_i}{n_i} + 2\sqrt{\frac{\ln N}{n_i}}$
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCBI(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]

1. \(s_0 \)
 - \(w_0 = 1 \)
 - \(n_0 = 2 \)

2. \(s_1 \)
 - \(w_1 = 1 \)
 - \(n_1 = 1 \)

3. \(s_2 \)
 - \(w_2 = 0 \)
 - \(n_2 = 1 \)
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2\sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]

- \(s_0 \):
 - \(w_0 = 1 \)
 - \(n_0 = 2 \)

- \(s_1 \):
 - \(w_1 = 1 \)
 - \(n_1 = 1 \)

- \(s_2 \):
 - \(w_2 = 0 \)
 - \(n_2 = 1 \)

- \(s_3 \):
 - \(w_3 = 0 \)
 - \(n_3 = 0 \)

- \(s_4 \):
 - \(w_4 = 0 \)
 - \(n_4 = 0 \)

- \(s_t \): win
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

$U_{CB1}(s_i) = \frac{w_i}{n_i} + 2\sqrt{\frac{\ln N}{n_i}}$

- s_0: $w_0 = 1$, $n_0 = 2$
- s_1: $w_1 = 2$, $n_1 = 2$
- s_2: $w_2 = 0$, $n_2 = 1$
- s_3: $w_3 = 1$, $n_3 = 1$
- s_4: $w_4 = 0$, $n_4 = 0$
- s_t: win
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

$$UCB1(s_i) = \frac{w_i}{n_i} + 2\sqrt{\frac{\ln N}{n_i}}$$
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]
MCTS

1. Selection
2. Expansion
3. Simulation
4. Backpropagation

\[UCB1(s_i) = \frac{w_i}{n_i} + 2 \sqrt{\frac{\ln N}{n_i}} \]
Value Network

How well are we doing?
Policy Network

What are the most likely actions?
Policy Network

What are the most likely actions?
AlphaGo

A rollout policy, SL policy network, RL policy network, and value network are shown. The rollout policy (\(p_\pi \)) is connected to the SL policy network (\(p_\alpha \)) via a policy gradient. The RL policy network (\(p_\rho \)) is connected to the value network (\(v_\theta \)).

Data
- Human expert positions
- Self-play positions

Neural network
- Policy network (\(p_{\alpha|\rho}(a|s) \))
- Value network (\(v_\theta(s') \))
AlphaGo MCTS

\[u(a) = v(a) + p(a) \cdot p_b c \]
\[u(a) = v(a) + p(a) \cdot pb_c \]
\[u(a) = v(a) + p(a) \cdot pb_c \]
AlphaGo MCTS

\[u(a) = v(a) + p(a) \cdot p b_c \]
AlphaGo MCTS

\[u(a) = v(a) + p(a) \cdot pb_c \]
AlphaGo MCTS

\[u(a) = v(a) + p(a) \cdot pb_c \]
Domains

Knowledge

AlphaGo becomes the first program to master Go using neural networks and tree search
(Jan 2016, Nature)

AlphaGo Zero learns to play completely on its own, without human knowledge
(Oct 2017, Nature)

AlphaZero masters three perfect information games using a single algorithm for all games
(Dec 2018, Science)
AlphaGo Zero MCTS
AlphaZero Training

\[(p, v) = f_\theta(s), \quad l = (z - v)^2 - \pi^T \log p + c ||\theta||^2\]
AlphaGo Zero Results
Atari

- Image Input
- No Access to rules
MuZero Planning
MuZero Planning

representation $h_\theta(o_1, \ldots, o_t) = s^0$
MuZero Planning

representation \[h_\theta(o_1, \ldots, o_t) = s^0 \]

prediction \[f_\theta(s^k) = p^k, v^k \]
MuZero Planning

representation: \(h_\theta(o_1, \ldots, o_t) = s^0 \)

prediction: \(f_\theta(s^k) = p^k, v^k \)

dynamics: \(g_\theta(s^{k-1}, a^k) = r^k, s^k \)
MuZero Planning

representation \[h_\theta(o_1, \ldots, o_t) = s^0 \]
prediction \[f_\theta(s^k) = p^k, v^k \]
dynamics \[g_\theta(s^{k-1}, a^k) = r^k, s^k \]
MuZero Training Data Generation
MuZero Training

\[l_t(\theta) = \sum_{k=0}^{K} l^p(\pi_{t+k}, p^k_t) + \sum_{k=0}^{K} l^v(z_{t+k}, v^k_t) + \sum_{k=1}^{K} l^r(u_{t+k}, r^k_t) + c\|\theta\|^2 \]
MuZero Training

\[
l_t(\theta) = \sum_{k=0}^{K} l^p(\pi_{t+k}, p_t^k) + \sum_{k=0}^{K} l^v(z_{t+k}, v_t^k) + \sum_{k=1}^{K} l^r(u_{t+k}, r_t^k) + c\|\theta\|^2
\]
MuZero Training

$$l_t(\theta) = \sum_{k=0}^{K} l^p(\pi_{t+k}, p^k_t) + \sum_{k=0}^{K} l^v(z_{t+k}, v^k_t) + \sum_{k=1}^{K} l^r(u_{t+k}, r^k_t) + c\|\theta\|^2$$
MuZero Training

\[l_t(\theta) = \sum_{k=0}^{K} l^p(\pi_{t+k}, p^k_t) + \sum_{k=0}^{K} l^v(z_{t+k}, v^k_t) + \sum_{k=1}^{K} l^r(u_{t+k}, r^k_t) + c\|\theta\|^2 \]
MuZero Training

\[l_t(\theta) = \sum_{k=0}^{K} l^p(\pi_{t+k}, p_t^k) + \sum_{k=0}^{K} l^v(z_{t+k}, v_t^k) + \sum_{k=1}^{K} l^r(u_{t+k}, r_t^k) + c||\theta||^2 \]
MuZero Training

\[
l_t(\theta) = \sum_{k=0}^{K} l^p(\pi_{t+k}, p_t^k) + \sum_{k=0}^{K} l^v(z_{t+k}, v_t^k) + \sum_{k=1}^{K} l^r(u_{t+k}, r_t^k) + c\|\theta\|^2
\]
MuZero Results
Summary
References

- 2020-10-22 MuZero ICAPS talk.pdf
- AlphaZero: Shedding new light on the grand games of chess, shogi and Go
- MuZero: Mastering Go, chess, shogi and Atari without rules
- https://www.nature.com/articles/nature16961.pdf
- https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06qqVobU5NSCFeHILHcVFUEmsbvWS-IxjqQGg98faovwjsxETUgZAUMnRQ