
10 Distributed Dominating Set Approximation

A dominating set of a graphG = (V,E) is a subsetS ⊆ V of the nodes such that for all nodesv ∈ V ,
eitherv ∈ S or a neighboru of v is in S. There are many distributed applications where computing a
small dominating set of the network graph is important. It is well-known that computing a dominating
set of minimal size is NP-hard. We therefore look for approximation algorithms, that is, algorithms
which produce solutions which are optimal up to a certain factor.

10.1 Sequential Greedy Algorithm

In order to understand the problem, we start with a very simple sequential algorithm. We start with
S = ∅ and greedily add ‘good’ nodes toS until S is a dominating set. We call nodes inS black,
nodes which are covered (neighbors of nodes inS) grey, and all uncovered nodeswhite. By w(v), we
denote the number of white nodes among the direct neighbors ofv, includingv itself. We callw(v)
thespanof v. The most natural greedy approach works as follows.

Greedy Algorithm:

1: S := ∅;
2: while ∃ white nodesdo
3: v :=

{
v

∣∣ w(v) = maxu{w(u)}};
4: S := S ∪ v;
5: od

Theorem 10.1. The Greedy Algorithmcomputes aln∆-approximation, that is, for the computed
dominating setS and an optimal dominating setS∗, we have

|S|
|S∗| ≤ ln∆.

Proof. We prove the theorem using amortized analysis. Each time we choose a new node of the
dominating set (each greedy step), we have cost1. Instead of assigning the whole cost to the node
we have chosen, we distribute the cost equally among all newly covered nodes. Assume that nodev,
chosen in line 3 of the algorithm, is white itself and that its white neighbors arev1, v2, v3, andv4. In
this case each of the 5 nodesv andv1, . . . , v4 get charged1/5. If v is chosen as a grey node, only the
nodesv1, . . . , v4 get charged (they all get1/4).

Now, assume that we know an optimal dominating setS∗. By the definition of dominating sets, to
each node which is not inS∗, we can assign a neighbor fromS∗. By assigning each node to exactly
one node ofS∗, the graph is decomposed into stars, each having a dominator (node inS∗) as center
and non-dominators as leaves. Clearly, the cost of an optimal dominating set is1 for each such star. In
the following, we show that the amortized cost (distributed costs) of the greedy algorithm is at most
(H(∆) ≈ ln∆) for each star. This suffices to prove the theorem.

Thus, we now look at a single star with centerv ∈ S∗. Let w(v) be the number of white nodes in
the star ofv. If some nodes in the star ofv become gray, they get charged some cost. By the greedy
condition of the algorithm, this weight can be at most1/w(v) per newly covered node. Otherwise,
the algorithm could rather have chosenv for the dominating set becausev would cover at leastw(v)
nodes. After becoming grey, nodes do not get charged any more. In the worst case, no two nodes in
the star ofv are covered together. In this case, the first nodes gets charged at most1/(δ(v) + 1), the

1

second node gets charged at most1/δ(v), and so on. Thus, the total amortized cost of a star is at most

1
δ(v) + 1

+
1

δ(v)
+ · · ·+ 1

2
+

1
1

= H(δ(v) + 1) ≤ H(∆ + 1) = ln(∆) + O(1)

where∆ denotes the maximal degree of graphG.

Remarks:

• One can show that unlessNP ⊆ DTIME(nO(log log n)), no polynomial-time algorithm can
approximate the minimum dominating set problem better thanln∆ − o(ln ∆). Thus, unless
P ≈ NP, the simple greedy algorithm is optimal.

10.2 Distributed Greedy Algorithm

Observation: The span of a node can only be reduced if any of the nodes at distance at most2 are
included in the dominating set. Therefore, if the span of nodev is greater than the span of any other
node at distance at most2 from v, the greedy algorithm choosesv before any of the nodes at distance
at most2. This leads to a very simple distributed version of the greedy algorithm. Every nodev
executes the following algorithm.

