Principles of Distributed Computing

Roger Wattenhofer
8 Sorting
“Indeed, | believe that virtuallgveryimportant aspect of
programming arises somewhere in the context of sorting aacthing!”
— Donald E. Knuth, The Art of Computer Programming
8.1 Array
Definition 8.1 (Sorting) We are given a graph with nodes, ..., v,. Initially each node stores a

value. After applying a sorting algorithm, nodg stores theith smallest value.

Remarks:

e What if you route all values to the same central node, thentleertalues locally, then route
them to the correct destinations? Great, but what abouentioh?

e Problem: The “classic” contention definition is on edges,noales; a star-graph gives therefore
atrivial O(n) message and O(1) time sorter. We need a straageention definition than remark
4.3.

e In this chapter algorithms can only stofg 1) values at a time. (Or not quite as strong but
sufficient: Use node contention instead of message coatehti

e Ranking + Routing = Sorting? Well... indeed routing and sgrtiave many commonalities. As
in Chapter 4 we start with Arrays, go then to Meshes and finally @p with something like
Butterflies!

Algorithm 8.2 (Odd/Even Sort) We are given an array of nodes, each storing a value (in scram-
bled order). At odd steps, we compare and exchange — if the aline left node is larger than the
value at the right node — the values in nodes 1 and 2, 3 and 4 Ad¢teven steps, we do the same
for the pairs 2 and 3, 4 and 5, etc.

Remarks:
e How fast is the algorithm, and how can we prove correctnéaséncy?

e The most interesting proof uses the so-called 0-1 Sortingrha. It allows us to restrict our
attention to an input of O’s and 1's, and works for any “oldivs comparison-exchange” algo-
rithm. (Which means: Whether you exchange two values mustdepgnd on the relative order
of the two values, and not on anything else.)

Lemma 8.3 (0-1 Sorting Lemma) If an oblivious comparison-exchange algorithm sorts gluts
of 0’s and 1’s, then it sorts any input.

Proof. We prove the opposite direction (does not sort any iapudoes not sort 0’'s and 1's). Assume
that there is an input = x4, .. ., z,, that is not sorted correctly. Then there is a smallest valsech
that the value at node, after running the sorting algorithm is larger than thle smallest value: (k).
Define an inputr; = 0 & z; < z(k), z; = 1 else. Sincer; > z; = z; > z; all the compare-
exchange operation are the same witlas with the original input. The output with only O’'s and 1’s
will also not be correct. r

Theorem 8.4 (Analysis) Algorithm 8.2 sorts correctly im steps.

Proof. Thanks to Lemma 8.3 we only need to consider an array withriilslés. Letj; be the node
with the rightmost 1. Ifj; is odd (even) it will move in the first (second) step. In anyecaswill
move right in every following step until it reaches the rigiost node. Lej, be the node with thé’th
rightmost 1. We show by induction thgtis not blocked anymore (moves until it reaches destination!
after stepk. We have already anchored the inductiot at 1. Sincej,_; moves after step — 1, ji
gets a right 0-neighbor for each step after stefMe supressed a couple of details.) M

Remark:

e As for routing we continue with the two-dimensional array.

8.2 Mesh

Algorithm 8.5 (Shearsort) We are given a mesh with rows andm columns . = m?). The sort-
ing algorithm operates in phases, and uses the odd/evelgmntithm on rows or columns. In par
ticular, in the odd phases 3, ..., logm + 1 we sort all the rows, in the even phased, ... logm
we sort all the columns. Columns are sorted such that the snaalleg move up. Odd rows
(1,3,...,m — 1) are sorted such that small values move left. Even r@ys$, (.., m) are sorted
such that small values move right.

Theorem 8.6 (Analysis) Algorithm 8.5 sorts the values i (log n + 1) time in snake-like order.

Proof. Since the algorithm is oblivious, we can use Lemma 8.3. Wavdhat after a row and a
column phase, half of the previously unsorted rows will beexh More formally, let us call a row
with only 0’s or 1's clean, a row with0’s and1’s dirty. At any stage, the rows of the mesh can be
devided into three regions. In the north we have a regionldd edws, in the south all-1 rows, in the
middle a region of dirty rows. Initially all rows can be dirtince neither the row- nor the column
sort will touch the already clean rows, we can concentratienmlirty rows.

First we run an odd phase. Then, in the even phase, we run Bgsexlumn sorter: We group two
consecutive dirty rows into pairs. Such a pair can be in orthrefe states. Either we have maére
thanl’s, or morel’s than0’s, or an equal number d@fs and1’s. Column-sorting each pair will give
us at least one clean row (and two clean rows(f = |1|"). Then move the cleaned rows north/south
and we will be left with half the dirty rows.

