Chapter 8
DOMINATING
SETS

Overview

o

+ Motivation
» Dominating Set
+ Connected Dominating Set

* The “Greedy” Algorithm

* The “Tree Growing” Algorithm
* The “Marking” Algorithm

* The “k-Local” Algorithm

* The “Dominator!” Algorithm

o

(o

1%

Distribut Mobile Computing + The “Largest ID” Algorithm
Computin
Group Summer 2004
A
k‘[@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/2
Discussion Finding a Destination by Flooding

* We have seen: 10 Tricks = 210 routing algorithms
* In reality there are almost that many!

+ Q: How good are these routing algorithms?!? Any hard results?
* A: Almost none! Method-of-choice is simulation...
+ Perkins: “if you simulate three times, you get three different results”

* Flooding is key component of (many) proposed algorithms, including
most prominent ones (AODV, DSR)

+ At least flooding should be efficient

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/3

e}

5% o o
60 O ok
o 0i09 09 0 6 o 00%9%%
50 i o 000 oo ©Of
0:i0 0000 o ®
0009 "5 0 %°° 7 5o K
Op 00 .o o O 0 OY
© 0 q © 00 00?2 3
o J o O50 O
OO O ™o OOO o © 700
50 © o OO G o© 05 0 0.0 00 o
000025 00 9 "o 040 © 000
© 0 o 9" © 4. 00 ©)
o ©%o 0 079.22 0.0 0 ©°.°
00 0O o °© 0, 000 "5 0©C° 00
(e} o O O o ©O o -0 O
0 ooo0oo0o o o0 O o o
) 0o 00 o 0O ©O o~ 0
[e) 05 O O O]
%o © 0 © 0° o000 o
¢} 09 o’ so0o0 o O ©
o~ ©
o © O o o©
0p OO
SHC o o
© o

| Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

@L_\ 6/4

Finding a Destination Efficiently

o

o

Backbone

+ Idea: Some nodes become backbone nodes (gateways). Each node

....... O e
ettt e e V) en,
; .. Q-
i o O O O % can access and be accessed by at least one backbone node.
i 0 00 O@ o~,0% =
o) O,-"O O"‘.O ©O O OOZO
S 00 gJig o O 0©O0 N ;
/080%%0 07 2O 0o g - Routing
........... io 20 g, O O 1. If source is not a
H S Keogie ' gateway, transmit
6o o d 6. it message to gateway
© F oo 2. Gateway acts as
o ooo:'b oo} ©i0 proxy source and
0% © o e i O routes message on
s . 8 i : = backbone to gateway
o o ¢ ‘o ination.
o 09 o . & Gvo L oo of destu.wat!on
., 0 © o o O_,.: OOO Q, 0@ ™. 5 . 3. Transmission gateway
00 & o o R to destination.
........ :-O . O .)
@3 @3
&L@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/5 &L@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/6
(Connected) Dominating Set Formal Problem Definition: M(C)DS
O O
- A is a subset of nodes such that each node is * Input: We are given an (arbitrary) undirected graph.

either in DS or has a neighbor in DS.

* A Connected Dominating Set CDS is a connected DS, that is, there
is a path between any two nodes in CDS that does not use nodes
that are not in CDS.

+ A CDS is a good choice
for a backbone.

+ It might be favorable to
have few nodes in the
CDS. This is known as the
Minimum CDS problem
an

ws
k Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/7

+ Output: Find a Minimum (Connected) Dominating Set,
that is, a (C)DS with a minimum number of nodes.

+ Problems
— M(C)DS is NP-hard
— Find a (C)DS that is “close” to minimum (approximation)

— The solution must be local (global solutions are impractical for
mobile ad-hoc network) — topology of graph “far away” should
not influence decision who belongs to (C)DS

g
\ﬁ Distributed Computing Group MOBILE COMPUTING ~R. Wattenhofer 6/8

Greedy Algorithm for Dominating Sets

+ |dea: Greedy choose “good” nodes into the dominating set.

* Black nodes are in the DS
+ Grey nodes are neighbors of nodes in the CDS
+ White nodes are not yet dominated, initially all nodes are white.

» Algorithm: Greedily choose a node that colors most white nodes.

» One can show that this gives a log A approximation, if A is the
maximum node degree of the graph. (The proof is similar to the
“Tree Growing” proof on 6/14ff.)

+ One can also show that there is no polynomial algorithm with better
performance unless P~NP.

