The Consensus Problem
Roger Wattenhofer

a lot of kudos to Maurice Herlihy and Costas Busch for some of their slides

Sequential Computation

Concurrent Computation

Asynchrony

Sudden unpredictable delays
- Cache misses (short)
- Page faults (long)
- Scheduling quantum used up (really long)
Model Summary

- Multiple threads
 - Sometimes called processes
- Single shared memory
- Objects live in memory
- Unpredictable asynchronous delays

Road Map

- We are going to focus on principles
 - Start with idealized models
 - Look at a simplistic problem
 - Emphasize correctness over pragmatism
 - "Correctness may be theoretical, but incorrectness has practical impact"

You may ask yourself ...

I'm no theory weenie - why all the theorems and proofs?

Fundamentalism

- Distributed & concurrent systems are hard
 - Failures
 - Concurrency
- Easier to go from theory to practice than vice-versa
The Two Generals

Red army wins
If both sides attack together

Communications

Red armies send messengers across valley

Your Mission

Design a protocol to ensure that red armies attack simultaneously

Messengers don't always make it
Sie machen jetzt am Freitag, 08:15 die Vorlesung Verteilte Systeme, wie vereinbart. OK? (Ich bin jedenfalls am Freitag auch gar nicht da.) Ich übernehme das dann wieder nach den Weihnachtsferien.

Das dachte ich mir fast. Ich bin Praktiker und mache es schlauer: Ich gehe nicht, unabhängig davon, ob Sie diese email bestätigen (beziehungsweise rechtzeitig erhalten). (-:)

Ich glaube, jetzt sind wir so weit, dass ich diese Emails in der Vorlesung auflegen werde...
Theorem

There is no non-trivial protocol that ensures the red armies attacks simultaneously.

Proof Strategy

• Assume a protocol exists
• Reason about its properties
• Derive a contradiction

Proof

1. Consider the protocol that sends fewest messages
2. It still works if last message lost
3. So just don’t send it
 - Messengers’ union happy
4. But now we have a shorter protocol!
5. Contradicting #1
Fundamental Limitation

- Need an unbounded number of messages
- Or possible that no attack takes place

You May Find Yourself ...

I want a real-time YAFA compliant Two Generals protocol using UDP datagrams running on our enterprise-level fiber tachyon network ...

You might say

I want a real-time YAFA compliant Two Generals protocol using UDP datagrams running on our enterprise-level fiber tachyon network ... Yes, Ma'am, right away!

You might say

Advantage:
- Buys time to find another job
- No one expects software to work anyway
You might say

Advantage:
• Buys time to find another job
• No need to take course any more

Disadvantage:
• You’re doomed
• Without this course, you may not even know you’re doomed

You might say

I want a real-time YAFA compliant Two Generals protocol using UDP datagrams running on our enterprise-level fiber tachyon network...

I can’t find a fault-tolerant algorithm, I guess I’m just a pathetic loser.

Advantage:
• No need to take course

Disadvantage:
• Boss fires you, hires University St. Gallen graduate
You might say

I want a real-time YAFA

Using skills honed in course, I can avert certain disaster!
 • Rethink problem spec, or
 • Weaken requirements, or
 • Build on different platform

Consensus: Each Thread has a Private Input

They Communicate

They Agree on Some Thread’s Input
Consensus is important

- With consensus, you can implement anything you can imagine...
- Examples: with consensus you can decide on a leader, implement mutual exclusion, or solve the two generals problem

You gonna learn

- In some models, consensus is possible
- In some other models, it is not
- Goal of this and next lecture: to learn whether for a given model consensus is possible or not ... and prove it!

Consensus #1

- n processors, with n > 1
- Processors can atomically read or write (not both) a shared memory cell

Protocol (Algorithm?)

- There is a designated memory cell c.
- Initially c is in a special state “?”
- Processor 1 writes its value v_1 into c, then decides on v_1.
- A processor j (j not 1) reads c until j reads something else than “?”, and then decides on that.
Unexpected Delay

Swapped out back at

Heterogeneous Architectures

Pentium

Pentium

286

yawn

Fault-Tolerance

Consensus #2
wait-free shared memory

• n processors, with n > 1
• Processors can atomically read or write (not both) a shared memory cell
• Processors might crash (halt)
• Wait-free implementation... huh?
Wait-Free Implementation

- Every process (method call) completes in a finite number of steps
- Implies no mutual exclusion
- We assume that we have wait-free atomic registers (that is, reads and writes to same register do not overlap)

A wait-free algorithm...

