
SS 2002 Roger Wattenhofer, Keno Albrecht, Fabian Kuhn, Aaron Zollinger

Mobile Computing

Exercise 6

Assigned: June 13, 2002
Due: June 27, 2002

1 Multihop neighborhood

In exercise 4 you implemented a broadcast PING/PONG scheme to discover your neighborhood
(nodes that are within your radio range). Now we introduce two more message types to see what
is behind the horizon.

The idea is to ask a known node about its neighbors. When you iterate this step you should be
able to crawl the ad hoc net and consequently learn the ad hoc graph. It is mandatory to answer an
incoming GETNEIGHBORS message by sending back a MYNEIGHBORS message, which
includes a list of your current neighbors. Since you already know your neighborhood, it shouldn’t
be much work to put it into a byte array (remember that addresses are encoded little endian).
The following tables summarize the new messages:

Message Type Message Format (field size in bytes)
MYNEIGHBORS type (1) — number of neighbors (1) — neighbor addresses (variable)

Message Type Type Value Reaction upon Receipt
GETNEIGHBORS 0x40 send MYNEIGHBORS to sender of GETNEIGHBORS
MYNEIGHBORS 0x41 whatever you want..., e.g. build graph

2 Route 66 – An awesome game

As promised you will finally implement an awesome game in this exercise. We will call it Route
66 – just to emphasize that it will use the routing facilities that you already implemented in the
last exercise.

We want to send messages from a server A to a server B. Since the servers don’t necessarily
see each other, we need intermediate nodes to forward the messages. Nothing in life is for free,
and certainly intermediate nodes want to be paid for routing our messages. On the other hand
we want to spend as little money as possible. So before sending the message, A will calculate a
minimal cost route. Each node on this route will be paid the amount it asked for. To make it
more exciting, server A and B are mobile, which makes it necessary for the intermediate nodes to
move as well. Also the costs for routing a message don’t need to be fixed – each node can make
a different offer each time a message has to be routed. In this game you will play the role of an
intermediate node. The goal of this game is to accumulate as much money as possible (however,
as in real life we won’t pay you at all ;-)). To do so, you need to find a good position between A
and B and hope to have made the right offer.

How does it work in more detail? Server A (ID = 1000) will send messages in more or less
regular intervals to B (ID = 1001). Before that it will broadcast a NEXTTURN message, that
includes a timestamp (1 to 3 minutes in the future1) until which you have to make your offers for

1We will synchronize our clocks before the game starts.



routing the upcoming message. Some seconds (10 to 30) before the timestamp, A will broadcast
a Do Not Move message (as a plain text SRMSG packet) as a reminder. After receiving this
message just do so :-), don’t move around anymore, but instead send a MYOFFER message
to server A, which includes your offer (allowed integer values range from 1 to 66) for routing the
next message, and additionally your current neighborhood (same as for MYNEIGHBORS). At the
deadline (plus some bonus seconds for delay/latency) we use the neighborhood to calculate the
mentioned minimal cost route, on which we will then send the message to B. If we succeed and
the message arrives at B we will give each node on the route the amount it asked for.2 To give
you feedback on what’s going on, we will broadcast a SCORE message, which contains a list of
all participating users, their offers, current score, and the route taken. After a while we will send
the next NEXTTURN and start over again.

The following tables summarizes the packets used for Route 66. Remember that all numbers
are encoded little endian.

Message Type Message Format (field size in bytes)
NEXTTURN type (1) — timestamp (8)
MYOFFER type (1) — offer (1) — number of neighbors (1) — neighbor addresses (variable)

SCORE type (1) — number of players (1) — player ids (variable) — offers (variable) —
score (variable) — route length (1) — route (variable)

Message Type Type Value Reaction upon Receipt
NEXTTURN 0x50 remember timestamp somehow
MYOFFER 0x51 ..., you won’t receive it (only addressed to server A)

SCORE 0x52 whatever you want, e.g. use to figure out strategy for next offers...

To keep it simple: To participate in a minimal way, all you have to do is to move around (or
even stand still), react on the Do Not Move message and send a MYOFFER message. If you
want to implement more, you might install a gui–timer for the NEXTTURN message, crawl your
neighborhood by sending GETNEIGHBORHOOD messages and find out a good strategy based
on the SCORE messages :-).

2If there are equally expansive routes we will make a random choice among those. If we don’t succeed (because
you moved or gave us a false neighborhood) we will try the next best route.

2


