MOBILE COMPUTING

Roger Wattenhofer Summer 2004

Distributed Computing Group

Mobile Computing
Summer 2004

Overview

Distributed

Computing

Group

- · What is it?
- Who needs it?
- History
- Future
- · Course overview
- · Organization of exercises
- Literature
- Thanks to J. Schiller for slides

A computer in 2010?

- · Advances in technology
 - More computing power in smaller devices
 - Flat, lightweight displays with low power consumption
 - New user interfaces due to small dimensions
 - More bandwidth (per second? per space?)
 - Multiple wireless techniques
- Technology in the background
 - Device location awareness: computers adapt to their environment
 - User location awareness: computers recognize the location of the user and react appropriately (call forwarding)
- "Computers" evolve
 - Small, cheap, portable, replaceable
 - Integration or disintegration?

1/3

What is *Mobile* Computing?

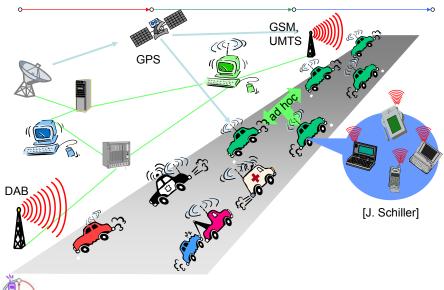
- · Aspects of mobility
 - User mobility: users communicate "anytime, anywhere, with anyone" (example: read/write email on web browser)
 - Device portability: devices can be connected anytime, anywhere to the network
- Wireless vs. mobile Examples
 - ×
- ×
 - Stationary computer
- ~
- Notebook in a hotel
- Wireless LANs in historic buildings Personal Digital Assistant (PDA)
- The demand for mobile communication creates the need for integration of wireless networks and existing fixed networks
 - Local area networks: standardization of IEEE 802.11 or HIPERLAN
 - Wide area networks: GSM and ISDN
- Internet: Mobile IP extension of the Internet protocol IP

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

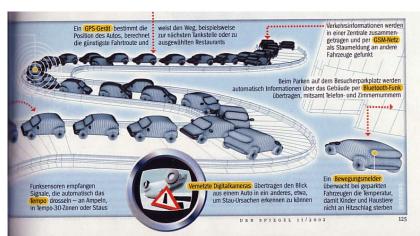
1/5

Application Scenarios

- Vehicles
- Nomadic user
- · Smart mobile phone
- Invisible computing
- · Wearable computing
- Intelligent house or office
- Meeting room/conference
- · Taxi/Police/Fire squad fleet
- Service worker
- Lonely wolf
- · Disaster relief and Disaster alarm
- Games
- Military / Security



Distributed Computing Group MOBILE COMPUTING R. Wattenhofer


1/6

What is important?

Vehicles

Vehicles 2

[Der Spiegel]

Nomadic user

- Nomadic user has laptop/palmtop
- · Connect to network infrequently
- · Interim period operate in disconnected mode
- · Access her or customer data
- · Consistent database for all agents
- Print on local printer (or other service)
 - How do we find it?
 - Is it safe?
 - Do we need wires?

- Does nomadic user need her own hardware?
 - · Read/write email on web browser
 - Access data OK too

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/9

Smart mobile phone

- Mobile phones get smarter
- · Converge with PDA?
- Voice calls, video calls (really?)
- Email or instant messaging
- Play games
- Up-to-date localized information
 - Map
 - Pull: Find the next Pizzeria
 - Push: "Hey, we have great Pizza!"
- · Stock/weather/sports info
- Ticketing
- Trade stock
- · etc.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/10

[J. Schiller]

[Nokia]

Invisible/ubiquitous/pervasive and wearable computing

- · Tiny embedded "computers"
- Everywhere
- · Example: Microsoft's Doll
- I refer to my colleagues
 Friedemann Mattern and
 Bernt Schiele and their
 courses

[ABC, Schiele]

Intelligent Office and Intelligent House

- Bluetooth replaces cables
- · Plug and play, without the "plug"
- Again: Find the local printer
- · House recognizes inhabitant
- House regulates temperature according to person in a room
- Trade Shows
- Home without cables looks better
- · LAN in historic buildings

[MS]

Meeting room or Conference

- Share data instantly
- Send a message to someone else in the room
- Secretly vote on controversial issue
- · Find person with similar interests
- Broadcast last minute changes
- · Ad-Hoc Network

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/13

Taxi / Police / Fire squad / Service fleet

- Connect
- Control
- Communicate
- Service Worker
- Example: SBB service workers have PDA
 - Map help finding broken signal
 - PDA gives type of signal, so that service person can bring the right tools right away