- There is a cell c, initially c="?"
- Every processor i does the following

 \[r = \text{Read}(c); \]
 \[\text{if } (r = "?") \text{ then } \]
 \[\text{Write}(c, v_i); \text{ decide } v_i; \]
 \[\text{else} \]
 \[\text{decide } r; \]

Is the algorithm correct?

Theorem: No wait-free consensus
Proof Strategy

• Make it simple
 - $n = 2$, binary input
• Assume that there is a protocol
• Reason about the properties of any such protocol
• Derive a contradiction

Wait-Free Computation

• Either A or B “moves”
• Moving means
 - Register read
 - Register write

The Two-Move Tree

Decision Values
Bivalent: Both Possible

Univalent: Single Value Possible

1-valent: Only 1 Possible

0-valent: Only 0 possible
Summary

- Wait-free computation is a tree
- Bivalent system states
 - Outcome not fixed
- Univalent states
 - Outcome is fixed
 - Maybe not “known” yet
 - 1-Valent and 0-Valent states

Claim

Some initial system state is bivalent

(The outcome is not always fixed from the start.)

A 0-Valent Initial State

- All executions lead to decision of 0

A 0-Valent Initial State

- Solo execution by A also decides 0
A 1-Valent Initial State

• All executions lead to decision of 1

A 1-Valent Initial State

• Solo execution by B also decides 1

A Univalent Initial State?

• Can all executions lead to the same decision?

State is Bivalent

• Solo execution by A must decide 0

• Solo execution by B must decide 1
Critical States

- Starting from a bivalent initial state
- The protocol can reach a critical state
 - Otherwise we could stay bivalent forever
 - And the protocol is not wait-free

From a Critical State

- If A goes first, protocol decides 0
- If B goes first, protocol decides 1

Model Dependency

- So far, memory-independent!
- True for
 - Registers
 - Message-passing
 - Carrier pigeons
 - Any kind of asynchronous computation
What are the Threads Doing?

- Reads and/or writes
- To same/different registers

Possible Interactions

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.read()</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>y.read()</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>x.write()</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>y.write()</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Reading Registers

A runs solo, decides 0

B reads x

A runs solo, decides 1

States look the same to A
Writing Distinct Registers

A writes y B writes x
B writes x A writes y

The song remains the same

Possible Interactions

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.write()</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>y.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Writing Same Registers

A writes x B writes x
A runs solo, decides 0
A runs solo, decides 1

States look the same to A

That's All, Folks!

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.read()</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>y.read()</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Theorem

- It is impossible to solve consensus using read/write atomic registers
 - Assume protocol exists
 - It has a bivalent initial state
 - Must be able to reach a critical state
 - Case analysis of interactions
 - Reads vs others
 - Writes vs writes

What Does Consensus have to do with Distributed Systems?

We want to build a Concurrent FIFO Queue

With Multiple Dequeuers!
A Consensus Protocol

2-element array

FIFO Queue with red and black balls

Protocol: Write Value to Array

Protocol: Take Next Item from Queue

I got the coveted red ball, so I will decide my value

I got the dreaded black ball, so I will decide the other’s value from the array
Why does this Work?

- If one thread gets the red ball
- Then the other gets the black ball
- Winner can take her own value
- Loser can find winner's value in array
 - Because threads write array before dequeuing from queue

Implication

- We can solve 2-thread consensus using only
 - A two-dequeuer queue
 - Atomic registers

Implications

- Assume there exists
 - A queue implementation from atomic registers
- Given
 - A consensus protocol from queue and registers
- Substitution yields
 - A wait-free consensus protocol from atomic registers

Corollary

- It is impossible to implement a two-dequeuer wait-free FIFO queue with read/write shared memory.
 - This was a proof by reduction; important beyond NP-completeness...
Consensus #3
read-modify-write shared mem.

- n processors, with n > 1
- Wait-free implementation
- Processors can atomically read and write a shared memory cell in one atomic step: the value written can depend on the value read
- We call this a RMW register

Protocol

- There is a cell c, initially c="?"
- Every processor i does the following

```
RMW(c), with
if (c == "?") then
  Write(c, vi); decide vi;
else
  decide c;
```

Discussion

- Protocol works correctly
 - One processor accesses c as the first; this processor will determine decision
- Protocol is wait-free
- RMW is quite a strong primitive
 - Can we achieve the same with a weaker primitive?