At first glance it appears that we need such a peculiar colwrters However, any column sorter
sorts the columns in exactly the same way (we are very gidtehave Lemma 8.3!!).

Allin all we need2 log m = log n phases to remain only withdirty row in the middle which will
be sorted (not cleaned) with the last row-sort. r

Remarks:

e There are algorithms that sort3m + o(m) time on anm by m mesh (by diving the mesh into
smaller blocks). This is asymptotically optimal, since &ugamight need to movem times.

¢ We know sequential algorithms that sortixin log n) time. With lots of parallelism, there might
be a way to sortin timé&(log n)!?! The butterfly and its relatives have constant degree afyd o
O(logn) diameter! Is there a network and a distributed algorithn sbéts inO(log n) time?!?

8.3 Sorting Networks

Definition 8.7 (Sorting Networks) A comparator is a device with two inpuisy and two outputs
2’y such thate’ = min(z,y) andy’ = maz(z,y). We construct so-called comparison networks
that consist of wires that connect comparators (the output pba comparator is sent to an input
port of another comparator). Some wires are not connecteditput comparators, and some are not
connected to input comparators. The first are called inpués/of the comparison network, the second
output wires. Givem values on the input wires, a sorting network sorts these vadnethe output
wires. (These definitions are only comprehensable with thenpbes on blackboard. For a thorough
introduction see any of the textbooks on sorting networks.)

Remark:

e Note that a sorting network is an oblivious comparison-axgfe network. Consequently we
apply Lemma 8.3 throughout the Section.

Definition 8.8 (Depth) The depth of an input wire i8. The depth of a comparator is the maximum
depth of its input wires plus one. The depth of an output wire cbmparator is the depth of the
comparator. The depth of a comparison network is the maxinepthdof an output wire).

Remarks:

e Often we will draw all the wires om horizontal lines ¢ being the “width” of the network).
Comparators are then vertically connecting two of thesesline

Definition 8.9 (Bitonic Sequence)A bitonic sequence is a sequence of numbers that first manoton
cally increases, and then monotonically decreases, orwecsa.

Remarks:
e <1,4,6,8,3,2>0r<5,3,2,1,4,8 > are bitonic sequences, but9,6,2,3,5,4 > is not.

¢ Since we restrict ourselves €s and1’s, bitonic sequences have the fofri’0* or 1°071% for
i3,k > 0.

Algorithm 8.10 (Half Cleaner) A half cleaner is a comparison network of degthwhere we com-
pare wirei with wirei +n/2fori =1,...,n/2 (we assume to be even).

3

Lemma 8.11 Feeding a bitonic sequence into a half cleaner, the halfridealeans (makes all-or
all-1) either the upper or the lower half of thewires. The other half is bitonic.

Proof. Assume that the input is of the forfi1/0* for i, j, k > 0. If the midpoint falls into thed’s,
the input is already half clean and will stay so. If the midpdalls into thel’s the half cleaner acts as
Shearsort with two adjacent rows. (We refer to Theorem 818,d0 details on the blackboard). The
casel’0’1* is symmetric. M

Algorithm 8.12 (Bitonic Sequence Sorter)A bitonic sequence sorter of width(n being a power of
2) consists of a half cleaner of width, and then two bitonic sequence sorters of widj2 each. A
bitonic sequence sorter of widthis empty.

Lemma 8.13 (Analysis) A bitonic sequence sorter of widthsorts bitonic sequences. It has depth
log n.

Proof. Follows directly from the definition of the bitonic sequesceter (Algorithm 8.12) and Lemma
8.11. M

Remark:

e Clearly we want to sort arbitrary and not only bitonic sequeshc

Algorithm 8.14 (Merging Network) A merging network of widtln is a merger followed by two
bitonic sequence sorters of widily2. A merger is a depth-one network where we compare wire
with wiren —i+1,fori =1,... n/2.

Remark:

¢ Indeed a merging network is a bitonic sequence sorter wheneplace the biggest (first) half-
cleaner by a merger.

Lemma 8.15 (Analysis) A merging network merges two sorted input sequences into one.

Proof. We have two sorted input sequences. The first merger step o &h-too-well already
(Lemma 8.11, Theorem 8.6): After the merger step either ppeuor the lower half is clean, the other
is bitonic. The bitonic sequence sorters complete sortings merge the two input sequences. Tl

Remark:

e How do you sort: values when you are able to merge two sorted sequences of /&2eApply
the merger recursively.

Algorithm 8.16 (Batcher’s “Bitonic” Sorting Network) A batcher sorting network of width
consists of two batcher sorting networks of widtf2 followed by a merging network of width
n. A batcher sorting network of widthis empty.