‘V__.'-
A
\ | Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/9

=0

"

A

CDS: The “too simple tree growing” algorithm

o

* Idea: start with the root, and then greedily choose a neighbor of the
tree that dominates as many as possible new nodes

+ Black nodes are in the CDS
+ Grey nodes are neighbors of nodes in the CDS
+ White nodes are not yet dominated, initially all nodes are white.

+ Start: Choose the node a maximum degree, and make it the root of
the CDS, that is, color it black (and its white neighbors grey).

» Step: Choose a grey node with a maximum number of white
neighbors and color it black (and its white neighbors grey).

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/10

=0

Example of the “too simple tree growing” algorithm

o}

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

u u u

\" \" \"

tree growing: start Minimum CDS

b
A
k | Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/11

S =

Tree Growing Algorithm

» Idea: Don’t scan one but two nodes!

+ Alternative step: Choose a grey node and its white neighbor node
with a maximum sum of white neighbors and color both black (and
their white neighbors grey).

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/12

B/

Analysis of the tree growing algorithm

o

+ Theorem: The tree growing algorithm finds a connected set of size
ICDS| < 2(1+H(A)) - |DSoprl-

* DSgpr is a (not connected) minimum dominating set
* Ais the maximum node degree in the graph
* His the harmonic function with H(n) ~ log(n)+0.7

* In other words, the connected dominating set of the tree growing
algorithm is at most a O(log(A)) factor worse than an optimum
minimum dominating set (which is NP-hard to compute).

« With a lower bound argument (reduction to set cover) one can show
that a better approximation factor is impossible, unless P~NP.

p3
A
&L@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/13

Proof Sketch

o

+ The proof is done with amortized analysis.

* Let S, be the set of nodes dominated by u € DSq¢, or u itself. If a
node is dominated by more than one node, we put it in one of the
sets.

» We charge the nodes in the graph for each node we color black. In
particular we charge all the newly colored grey nodes. Since we
color a node grey at most once, it is charged at most once.

» We show that the total charge on the vertices in an S is at most
2(1+H(A)), for any u.

p3
A
¥| Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/14

Charge on S,

 Initially |S,| = u,,.

» Whenever we color some nodes of S, we call this a step.
* The number of white nodes in S after step i is u..

» After step k there are no more white nodes in S,.

+ In the first step u,— u, nodes are colored
(grey or black). Each vertex gets a charge of
at most 2/(uy— uy).

« After the first step, node u becomes eligible to be colored (as
part of a pair with one of the grey nodes in S). If u is not
chosen in step i (with a potential to paint u; nodes grey), then
we have found a better (pair of) node. That is, the charge to
any of the new grey nodes in step i in S is at most 2/u;.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/15

B/

Adding up the charges in S,

2 =
C<——(up—w1)+ > —(u; —uj1)
ug — U1 = (2
— 2+2k§7ui — Yitl
i=1 g
k—1
<2423 (H(u) - H(uiq1))
=1

= 2+42(H(u1)—H(ug)) = 2(1+H(u1)) = 2(1+H(A))

¥
A
¥| Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/16

Discussion of the tree growing algorithm

o

+ We have an extremely simple algorithm that is asymptotically
optimal unless P~NP. And even the constants are small.

* Are we happy?

* Not really. How do we implement this algorithm in a real mobile
network? How do we figure out where the best grey/white pair of
nodes is? How slow is this algorithm in a distributed setting?

* We need a fully distributed algorithm. Nodes should only consider
local information.

@

[
:@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/17

&

The Marking Algorithm

Idea: The connected dominating set CDS consists of the nodes that
have two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors N(u)

2. Each node u transmits N(u), and receives N(v) from all its neighbors

3. If node u has two neighbors v,w and w is not in N(v) (and since the
graph is undirected v is not in N(w)), then u marks itself being in the
set CDS.

+ Completely local; only exchange N(u) with all neighbors

+ Each node sends only 1 message, and receives at most A

+ Messages have size O(A)

* |s the marking algorithm really producing a connected dominating
set? How good is the set?

@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/18

Example for the Marking Algorithm

| Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/19

1%

Correctness of Marking Algorithm

[og

We assume that the input graph G is connected but not complete.

Note: If G was complete then constructing a CDS would not make
sense. Note that in a complete graph, no node would be marked.

