Autobahn: Automorphism-based Graph Neural Nets
MPNNs are not expressive enough

\[m_{N(u)}^{(k)} = \text{AGGREGATE}^{(k)} \left(\{ h_v^{(k)} \, \forall \, v \in N(u) \} \right) \]

\[h_u^{(k+1)} \leftarrow \text{UPDATE}^{(k)} \left(h_u^{(k)}, m_{N(u)}^{(k)} \right) \]

\[f_i^{(l+1)} = \nu \left(w_{\text{self}} f_i^l + w_{\text{neigh}} \sum_{v \in N(i)} f_v^l \right) \]

\(h_u^{(k)} = \text{embedding of } u \text{ at } k^{th} - \text{iteration} \)
Different Problem – Same Architecture

- Molecular Graph
- Social Network Graph
- Citation Graph
How can GNN expressivity be ranked?
Weisfeiler-Lehman Test
How can GNN expressivity be ranked?

Weisfeiler-Lehman Test

1-WL Test cannot detect cycles:

- Input graph
- WL colouring
- Colour histogram
Weisfeiler-Lehman Hierarchy

- k-WL is a higher-order extension of WL test
 - Determine color for each k-tuple instead of individual node
 - Can count substructures up to size k
 - $\mathcal{O}(n^k)$
- (k+1)-WL strictly stronger than k-WL
- MPNNs \leq 1-WL expressive
- k-GNN extension possible, but k>3 computationally infeasible
Performance on molecular graphs

![Graph showing performance on molecular graphs](image)

- **Test Mean Absolute Error**
- **k** values: 3, 4, 5, 6, 7, 8, 9, 10
- **Vertex motifs** (blue diamonds)
- **Edge motifs** (orange diamonds)
Goals of Autobahn’s Architecture

1. Computationally feasible
2. Able to incorporate Domain Knowledge
3. Invariant to Input Graph Permutations
 “Same Input => Same Output”
G-invariance

$f(\rho(\mathbf{g})x) = f(x)$

$\rho(x, y) = (x + t_1, y + t_2)$

image classification
G-equivariance: $f(\rho(g)x) = \rho(g)f(x)$

image segmentation
Layer Hierarchy – CNN Example
Permutation Invariance Examples

\[\begin{align*}
\text{Example 1:} & \quad \begin{array}{c}
1 \\
6 \\
5 \\
3 \\
4 \\
2
\end{array} \\
\xrightarrow{f} & \quad \times \\
\text{Example 2:} & \quad \begin{array}{c}
5 \\
4 \\
3 \\
2 \\
1
\end{array} \\
\xrightarrow{f} & \quad \times
\end{align*} \]
Graph Automorphism Group

- Definition of Algebraic Group:
 - Set + Binary Operation
 - Closure
 - Associativity
 - Identity Element
 - Inverse

- Def. Automorphism Group:
 Group of Permutations, which preserve edge-vertex connectivity
Graph Automorphism Group
Convolutions on Automorphism Groups

\[(f \ast w)_j = \sum_{k=0}^{n} f(r^j r^{-k}) \cdot w(r^k)\]

\[(f \ast w)_{j=0} = f(r^0 r^{-0}) \cdot w(r^0) + f(r^{-1}) \cdot w(r^1) + \ldots + f(r^{-5}) \cdot w(r^5)\]

\[= w_1 f(1) + w_2 f(6) + w_3 f(5) + \ldots + w_6 f(6)\]

\[w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} \]
Derivate MPNN from Star Graph

\[(f \ast w)_i = w_0 f(0) + w_1 f(1) + w_2 f(2) \]
\[+ w_0 f(2) + w_1 f(1) + w_2 f(0) \]
\[= 2w_1 f(1) + (w_0 + w_2)(f(0) + f(2)) \]
\[= \alpha_1 f(1) + \alpha_2 \sum_{j=1}^{n} f(j) \]
Benefits of Automorphisms

• Enables new subgraph structures

• Computation over Automorphism Group preserves more information:
 • Aggregating over a cycle preserves more structure
 • => more information
 • => faster computation: $|\text{Aut}(S_6)| = 120, |\text{Aut}(C_6)| = 12$

• Most expressive Aggregation step: Convolution over Aut(G)
Foundational Realizations

• Convolutions work well in the image domain
• Automorphisms of the substructures form the basis for calculation
• Example: Benzene Ring – natural notion of convolution
Overview of Architecture

3-Path

4-Path

6-Cycle

Template Graphs

3-6 Paths

5-Cycle

6-Cycle
Computing on Substructures

Automorphism-based Neurons

Step 1: Find $\mu \in S_n$

Step 2: Apply μ

Step 3: Convolute over $\text{Aut}(\mathcal{T})$

$$\nu \left((f^{\ell-1})\mu * w + b \right)$$

Step 4: Map output to original ordering
Narrowing & Promotion

Transfer information between subgraphs

- Narrowing: Project each incoming activation to the corresponding intersection
- Promotion: Extend the activation to not involved nodes
Narrowing & Promotion

Transfer information between subgraphs
Some Implementation Details

- Efficiently find graph substructures? => yes!
- How is convolution efficiently computed?

\[
\widehat{f \ast g(\rho)} = \widehat{f \uparrow G(\rho)} \times \widehat{g \uparrow G(\rho)}
\]

- https://github.com/risilab/Autobahn
Representing Convolution as Matrix Mult.

\[
\begin{pmatrix}
 w_1 & w_2 & w_3 & w_4 & w_5 & w_6 \\
 w_6 & w_1 & w_2 & w_3 & w_4 & w_5 \\
 w_5 & w_6 & w_1 & w_2 & w_3 & w_4 \\
 w_4 & w_5 & w_6 & w_1 & w_2 & w_3 \\
 w_3 & w_4 & w_5 & w_6 & w_1 & w_2 \\
 w_2 & w_3 & w_4 & w_5 & w_6 & w_1
\end{pmatrix} + \begin{pmatrix}
 b \\
 b \\
 b \\
 b \\
 b \\
 b
\end{pmatrix}
\]
Outlook

- Published 3rd Feb 2022
- “Only” on-par performance compare to state of the art
- Many Experiments left:
 - Different Problem Domains
 - Different Substructures
 - Graph Coarsening
 - Different Activations