Distributed Greedy Algorithm:

1: while v has white neighborsdo
2: compute spanw(v);
3: sendw(v) to nodes at distance at most2;
4: if w(v) largest within distance2 (ties are broken by unique IDs)then
5: join dominating set
6: fi
7: od

Theorem 10.2.TheDistributed Greedy Algorithmcomputes aln∆-approximation for the minimum
dominating set problem inO(n) rounds.

Proof. The approximation quality follows directly from the above observation and the analysis of the
greedy algorithm. The time complexity is at most linear because in every other round, at least one
node is added to the dominating set.

The approximation ratio of the above distributed algorithm is optimal. However, the time com-
plexity is very bad. In fact, there are graphs on which in each iteration of the while loop, only one
node is added to the dominating set. As an example, consider a graph as in Figure 1. An optimal
dominating set consists of all nodes on the center axis. Thedistributed greedy algorithmcomputes
an optimal dominating set, however, the nodes are chosen sequentially from left to right. Hence, the
running time of the algorithm isΩ(

√
n).

The problem of the graph of Figure 1 is that there is a long path of descending degrees (spans).
Every node has to wait for the neighbor to the left. Therefore, we want to change the algorithm in
such a way that there are no long paths of descending spans. Allowing for an additional factor2 in the
approximation ratio, we can round all spans to the next power of2 and let the greedy algorithm take
a node with a maximal rounded span. In this case, a path of strictly descending rounded spans has at
most lengthlog n. For the distributed version, this means that nodes whose rounded span in maximal

2

Figure 1: Distributed greedy algorithm: Bad example

within distance2 are added to the dominating set. Ties are again broken by unique node IDs. If node
IDs are chosen at random, the time complexity for the graph of Figure 1 is reduced fromΩ(

√
n) to

O(log n).

Figure 2: Bad example for distributed greedy with rounded spans

Unfortunately, there still is a problem remaining. To see this, we consider Figure 2. The graph
of Figure 2 consists of a clique withn/3 nodes and two leaves per node of the clique. In an optimal
dominating set, there are all then/3 nodes of the clique. Because they all have distance1 from each
other, the described distributed algorithm only selects one in each while iteration (the one with the
largest ID). Note that as soon as one of the nodes is in the dominating set, the span of all remaining
nodes of the clique is2. They do not have common neighbors and therefore there is no reason not
to choose all of them in parallel. However, the time complexity of the simple algorithm isΩ(n). In
order to improve this example, we need an algorithm which also chooses nodes based on the number
of common white neighbors and not only based on having a large enough ID. This is accomplished
by the following probabilistic algorithm which is described in [JRS01].

Fast Distributed Dominating Set Algorithm:

1. Nodev is a candidate for joining the dominating set if its spanw(v) rounded to the next power
of 2 is maximal within distance2.

2. Each white nodeu computes its supports(u), which is the number of candidates that coveru.

3. For a candidatev, letm(v) be the median support of all white neighbors.v joins the dominating
set with probability1/m(v).

3

The above three steps are carried out until all nodes are covered. In [JRS01], the following theorem
is proven.

Theorem 10.3. [JRS01] Thefast distributed dominating set algorithmcomputes a dominating set of
expected sizeO(log ∆) in timeO(log n log ∆) w.h.p.

Remarks:

• Taking the average support instead of the median support in step 3, gives an algorithm with
approximation ratio and time complexityO(log n log ∆).

• Based on different techniques (LP relaxation), there is another fast distributed dominating
set algorithm with approximation ratioO(∆1/

√
k log ∆) and time complexityO(k) [KW03,

KMW05]. Choosingk = O(log2 ∆), the approximation ratio isO(log ∆).

• It is not known whether there is a local (fast) good deterministic approximation algorithm. This
is an interesting and important open problem.

10.3 Simple One Round Lower Bound

In the second part of this chapter, we try to give lower bounds for the distributed approximation of
dominating sets. To start, we show that in a single communication round, dominating set cannot be
approximated better than by a factorΩ(

√
∆) where∆ is the maximum degree of the graph. We

assume that initially, all nodes know the identity of all their neighbors. They do not know anything
else about the topology of the network graph. In one communication round, each node can inform all
adjacent nodes about its neighborhood. Therefore, after one round, each node knows the graph up to
distance two. It does not know, however, how nodes at distance two are interconnected to each other.