We show:

The set of marked nodes CDS is

a) a dominating set

b) connected

c) a shortest path in G between two nodes of the CDS is in CDS

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/20

Proof of a) dominating set Proof of b) connected, c) shortest path in CDS

O O O
* Proof: Assume for the sake of contradiction that node u is a node * Proof: Let p be any shortest path between the two nodes u and v,
that is not in the dominating set, and also not dominated. Since no with u,v € CDS.
neighbor of u is in the dominating set, the nodes N*(u) := u U N(u)
form:

» Assume for the sake of contradiction that there is a node w on this
shortest path that is not in the connected dominating set.
+ acomplete graph

— if there are two nodes in N(u) that are not connected, u must be in the
dominating set by definition @\Q/@\CD/O—®
* no node v € N(u) has a neighbor outside N(u)
— or, also by definition, the node v is in the dominating set

» Then the two neighbors of w must be connected, which gives us a

+ Since the graph G is connected it only consists of the complete shorter path. This is a contradiction.

graph N*(u). We precluded this in the assumptions, therefore we
have a contradiction

AN M
@ :@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/21 @ :@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/22
Improving the Marking Algorithm Example for improved Marking Algorithm
O O O
+ We give each node u a unique id(u). * Node 17 is removed with rule 1

* Node 8 is removed with rule 2

* Rule 1: If N*(v) € N*(u) and id(v) < id(u), then do not include node v
into the CDS.

* Rule 2: Let u,w € N(v). If N(v) € N(u) U N(w) and id(v) < id(u) and
id(v) < id(w), then do not include v into the CDS.

* (Rule 2+: You can do the same with more than 2 covering
neighbors, but it gets a little more intricate.)

...for a quiet minute: Why are the identifiers necessary?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/23 | Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/24

B/

Quality of the Marking Algorithm

* Given an Euclidean chain of n homogeneous nodes

» The transmission range of each node is such that it is connected to
the k left and right neighbors, the id’s of the nodes are ascending.

OO O O0OO0OO0OO0OO0OO0OOooOooOOoOoOoOoOoo

* An optimal algorithm (and also the tree growing algorithm) puts
every k'th node into the CDS. Thus [CDSgp+| ~ n/k; with k = n/c for
some positive constant ¢c we have |CDSqp{| = O(1).

« The marking algorithm (also the improved version) does mark all the
nodes (except the k leftmost ones). Thus |CDS n — k; with
k = n/c we have |CDSy,qingl = Q(N).

Markingl =

The worst-case quality of the marking algorithm is worst-case! ©

.fﬁl

i
\[@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/25

o

A

\

The k-local Algorithm

Input: Fractional Dominating Connected
Local Graph Dominating Set Set Dominating Set

Phase A: Phase B: Phase C:
Distributed Probabilistic Connect DS
linear program algorithm by “tree” of
rel. high degree “pbridges”

gives high value

i
:@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/26

Result of the k-local Algorithm

o

» Distributed Approximation

Theorem: E[|IDS|] < O(a.In A - [DSqpy])

+ The value of a depends on the number of rounds k (the locality)

o < (A4 1)%VF

* The analysis is rather intricate... ©

&

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/27

ET/

Unit Disk Graph

+ We are given a set V of nodes in the plane (points with coordinates).

* The unit disk graph UDG(V) is defined as an undirected graph (with
E being a set of undirected edges). There is an edge between two
nodes u,v iff the Euclidian distance between u and v is at most 1.

» Think of the unit distance as the maximum transmission range.

+ We assume that the unit disk graph
UDG is connected (that is, there is a

path between each pair of nodes) Vo e
« The unit disk graph has many edges. DAY
+ Can we drop some edges in the UDG 4 Py ..'._

to reduced complexity and interference?

N
Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/28

The “Dominator!” Algorithm

o

* For the important special case of Euclidean Unit Disk Graphs there
is a simple marking algorithm that does the job.

* We make the simplifying assumptions that MAC layer issues are
resolved: Two nodes u,v within transmission range 1 receive both
all their transmissions. There is no interference, that is, the
transmissions are locally always completely ordered.

+ Initially no node is in the connected dominating set CDS.

1. If a node u has not yet received an “| AM A DOMINATOR, BABY!”
message from any other node, node u will transmit “I| AM A
DOMINATOR, BABY!”

2. If node v receives a message “I| AM A DOMINATOR, BABY!” from
node u, then node v is dominated by node v.

&

[
:@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/29

@

o

Example

* This gives a dominating set. But it is not connected.