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/14

Lonely wolf

- We really mean everywhere!
- Cargo's and yachts
- Journalists
- · Scientists
- Travelers
- Sometimes cheaper than infrastructure?
- · Commercial flop

[Motorola]

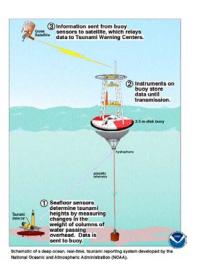
Disaster relief

- After earthquake, tsunami, volcano, etc:
- You cannot rely on infrastructure but you need to orchestrate disaster relief
- Early transmission of patient data to hospital
- Satellite
- Ad-Hoc network

[Red Cross]

Disaster alarm

With sensors you might be able to alarm early


· Example: Tsunami

Example: Cooling room

Or simpler: Weather station

Satellite

Ad-Hoc network

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/17

Games

- Nintendo Gameboy [Advance]: Industry standard mobile game station
- Connectable to other Gameboys
- Can be used as game pad for Nintendo Gamecube
- Cybiko [Extreme] is a competitor that has radio capabilities built in
- · Second generation already
- Also email, chat, etc.

[Cybiko]

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/18

Military / Security

- From a technology standpoint this is similar to disaster relief
- Sensoria says "US army is the best costumer"
- · Not (important) in this course



[Der Spiegel]

Application Scenarios: **Discussion**

- Vehicles
- Nomadic user
- · Smart mobile phone
- · Invisible computing
- Wearable computing
- Intelligent house or office
- Meeting room/conference
- Taxi/Police/Fire squad fleet
- Service worker
- · Lonely wolf
- · Disaster relief and Disaster alarm
- Games
- · Military / Security
- Anything missing?

Mobile devices

Pager

- receive only
- tinv displays
- simple text messages

Sensors. embedded controllers

PDA

• simple graphical displays

· character recognition

simplified WWW

· fully functional

· standard applications

Laptop

- · tinv keyboard
- simple versions of standard applications

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/21

1/23

What do you have? What would you buy?

- Laptop (Linux, Mac, Windows?)
- Palmtop (Linux, Mac, Windows?)
- PDA/Organizer (Palm, Pocket PC, other?)
- Mobile phone
- Satellite phone
- Pager
- Wireless LAN Card
- Wireless LAN Base Station (for home networking)
- Ethernet Plug in every room (for home networking)
- Bluetooth
- Proprietary device (what kind?)

for exercises ×

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/22

Effects of device portability

- Energy consumption
 - there is no Moore's law for batteries or solar cells
 - limited computing power, low quality displays, small disks
 - Limited memory (no moving parts)
 - Radio transmission has a high energy consumption
 - CPU: power consumption ~ CV2f
 - · C: total capacitance, reduced by integration
 - · V: supply voltage, can be reduced to a certain limit
 - · f: clock frequency, can be reduced temporally
- · Limited user interfaces
 - compromise between size of fingers and portability
 - integration of character/voice recognition, abstract symbols
- · Loss of data
 - higher probability (e.g., defects, theft)

Wireless networks in comparison to fixed networks

- · Higher loss-rates due to interference
 - emissions of, e.g., engines, lightning
- · Restrictive regulations of frequencies
 - frequencies have to be coordinated, useful frequencies are almost all occupied
- · Low transmission rates
 - local some Mbit/s, regional currently, e.g., 9.6kbit/s with GSM
- Higher delays, more jitter
 - connection setup time with GSM in the second range, several hundred milliseconds for other wireless systems, tens of seconds with Bluetooth
- Lower security, simpler active attacking
 - radio interface accessible for everyone, base station can be simulated, thus attracting calls from mobile phones
- Always shared medium
 - secure access mechanisms important

History: Antiquity – 1890

- Many people in history used light for communication
 - Heliographs (sun on mirrors), flags ("semaphore"), ...
 - 150 BC: smoke signals for communication (Polybius, Greece)
 - 1794: Optical telegraph by Claude Chappe

- 1831: Michael Faraday (and Joseph Henry) demonstrate electromagnetic induction
- 1864: James Maxwell (1831-79): Theory of electromagnetic fields, wave equations
- 1886: Heinrich Hertz (1857-94): demonstrates with an experiment the wave character of electrical transmission through space

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/25

1/27

History: 1890 – 1920

- 1895: Guglielmo Marconi (1874 1937)
 - first demonstration of wireless telegraphy (digital!)
 - long wave transmission, high transmission power necessary (> 200kW)
 - Nobel Prize in Physics 1909
- 1901: First transatlantic connection
- 1906 (Xmas): First radio broadcast
- 1906: Vacuum tube invented
 - By Lee DeForest and Robert von Lieben
- 1907: Commercial transatlantic connections
 - huge base stations (30 100m high antennas)
- · 1911: First mobile sender
 - on board of a Zeppelin
- 1915: Wireless voice transmission NY SF
- 1920: First commercial radio station