Read-Modify-Write
more formally

- Method takes 2 arguments:
 - Variable x
 - Function f
- Method call:
 - Returns value of x
 - Replaces x with f(x)
Read-Modify-Write

```
public abstract class RMW {
    private int value;

    public void rmw(function f) {
        int prior = this.value;
        this.value = f(this.value);
        return prior;
    }
}
```

Example: Read

```
public abstract class RMW {
    private int value;

    public void read() {
        int prior = this.value;
        this.value = this.value;
        return prior;
    }
}
```

Example: test&set

```
public abstract class RMW {
    private int value;

    public void TAS() {
        int prior = this.value;
        this.value = 1;
        return prior;
    }
}
```

Example: fetch&inc

```
public abstract class RMW {
    private int value;

    public void fai() {
        int prior = this.value;
        this.value = this.value + 1;
        return prior;
    }
}
```
Example: fetch&add

```java
public abstract class RMW {
    private int value;

    public void faa(int x) {
        int prior = this.value;
        this.value = this.value + x;
        return prior;
    }
}
```

addition function

Example: swap

```java
public abstract class RMW {
    private int value;

    public void swap(int x) {
        int prior = this.value;
        this.value = x;
        return prior;
    }
}
```

constant function

Example: compare&swap

```java
public abstract class RMW {
    private int value;

    public void CAS(int old, int new) {
        int prior = this.value;
        if (this.value == old)
            this.value = new;
        return prior;
    }
}
```

complex function

“Non-trivial” RMW

- Not simply read
- But
 - test&set, fetch&inc, fetch&add, swap, compare&swap, general RMW
- Definition: A RMW is non-trivial if there exists a value \(v \) such that \(v \neq f(v) \)
Consensus Numbers (Herlihy)

- An object has consensus number \(n \)
 - If it can be used
 - Together with atomic read/write registers
 - To implement \(n \)-thread consensus
 - But not \((n+1)\)-thread consensus

Consensus Numbers

- Theorem
 - Atomic read/write registers have consensus number 1

- Proof
 - Works with 1 process
 - We have shown impossibility with 2

Consensus Numbers

- Consensus numbers are a useful way of measuring synchronization power

- Theorem
 - If you can implement \(X \) from \(Y \)
 - And \(X \) has consensus number \(c \)
 - Then \(Y \) has consensus number at least \(c \)

Synchronization Speed Limit

- Conversely
 - If \(X \) has consensus number \(c \)
 - And \(Y \) has consensus number \(d < c \)
 - Then there is no way to construct a wait-free implementation of \(X \) by \(Y \)

- This theorem will be very useful
 - Unforeseen practical implications!
Theorem

• Any non-trivial RMW object has consensus number at least 2
• Implies no wait-free implementation of RMW registers from read/write registers
• Hardware RMW instructions not just a convenience

Proof

public class RMWConsensusFor2 implements Consensus {
 private RMW r;
 public Object decide() {
 int i = Thread.myIndex();
 if (r.rmw(f) == v)
 return this.announce[i];
 else
 return this.announce[1-i];
 }
}

Interfering RMW

• Let F be a set of functions such that for all f_i and f_j, either
 - They commute: f_i(f_j(x))=f_j(f_i(x))
 - They overwrite: f_i(f_j(x))=f_i(x)
• Claim: Any such set of RMW objects has consensus number exactly 2
Examples

- Test-and-Set
 - Overwrite
- Swap
 - Overwrite
- Fetch-and-inc
 - Commute

Meanwhile Back at the Critical State

A about to apply f_A

B about to apply f_B

0-valent → C

1-valent

Maybe the Functions Commute

A applies f_A

B applies f_B

C runs solo

0-valent

C runs solo

1-valent

These states look the same to C

A applies f_A

B applies f_B

C runs solo

0-valent

C runs solo

1-valent
Maybe the Functions Overwrite

A applies f_A

B applies f_B

C runs solo

0-valent

A applies f_A

C runs solo

1-valent

These states look the same to C

Maybe the Functions Overwrite

A applies f_A

B applies f_B

C runs solo

0-valent

1-valent

Impact

- Many early machines used these “weak” RMW instructions
 - Test-and-set (IBM 360)
 - Fetch-and-add (NYU Ultracomputer)
 - Swap
- We now understand their limitations
 - But why do we want consensus anyway?