[
:@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/30

The “Dominator!” Algorithm Continued

o

3. If anode w is dominated by more two dominators u and v, and node
w has not yet received a message “l am dominated by u and v”,
then node w transmits “I am dominated by u and v’ and enters the
CDsS.

* And since this is still not quite enough...

4. If a neighboring pair of nodes w, and w, is dominated by
dominators u and v, respectively, and have not yet received a
message “I am dominated by u and v”, or “We are dominated by u
and v”, then nodes w, and w, both transmit “We are dominated by u
and v” and enter the CDS.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/31

B/

[og

“‘Dominator Algorithm”: Results

B/

* The “Dominator!” Algorithm produces a connected dominating set.
» The algorithm is completely local. (is it?)

« Each node only has to transmit one or two messages of constant
size.

* The connected dominating set is asymptotically optimal, that is,
ICDS| = O(ICDS o).

* Routes on backbone (CDS) are only by a constant factor longer
than on UDG.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/32

“‘Dominator Algorithm”: Remarks The “Largest-ID” Algorithm

o o

+ “Dominator” algorithm seems to be very local. * All nodes have unique IDs
+ If two neighbors want to join the DS simultaneously, we have a » Algorithm for each node:
problem — synchronization between nodes is a problem! 1. Send ID to all neighbors

2. Tell node with largest ID in neighborhood that it has to join the DS
+ Algorithm actually calculates a maximal independent set (MIS).

» Algorithm computes a DS in 2 rounds (extremely local!)

* When taking care of all synchronization problems, best known MIS
algorithm needs time O(log n).

+ Lower Bound for general graphs: 2 \/W
loglogn

+ If you want to know more, visit PODC course!

AN AN
@[@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/33 @[@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/34
“Largest ID” Algorithm, Analysis | “Largest ID” Algorithm, Analysis Il
O O O

* Nodes which select nodes in S are in disk of radius 3/2 which
. Assume, node IDs are at random, graph is UDG can be covered by S and 20sther di of diameter 1.

* We look at a disk S of diameter 1:

Nodes inside S have
distance at most 1.
— they form a clique

How many nodes in S
are selected for the DS?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/35 | Distributed Computi A R. Wattenhofer 6/36

B/

“Largest ID” Algorithm: Analysis I

o o

* How many nodes in S are chosen by nodes in a disk S;?

+ x=#ofnodesinS,y=#ofnodesinS;

+ A node ueS is only chosen by a node in S; if ID(u) > max{ID(v)}
(all nodes in S; see each other).

* The probability for this is:

+vy
» Therefore, the expected number of nodes in S chosen by nodes in
S, is at most:
. x Because at most y nodes in S, can
min-< vy, 71 choose nodes in S

+ Yy and because of linearity of expectation.
AN
&L@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/37

AT\
s

“Largest ID” Algorithm, Analysis IV

o

« From x<n and y<n, it follows that:min {y, } <+/n
1+y

+ Hence, in expectation the DS contains at most 20+/n nodes
per disk with diameter 1.

* An optimal algorithm needs to choose at least 1 node in the disk

with radius 1 around any node.

+ This disk can be covered by a constant (9) number of disks of
diameter 1.

+ The algorithm chooses at most O(+/n) times more disks than an

optimal one

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

6/38

“Largest ID” Algorithm, Remarks

o o}

» For typical settings, the “Largest ID” algorithm produces very good
dominating sets (also for non-UDGs)

* There are UDGs where the “Largest ID” algorithm computes an
©(/n)-approximation (analysis is tight).

* If nodes know the distances to each other, there is a iterative variant
of the “Largest ID” algorithm which computes a constant
approximation in O(loglog n) time.

N
ax
II..\\. .

| Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/39

Overview of (C)DS Algorithms

[og

Algorithm Worst-Case Guarantees | Local General | CDS
(Distributed) Graphs

Greedy Yes, optimal unless P=NP | No Yes No
Tree Growing | Yes, optimal unless P=NP | No Yes Yes
Marking No Yes (const.) Yes Yes
k-local Yes, but with add. factor o | Yes (k-local) Yes Yes
“Dominator!” | Asymptotically Optimal Yes (log n) No Yes
“Largest ID” | O(y/n)/ constant Yes No Yes
simple / iter. (const / loglog n)

A

|‘ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/40