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/26

History: 1920 – 1945

- · 1920: Discovery of short waves by Marconi
 - reflection at the ionosphere
 - smaller sender and receiver
 - Possible with vacuum tube
- 1926: First phone on a train
 - Hamburg Berlin
 - wires parallel to the railroad track
- 1926: First car radio
- 1928: First TV broadcast
 - John L. Baird (1888 1946)
 - Atlantic, color TV
 - WGY Schenectady
- 1933: Frequency modulation
 - Edwin H. Armstrong (1890 1954)

History: 1945 – 1980

1958: German A-Netz

 Analog, 160MHz, connection setup only from mobile station, no handover, 80% coverage, 16kg, 15k Marks

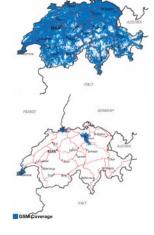
 Compare with PTT (Swisscom) NATEL: 1978 – 1995, maximum capacity 4000, which was reached 1980

[F.Mattern]

- 1972: German B-Netz
 - Analog, 160MHz, connection setup from the fixed network too (but location of the mobile station has to be known)
 - available also in A. NL and LUX. 1979 13000 customer in D.
 - PTT NATEL B: 1984 1997, maximum capacity 9000
- 1979: NMT Nordic Mobile Telephone System
 - 450MHz (Scandinavia)

History: 1980 - 1991

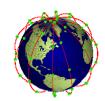
- 1982: Start of GSM-specification (Groupe spéciale mobile)
 - goal: pan-European digital mobile phone system with roaming
- 1984: CT-1 standard for cordless telephones
- 1986: German C-Netz
 - analog voice transmission, 450MHz, hand-over possible, digital signaling, automatic location of mobile device
 - still in use today, services: FAX, modem, X.25, e-mail, 98% coverage
 - American AMPS: 1983 today
 - PTT NATEL C: 1986 1999
- 1991: DECT
 - Digital European Cordless Telephone. Today: "Enhanced"
 - 1880-1900MHz, ~100-500m range, 120 duplex channels, 1.2Mbit/s data transmission, voice encryption, authentication, up to several 10000 users/km², used in more than 40 countries


Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/29

History: 1991 – 1995

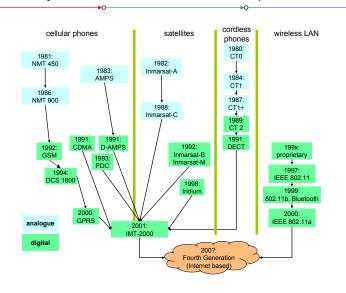
- 1992/3: Start of GSM "D-Netz"/"NATEL D"
 - 900MHz, 124 channels
 - automatic location, hand-over, cellular
 - roaming in Europe
 - now worldwide in more than 130 countries
 - services: data with 9.6kbit/s, FAX, voice, ...
- 1994/5: GSM with 1800MHz
 - smaller cells
 - supported by many countries
 - SMS
 - Multiband phones



Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/30

History: 1995 - today


- 1996: HiperLAN
 - High Performance Radio Local Area Network
 - Products?
- 1997: Wireless LAN
 - IEEE 802.11
 - 2.4 2.5 GHz and infrared, 2Mbit/s
 - already many products (with proprietary extensions)
- 1998: Specification of GSM successors
 - GPRS is packet oriented
 - UMTS is European proposal for IMT-2000
- 1998: Iridium
 - 66 satellites (+6 spare)
 - 1.6GHz to the mobile phone

1/31

Wireless systems: overview of the development

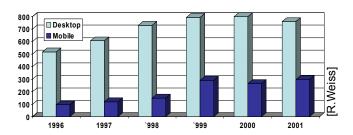
The future: ITU-R - Recommendations for IMT-2000

- M.687-2
 - IMT-2000 concepts and goals
- M.816-1
 - framework for services
- M.817
 - IMT-2000 network architectures
- M.818-1
 - satellites in IMT-2000
- M.819-2
 - IMT-2000 for developing countries
- M.1034-1
 - requirements for the radio interface(s)
- M.1035
 - framework for radio interface(s) and radio sub-system functions
- M.1036
 - spectrum considerations

- M.1078
 - security in IMT-2000
- M.1079
 - speech/voiceband data performance
- M.1167
 - framework for satellites
- M.1168
 - framework for management
- M.1223
 - evaluation of security mechanisms
- M.1224
 - vocabulary for IMT-2000
- M.1225
 - evaluation of transmission technologies
- · etc.
- www.itu.int/imt