Kn−1 Km

m

n

n−1

n

same view

nodesm

m

Figure 3: Simple lower bound graphs for one-round algorithms

Theorem 10.4. In one communication round (as described above), minimum dominating set cannot
be approximated better thanΩ(

√
∆).

Proof. To prove this theorem, we have a look at the two graphs of Figure 3. In the left graph, an
optimal dominating set consists of them nodes at the top and the bottom node, that is, it contains
m + 1 nodes. In the right graph, we have a minimum dominating set consisting of only the3 nodes

4

which are marked by a dashed circle. As indicated in the figure, after only one communication round,
all the nodes on the third level from the top have the same view. They all havem + 1 neighbors,
m of which have degree2 and one has degreen. Because all these nodes see the same topology,
the probabilityp that they go to the dominating set is equal for all of them. In the left graph, we
haven such nodes, resulting in a dominating set of expected size at leastpn. In the right graph, not
choosing the bottom node forces us to choosem of the nodes of the top right part in order to get a
valid dominating set. Therefore, in expectation, there are at least(1 − p)m nodes in the dominating
set. For the approximation ratio, we then get

max
{

pn

m + 1
,
(1− p)m

3

}
=

(m=
√

n)
max

{
pn√
n + 1

,
(1− p)

√
n

3

}
.

Hence, if we setm =
√

n, independent of the choice ofp, the approximation ratio is at leastΩ(
√

n) =
Ω(
√

∆).

10.4 Vertex Cover Lower Bound

Extending the proof of the last section to more communication rounds turns out to be very difficult.
Looking at a simpler but related problem, it is however possible. Instead of minimum dominating set
we are now considering the minimum vertex cover problem. A vertex cover is a set of nodesS such
that for each edge, at least one of the end points is inS. That is, instead of covering nodes with nodes,
we cover edges with nodes.

The basic idea is to construct a graphGk = (V, E), for each positive integerk, which contains
a bipartite subgraphS with node setC0 ∪ C1 and edges inC0 × C1 as shown in Figure 4. SetC0

consists ofn0 nodes each of which hasδ0 neighbors inC1. Each of then0 · δ0
δ1

nodes inC1 hasδ1,
δ1 > δ0, neighbors inC0. The goal is to constructGk in such a way that all nodes inv ∈ S see the
same topology within distancek. In a globally optimal solution, all edges ofS may be covered by
nodes inC1 and hence, no node inC0 needs to join the vertex cover. In a local algorithm, however,
the decision of whether or not a node joins the vertex cover depends only on its local view. We show
that because adjacent nodes inS see the same topology, every algorithm adds a large portion of nodes
in C0 to its vertex cover in order to end up with a valid solution.

10.4.1 The Cluster Tree

12δ δ3 δ2 δ0 δ1

δ0 δ1

δ3δ2 δ1δ0

δ3δ2δ2 δ1δ0δ1

δ

Level 0

Level 1

Level 2

Level 3

3

2C

0C
S

1

C

C

Figure 4: Cluster-TreeCT2.

5

The nodes of graphGk = (V, E) can be grouped into disjoint sets which are linked to each other
as bipartite graphs. We call these disjoint sets of nodesclusters.

We define the structure ofGk using a directed treeCTk = (C,A) with doubly labelled arcs
` : A → N × N. We refer toCTk as thecluster tree, because each vertexC ∈ C represents a
cluster of nodes inGk. Thesizeof a cluster|C| is the number of nodes the cluster contains. An arc
a = (C,D) ∈ A with `(a) = (δC , δD) denotes that the clustersC andD are linked as a bipartite
graph, such that each nodeu ∈ C hasδC neighbors inD and each nodev ∈ D hasδD neighbors in
C. It follows that|C| · δC = |D| · δD. We call a clusterleaf-clusterif it is adjacent to only one other
cluster, and we call itinner-clusterotherwise.