Theorem 8.17 (Analysis)A batcher sorting network sorts an arbitrary sequence of @alult has
depthO(log®n).

Proof. Correctness is immediate: at recursive stadé = 2,4,8,...,n) we mergen/(2k) sorted
sequences inta/k sorted sequences. The depth) of the sorter of leveh is the depth of a sorter of
leveln/2 plus the depthn(n) of a merger with width:. The depth of a sorter of levélis 0 since the
sorter is empty. Since a merger of widithas the same depth as a bitonic sequence sorter of wjdth
we know by lemma 8.12 that(n) = logn. This gives a recursive formula fafn) which solves to
d(n) = Llog®n + Llogn. M
Remarks:

e Simulating Batcher’s sorting network on an ordinary segaéabmputer takes timé(n log® n).
As we all know there are sequential sorting algorithms tbatis asymptotically optimal time
O(nlogn). The question whether there is a sorting network with depttogn) (oblivious,
optimal, parallel!) remained open for a long time. In 198%aA Komlos, and Szemeredi pre-
sented a much-celebratéllogn) depth sorting network. (Unlike Batcher’s sorting network
the constant hidden in the big-of the “AKS” sorting network is too large to be practical.)

¢ It was shown that Batcher’s sorting network and similarlyepthcan be simulated by a Butterfly
network and other hypercubic networks.

e What if a sorting network is asynchronous?!? Clearly we cadoaorting anymore. But check
out the next section!

8.4 Counting Networks

Definition 8.18 (Balancer) A balancer is an asynchronous flip-flop which forwards mess#ugs
arrive on the left side to the wires on the right, the first to tipper, the second to the lower, the third
to the upper, and so on.

Algorithm 8.19 (“Bitonic” Counting Network) Take Batcher’s bitonic sorting network of width
w and replace all the comparators with balancers. When a noddsmarcount, it sends a message
to an arbitrary input wire. The message is then routed throtigh network, following the rules
of the asynchronous balancers. Each output wire is comphttda “mini-counter” The mini-
counter of wirek replies the value & + ¢ - w” to the initiator of theith message it receives.

Remarks:

e In Chapter 7 we have seen several ways to implement a genaimedify-write (RMW)
operation. One particular RMW is “fetch-and-increment,”es you ask for the value of a
global variable and atomically increment it by one (“coungt)). Naturally counting is a most
important primitive in distributed computing, with manypjcations. At first it seems that such
a RMW needs exclusive access to the variable (see Chapter dumieg network, however, is
a distributed (decentralized) way to implement a fetch-edement!

e But first let’s see why the counting network counts.

Definition 8.20 (Step Property) A sequenceo, y1, . . -, 4.,—1 IS Said to have thetep propertyif 0 <
v —y; < 1, forany: < j.

Remark:

¢ If the output wires have the step property, then wittequests, exactly the valugs. . ., r will
be assigned by the mini-counters. All we need to show is tleatbunting network has the step
property. For that we need some additional facts...

Facts 8.21 For a balancer, we denote the number of consumed messagesiin itiput wire withz;,
i = 0, 1. Similarly, we denote the number of sent messages oithttoaitput wire withy;, : = 0, 1. A
balancer has these properties:

(1) A balancer does not generate output-messages; thag is,z; > yo + y; in any state.

(2) Every incoming message is eventually forwarded. In otfeeds, if we are in a quiescent state,
thenxo + 21 = Yo + Y1.

(3) The number of messages sent to the upper output wire issitane higher than the number of
messages sent to the lower output wire: in any siate [(yo+y1)/2] (thusy, = [(yo+y1)/2)).

Facts 8.221f a sequencey, i1, . . . , ¥—1 has the step property,
(1) then all its subsequences have the step property.

(2) then its even and odd subsequences satisfy

w/2—1

w/2-1 1w 1
5 ym:[zyﬂ and 3 i - { zle.
1=0

Facts 8.231f two sequences, =1, . .., T,_1 andyg, y1, . . . , y,_1 have the step property,
(1) andXS oy = ¥ v, thenay = y; fori =0, w — 1.

(2) andz vty = Yy + 1, then there exists a unique(j = 0,1,...,w — 1) such that
Ty =y; +1, andxz_ylfori:O,...,w—l,z‘;«éj.

Remark:

e That’s enough to prove that a Merger preserves the step fyope

Lemma 8.24 Let M [w] be a Merger of widthv. For M[w] in a quiescent state, if the input§, =1, . .., 2,21
resp. /2, Tw/a+1, - - - » Tw—1 NAVE the step property, then the outpyity, . . . , y,—1 has the step prop-
erty.

Proof. By induction on the widtho.

Forw = 2: M|[2] is a balancer and a balancer’s output has the step propexty §21.3).

