
SS 2002 Roger Wattenhofer, Keno Albrecht, Fabian Kuhn, Aaron Zollinger

Mobile Computing

Exercise 5

Assigned: May 23, 2002
Due: June 6, 2002

1 Dynamic Source Routing

One of the most interesting issues in mobile ad hoc networks is multihop routing: If two devices
wishing to communicate cannot hear each other directly, intermediate nodes will relay their mes-
sages. In this exercise we will implement such a routing algorithm, in particular a variant of
Dynamic Source Routing (DSR).

The basic idea of DSR consists in the use of source routes: The communication source attaches
a predefined route towards the destination to each packet it sends; the packet is afterwards sent
along this route, intermediate nodes simply bouncing the packet to the next terminal found in the
route. This part of the algorithm is sometimes referred to as the forwarding phase of DSR.

But how does the source know about a valid route to the destination? This question is answered
in what is usually called route discovery. For this exercise we will use controlled flooding to
find routes. According to trick 1 of Lecture 5, the flooding messages will contain a TTL (time
to live) value decremented at each intermediate node, which prevents the whole network from
unnecesseraly being flooded in cases where the destination is relatively close to the source.

The route discovery phase itself consists of a flooding and a reply stage. The source initiates
route discovery by broadcasting a route request message. All nodes (other than the destination)
receiving such a message for the first time attach their address to the route in the packet and
rebroadcast this message as long as the TTL value allows so. The destination receiving a route
request answers by sending a route reply message to the original node using the reverted route
from the received route request message.1 If the original source receives a route reply message,
it can store the discovered route in a cache and use it to send subsequent (user) messages to the
according destination. 2

This is a completely demand-driven routing algorithm. Messages are only transmitted as
necessary: There is no periodic message exchange. A source wishing to send a (user) message,
first checks whether a route to the destination is already stored in its route cache. If so, the packet
is equipped with the route and transmitted. The destination receiving the message will reply with
an acknowledge message, reverting the route from the received message. If this message arrives
back at the original sender, the latter can report successful transmission of the initial message. If
however there is no cached route or if the message is not acknowledged within a certain timeout
(for instance due to moving network nodes), the source will initiate route discovery. We suggest
to first broadcast a route request message with TTL 1 in order to detect a neighboring destination
without flooding the network. In case of failure, again after a certain timeout, retry by sending
route request messages with TTL values 2, 4, and 8, as long as necessary. If still no route has been
discovered, finally set TTL to 0, which will lead to flooding of the whole network. If again there
is no positive answer, we give up and report an error message.

As in the last exercise we define different message types: source route message (SRMSG),
source route acknowledgement (SRACK), route request (RREQ), and route reply (RREP). The
following table defines the packet formats for these messages.

1Note that this mechanism works only if links are symmetric. For the sake of simplicity we assume so for this
exercise.

2It is possible to implement several optimizations for this algorithm. For instance, already an intermediate
node other than the destination could reply with a route reply message provided that it knows of a route to the
destination. Furthermore it would also be possible to cache more than one route for a destination in order to
postpone route discovery in case of route failure. Also the use of implicit acknowledgements (Lecture 5) would be
possible. We suggest to first implement the basic algorithm; optimizations can later be added.

Message Type Message Format (field size in bytes)
SRMSG type (1) | message ID (2) | sender (2) | receiver (2) | data length (2) |

route length (1)| route index (1) | data (variable) | route (variable)
SRACK type (1) | message ID (2) | sender (2) | receiver (2) |

route length (1) | route index (1) | route (variable)
RREQ type (1) | flood ID (2) | sender (2) | receiver (2) |

TTL (1) | route length (1) | route (variable)
RREP type (1) | flood ID (2) | sender (2) | receiver (2) |

route length (1) | route index (1) | route (variable)

The type field contains the message type value (see below). The message and flood IDs are
necessary to match corresponding messages and acknowledgements and to control flooding: Only
a route request containing a (sender, flood ID) pair seen for the first time should be rebroadcasted
or answered to with an RREQ message, respectively. The IDs are unsigned 16 bit numbers which
should be generated increasingly and wrap around (start again from 0) when reaching 0xffff. The
sender and receiver fields contain the addresses of the source and the destination of the complete
route. SRMSG contains the user data (of variable size) and accordingly a data length field. The
end of each packet is formed by the complete route (including source and destination), whose
format consists of a sequence of 2 byte-addresses, starting with the source. Correspondingly all
messages contain a route length field describing the length of the complete route. (Note that the
minimum route length is 2.) Except for RREQ, all messages contain a route index field pointing
to the next node a message will be forwarded to. For completeness, RREQ contains a TTL field
as discussed above.

The following table defines the message type values and summarizes the ways a routing node
must react upon receipt of a message of according type. Again, in some cases additional local
action will be useful, if not necessary.

Message Type Type Value Reaction upon Receipt
SRMSG 0x30 if the destination is reached, reply with an SRACK;

otherwise forward the message to the next node in the route
SRACK 0x31 if the destination is not reached yet, forward
RREQ 0x32 if the destination is reached, reply with an RREP;

otherwise: if TTL > 1, decrement TTL, append my address
to the route, and rebroadcast; if TTL = 1, do not rebroadcast;

if TTL = 0, rebroadcast leaving TTL unchanged
(flood complete network)

RREP 0x33 if the destination is not reached yet, forward

The routing algorithm should be implemented within a separate communication layer. It will
be placed on top of the “single hop” layer from Exercise 2 and provide the usual functionality to
possible higher layers.

Finally some hints: Choose the timeouts according to the maximum number of hops in a
roundtrip (message → acknowledgement). Find a reasonable timeout for the “final” route discov-
ery try (TTL = 0).

Up to now we have used a receive() method to receive packets. For this exercise, try to
implement the same functionality using callbacks (a.k.a. listeners). This will simplify the imple-
mentation of the routing algorithm within a separate communication layer.

As in Exercise 4, there will be several cooperating threads. Again be sure to synchronize where
necessary.

2 Multihop Instant Messenger

Adjust the instant messenger application implemented in Exercise 4 to use the above routing layer.
Try to modify the messenger application in as few places as possible.

Ensure that the routing layer also passes received broadcast SRMSG packets to the application.
Otherwise the messenger application will not be able to explore its neighborhood.

Add a “buddy list” to your instant messenger application. Here you can enter your friends’
addresses and communicate with them even if they are more than one hop away!

2