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/33

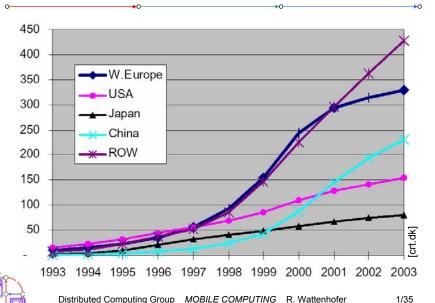

The success story of Mobile "Computing"

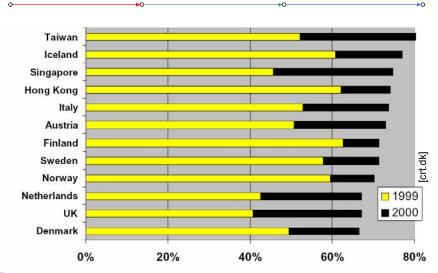
· Mobile Phones

- Switzerland February 2002: More mobile phones than fixnet phones
- Worldwide: More mobile phones than Internet connections
- SMS: "More net profit with SMS than with voice"

Laptops

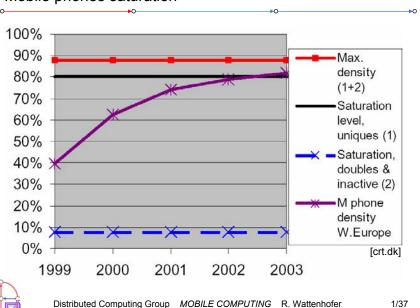
 Switzerland 2001: For the first year less computers sold, but more mobile computers; private households buy 18% more laptops than the previous year.

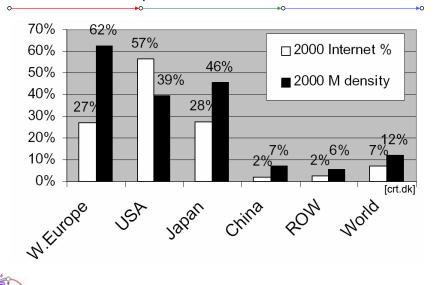



Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

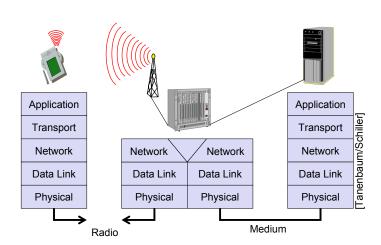
1/34

Mobile phones worldwide


Mobile phones Top 12



Distributed Computing Group MOBILE COMPUTING R. Wattenhofer


Mobile phones saturation

Internet vs. Mobile phones

Simple reference model

Course overview: Networking Bottom – Up Approach

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

	 congestion and flow control
Transport layer	 quality of service addressing, routing,
Network layer	device location - hand-over - authentication
Data link layer	media accessmultiplexingmedia access control
Physical layer	encryptionmodulationinterferenceattenuationfrequency


1/39

1/38

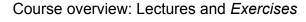
Course Overview: Acronyms

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 1/41

Course overview: A large spectrum

Course overview: Hands-On Exercises

- We build a wireless LAN based ad-hoc network
 - We start with the "hello world" equivalent
 - Neighbor detection
 - Chat application
 - Multihop routing
 - Multihop project
 - Emulator software
 - Grading!
- Supported by
 - paper exercises



1/43

Introduction

Physical and Link Layer

Media Access Control

[Ostern]

Wireless LAN

Ad-Hoc & Sensor Networks

Geometric Routing

Clustering

Topology Control

[Pfingsten]

Mobile IP and TCP

GSM

Mobile Web

Hard- and Software Tests

"Hello World"

Theory: Codes/MAC

Neighbor Detection

Instant Messenger

Topology Detection

Multihop Routing 1

Multihop Routing 2

Theory: Ad-Hoc Networks

Multihop Project 1

Multihop Project 2

Multihop Project 3

Course specialties

- Maximum possible spectrum of systems and theory
- · New area, more open than closed questions
- · Lecture and exercises are hard to synchronize
- http://distcomp.ethz.ch/mobicomp

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/45

Famous last words

"Mobile wireless computers are like mobile pipeless bathrooms – portapotties. They will be common on vehicles, and at construction sites, and rock concerts. My advice is to wire up your home and stay there."

Bob Metcalfe, 1995 (Ethernet inventor)

Literature

- Jochen Schiller Mobile Communications / Mobilkommunikation
- Ivan Stojmeniovic Handbook of Wireless Networks and Mobile Computing
- Andrew Tanenbaum Computer Networks, plus other books
- Hermann Rohling Einführung in die Informations– und Codierungstheorie
- James D. Solomon Mobile IP, the Internet unplugged
- Charles E. Perkins Ad-hoc networking
- Plus tons of other books on specialized topics
- Papers, papers, papers, ...

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/46