Forw > 2: Letz, ..., 2y/2-1 1€SP.2y, - - -, 2,5, DE the output of the upper resp. lowel{w /2]
subnetwork. Sinceg, r, ..., Ty 2—1 @Ndxy /2, Tyw/241, - - -, Tw—1 DOth have the step property by as-
sumption, their even and odd subsequences also have thprefegrty (Fact 8.22.1). By induction
hypothesis, the output of both/[w/2] subnetworks have the step property. Let:= > .7 " =z
andZ' = >""/2' /. From Fact 8.22.2 we conclude that= > W L) + e w/Q:vJ and

6

7' = |55] 4 (L), @], Since[a] + [b] and|a] + [b] differ by at mostl we know that
7 andZ’ differ by at mostl.

If Z = 7', Fact 8.23.1 implies that = 2| fori = 0,...,w/2 — 1. Therefore, the output o/ [w]

IS y; = zi/2) fori = 0,...,w — 1. Sincez, ..., z,/2—1 has the step property, so does the output of
M w] and the Lemma follows.

If Z andZ’ differ by 1, Fact 8.23.2 implies that, = 2/ fori = 0,...,w/2 — 1, except a uniqug
such that; andz; differ by only 1, for j = 0,...,w/2 — 1. Letl := min(z;, 2}). Then, the outpuy;
(with ¢ < 27) isl + 1. The outputy; (with < > 2j + 1) is . The outputy,; andy,;,; are balanced by
the final balancer resulting ipp; = [+ 1 andy,;.; = [. ThereforeM [w] preserves the step property.

M

A bitonic counting network is constructed to fulfill Lemma28.— the final output comes from
a Merger whose upper and lower inputs are recursively mergéérefore, the following Theorem
follows immediately.

Theorem 8.25 (Correctness)in a quiescent state, the output wires of a bitonic counting network
of widthw have the step property.

Remark:

e Is every sorting networks also a counting network? No. Bupssingly, the other direction is
true!

Theorem 8.26 (Counting vs. Sorting) The isomorphic network of a counting network is a sorting
network but not vice versa.

Proof. There are sorting networks that are not counting networls (edd/even sort, or insertion
sort)

For the other direction, lef’ be a counting network ant{C') be the isomorphic network, where
every balancer is replaced by a comparator. L{€t) have an arbitrary input of 0’s and 1's; that is,
some of the input wires have a 0, all others have a 1. There isssage at"s ith input wire if and
only if 7(C)’s i input wire is0. SinceC' is a counting network, all messages are routed to the upper
output wires.1(C') is isomorphic toC', therefore a comparator in(C') will receive a 0 on its upper
(lower) wire if and only if the corresponding balancer reesia message on its upper (lower) wire.
Using an inductive argument, the 0’s and 1's will be routetigh /(C') such that all 0’s exit the
network on the upper wires whereas all 1's exit the networkheriower wires. Applying Lemma 8.3
shows that' (C) is a sorting network. M

Remark:

¢ We claimed that the counting network is correct. Howevaes, @nly correct in a quiescent state.

Definition 8.27 (Linearizable) A system is linearizable if the order of the values assigeédats the
real-time order in which they were requested. More formaflyhere is a pair of operations,, o,
where operatior, terminates before operatiof starts, and the logical order isd; beforeo;,” then
a distributed system is not linearizable.

Lemma 8.28 (Linearizability) The bitonic counting network is not linearizable.

Proof. Please consider the bitonic counting network with widtin Figure 1: Assume that twic
operations were initiated and the corresponding messagered the network on wire 0 and 2 (both
in light grey color). After having passed the second rese fitlst balancer, these traversing messages
“fall asleep”; In other words, both messages take unusuatly time before they are received by the
next balancer. Since we are in an asynchronous settingntyse the case.

° 777 0

/77

Figure 1: Linearizability Counter Example

In the meantime, anothénc operation (medium grey) is initiated and enters the netvaorithe
bottom wire. The message leaves the network on wire 2, anchthaperation is completed.

Strictly afterwards, anothenc operation (dark grey) is initiated and enters the networlvoa 1.
After having passed all balancers, the message will lea/ad¢bwork wire 0. Finally (and not depicted
in figure 1), the two light grey messages reach the next bataarad will eventually leave the network
on wires 1 resp. 3. Because the dark grey and the medium gregtmpedo conflict with Definition
8.27, the bitonic counting network is not linearizable. r

Remark:

¢ Note that the example in Figure 1 behaves correctly in thespaint state: Finally, exactly the
values0, 1, 2, 3 are allotted.

e Several researchers investigated whether linearizahietic is possible at all. It was shown
that linearizability comes at a high price (the depth grawsdrly with the width).