CAS has Unbounded Consensus Number

```java
public class RMWConsensus implements Consensus {
    private RMW r;

    public Object decide() {
        int i = Thread.myIndex();
        int j = r.CAS(-1, i);
        if (j == -1)
            return this.announce[i];
        else
            return this.announce[j];
    }
}
```
The Consensus Hierarchy

1 Read/Write Registers, ...
2 T&S, F&I, Swap, ...
∞ CAS, ...

Consensus #4
Synchronous Systems

- In real systems, one can sometimes tell if a processor had crashed
 - Timeouts
 - Broken TCP connections

- Can one solve consensus at least in synchronous systems?

Communication Model

- Complete graph
- Synchronous

Send a message to all processors in one round: Broadcast
At the end of the round: everybody receives a

Broadcast: Two or more processes can broadcast in the same round

At end of round...

Crash Failures

Faulty processor
Some of the messages are lost, they are never received.

Effect

Faulty processor

Faulty processor

After a failure, the process disappears from the network.

Consensus:
Everybody has an initial value.
Everybody must decide on the same value

Validity condition:
If everybody starts with the same value they must decide on that value

A simple algorithm

Each processor:
1. Broadcasts value to all processors
2. Decides on the minimum

(only one round is needed)
Broadcast values

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

Decide on minimum

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

This algorithm satisfies the validity condition

If everybody starts with the same initial value, everybody sticks to that value (minimum)
Consensus with Crash Failures

The simple algorithm **doesn't work**

Each processor:
1. Broadcasts value to all processors
2. Decides on the minimum

Start The failed processor doesn't broadcast its value to all processors

Broadcasted values

- 0, 1, 2, 3, 4
- 1, 2, 3, 4
- 0, 1, 2, 3, 4
- 1, 2, 3, 4
- 0, 1, 2, 3, 4

Decide on minimum

- 0, 1, 2, 3, 4
- 1, 2, 3, 4
- 0, 1, 2, 3, 4
Finish - No Consensus!

If an algorithm solves consensus for f failed processes we say it is an f-resilient consensus algorithm.

Example: The input and output of a 3-resilient consensus algorithm.

New validity condition: all non-faulty processes decide on a value that is available initially.
An f-resilient algorithm

Round 1:
Broadcast my value

Round 2 to round $f+1$:
Broadcast any new received values

End of round $f+1$:
Decide on the minimum value received

Example: $f=1$ failures, $f+1=2$ rounds needed

Round 1
Broadcast all values to everybody

0, 1, 2, 3, 4

Start

0

1

2

3

4

Example: $f=1$ failures, $f+1=2$ rounds needed

Round 2
Broadcast all new values to everybody

0, 1, 2, 3, 4

0, 1, 2, 3, 4

0, 1, 2, 3, 4

0, 1, 2, 3, 4

1

2

3

4
Example: $f=1$ failures, $f+1 = 2$ rounds needed

Finish
Decide on minimum value

0,1,2,3,4

Example: $f=2$ failures, $f+1 = 3$ rounds needed

Start
Example of execution with 2 failures

Round 1
Broadcast all values to everybody

Example: $f=2$ failures, $f+1 = 3$ rounds needed

Round 2
Broadcast new values to everybody

Failure 1

Failure 2
Example: f=2 failures, f+1 = 3 rounds needed

Round 3 Broadcast new values to everybody

0,1,2,3,4

Failure 1

0,1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed

Finish Decide on the minimum value

0,1,2,3,4

Failure 1

0,1,2,3,4

Failure 2

If there are f failures and f+1 rounds then there is a round with no failed process

Round 1 2 3 4 5 6

Example: 5 failures, 6 rounds

No failure

At the end of the round with no failure:

• Every (non faulty) process knows about all the values of all the other participating processes

• This knowledge doesn't change until the end of the algorithm
Therefore, at the end of the round with no failure:

Everybody would decide on the same value

However, as we don’t know the exact position of this round, we have to let the algorithm execute for \(f+1 \) rounds

Validity of algorithm:

when all processes start with the same input value then the consensus is that value

This holds, since the value decided from each process is some input value

A Lower Bound

Theorem: Any \(f \)-resilient consensus algorithm requires at least \(f+1 \) rounds

Proof sketch:

Assume for contradiction that \(f \) or less rounds are enough

Worst case scenario:

There is a process that fails in each round
Worst case scenario

Round 1

Before process p_i fails, it sends its value a to only one process p_k.

Worst case scenario

Round 1

Before process p_k fails, it sends value a to only one process p_m.

Round 1 2 3 f

At the end of round f, only one process p_n knows about value a.