Definition 10.5. The cluster treeCTk is recursively defined as follows:

CT1 := (C1,A1), C1 := {C0, C1, C2, C3}
A1 := {(C0, C1), (C0, C2), (C1, C3)}

`(C0, C1) := (δ0, δ1), `(C0, C2) := (δ1, δ2),
`(C1, C3) := (δ0, δ1)

GivenCTk−1, we obtainCTk in two steps:

• For each inner-clusterCi, add a new leaf-clusterC ′
i with `(Ci, C

′
i) := (δk, δk+1).

• For each leaf-clusterCi of CTk−1 with (Ci′ , Ci) ∈ A and `(Ci′ , Ci) = (δp, δp+1), addk−1
new leaf-clustersC ′

j with `(Ci, C
′
j) := (δj , δj+1) for j = 0 . . . k, j 6= p + 1.

Further, we define|C0| = n0 for all CTk.

Figure 4 showsCT2. The shaded subgraph corresponds toCT1. The labels of each arca ∈ A are
of the form`(a) = (δl, δl+1) for somel ∈ {0, . . . , k}. Further, setting|C0| = n0 uniquely determines
the size of all other clusters. Note thatCTk describes the general structure ofGk, that is, it defines
for each node the number of neighbors in each cluster. However,CTk does not specify the actual
adjacencies. In [KMW04], it is shown thatGk can be constructed in such a way that each node’s view
is a tree up to distancek, that is, there are no short cycles. Choosingδi = δi, we obtain a realization
of Gk with n0 ≤ 42kδ4k2

.

10.4.2 Proving the Lower Bound

Having constructedGk, it remains to prove that everyk-round vertex cover algorithm behaves bad
on Gk. It is possible to prove that the nodes inC0 and the nodes inC1 see the same topology up to
distancek. Therefore, all nodes ofC0 andC1 have to join the vertex cover with the same probabilityp.
Because the edges connecting theC0 with C1 have to be covered,p ≥ 1/2. Otherwise there is a non-
zero probability that two adjacent nodes are both not in the vertex cover. Therefore, in expectation,
each algorithm chooses at least half of the nodes ofC0. An optimal vertex cover consists at most
|V \C0| = n−n0 nodes. One can show thatn−n0 ≤ n0(k+1)

δ−(k+1) . Therefore if we chooseδ ≥ 2(k+1),
the approximation ratioα is at least

α ≥ n0/2
n− n0

≥ n0/2 · δ/2
n0 · (k + 1)

=
δ

4(k + 1)
≥ (n/2)1/(4k2)

41+1/(2k)(k + 1)
∈ Ω

(
n1/(4k2)

k

)
.

Hence, we obtain the following theorem (note that∆ = δk+1).

6

Theorem 10.6.In k communication rounds, every distributed algorithm for the minimum vertex cover
problem has approximation ratio at least

Ω

(
nc/k2

k

)
andΩ

(
∆1/k

k

)

for some constantc ≥ 1/4, wheren and∆ denote the number of nodes and the maximum degree of
the network graph.

Remarks:

• It can be shown that unique node IDs do not help, that is, the lower bounds also hold in this
case.

• As a consequence of Theorem 10.6, at leastΩ(
√

log n/ log log n) and Ω(log ∆/ log log ∆)
rounds are required for a constant or polylogarithmic approximation.

• By simple reductions, it can be shown that the lower bounds also hold for the minimum dom-
inating set problem and for the construction of maximal matchings and maximal independent
sets.

References

[JRS01] L. Jia, R. Rajaraman, and R. Suel. An Efficient Distributed Algorithm for Constructing
Small Dominating Sets. InProc. of the20 th ACM Symposium on Principles of Distributed
Computing (PODC), pages 33–42, 2001.

[KMW04] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be Computed Locally! In
Proc. of the23rd ACM Symp. on Principles on Distributed Computing (PODC), 2004.

[KMW05] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The Price of Being Near-Sighted, 2005.
submitted.

[KW03] F. Kuhn and R. Wattenhofer. Constant-Time Distributed Dominating Set Approximation.
In Proc. of the22nd Annual ACM Symp. on Principles of Distributed Computing (PODC),
pages 25–32, 2003.

7