Worst case scenario

Round 1 2 3 f
decide

Process p_n may decide on a, and all other processes may decide on another value (b).
Worst case scenario

Round 1 2 3 f decide

Therefore f rounds are not enough
At least f+1 rounds are needed

Consensus #5
Byzantine Failures

Faulty processor

Different processes receive different values

Some messages may be lost

A Byzantine process can behave like a Crashed-failed process

After failure the process continues functioning in the network
Consensus with Byzantine Failures

f-resilient consensus algorithm:
solves consensus for f failed processes

Example: The input and output of a 1-resilient consensus algorithm

Validity condition:
if all non-faulty processes start with the same value then all non-faulty processes decide on that value

Lower bound on number of rounds

Theorem: Any f-resilient consensus algorithm requires at least f+1 rounds

Proof: follows from the crash failure lower bound
Upper bound on failed processes

Theorem: There is no f-resilient algorithm for n processes, where $f \geq n/3$

Plan: First we prove the 3 process case, and then the general case

The 3 processes case

Lemma: There is no 1-resilient algorithm for 3 processes

Proof: Assume for contradiction that there is a 1-resilient algorithm for 3 processes

Local algorithm

Initial value

![Diagram of a local algorithm with three processes: p_0, p_1, and p_2. The initial values are $A(0)$, $B(1)$, and $C(0)$.

Decision value

![Diagram of a decision value with two processes: p_1 and p_2. The decision values are 1 for both processes.](https://example.com/diagram.png)
Assume 6 processes are in a ring (just for fun)

Processes think they are in a triangle

(validity condition)
Faulty (validity condition)

Impossibility
Conclusion

There is no algorithm that solves consensus for 3 processes in which 1 is a byzantine process.

The n processes case

Assume for contradiction that there is an f-resilient algorithm A for n processes, where $f \geq n/3$.

We will use algorithm A to solve consensus for 3 processes and 1 failure (which is impossible, thus we have a contradiction).

Algorithm A

Each process q simulates algorithm A on $n/3$ of "p" processes.
When a single q is byzantine, then $n/3$ of the "p" processes are byzantine too.

algorithm A tolerates $n/3$ failures

We reached consensus with 1 failure

Impossible!!!
The King Algorithm

solves consensus with n processes and f failures where $f < n/4$ in $f+1$ “phases”

There are $f+1$ phases
Each phase has two rounds
In each phase there is a different king

Example: 12 processes, 2 faults, 3 kings

initial values

```
0 1 1 2 1 0 2 0 1 0 1 0
```

Faulty

Remark: There is a king that is not faulty

The King algorithm

Each processor p_i has a preferred value v_i

In the beginning, the preferred value is set to the initial value
The King algorithm: Phase k

Round 1, processor p_i:
- Broadcast preferred value v_i
- Set v_i to the majority of values received

Round 2, king p_k:
- Broadcast new preferred value v_k

Round 2, process p_i:
- If v_i had majority of less than $\frac{n}{2} + f$
 then set v_i to v_k

End of Phase $f+1$:
Each process decides on preferred value

Example: 6 processes, 1 fault

Faulty

king 1

king 2
Phase 1, Round 1

<table>
<thead>
<tr>
<th>2,1,1,0,0,0</th>
<th>2,1,1,0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,1,1,0,0,0</td>
<td>2,1,1,0,0,0</td>
</tr>
<tr>
<td>2,1,1,0,0,0</td>
<td>2,1,1,0,0,0</td>
</tr>
</tbody>
</table>

Everybody broadcasts

Phase 1, Round 1

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Choose the majority

Each majority population was \(3 \leq \frac{n}{2} + f = 4 \)

On round 2, everybody will choose the king’s value

Phase 1, Round 2

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The king broadcasts

Phase 1, Round 2

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Everybody chooses the king’s value
Phase 2, Round 1

Everybody broadcasts

Phase 2, Round 1

Choose the majority

Each majority population is \(3 \leq \frac{n}{2} + f = 4 \)

On round 2, everybody will choose the king’s value

Phase 2, Round 2

The king broadcasts

Phase 2, Round 2

Everybody chooses the king’s value

Final decision
Invariant / Conclusion

In the round where the king is non-faulty, everybody will choose the king's value \(v \).

After that round, the majority will remain value \(v \) with a majority population which is at least \(n - f > \frac{n}{2} + f \).

Exponential Algorithm

Solves consensus with \(n \) processes and \(f \) failures where \(f < n/3 \) in \(f + 1 \) "phases."

But: uses messages with exponential size.

Consensus #6

Randomization

• So far we looked at deterministic algorithms only. We have seen that there is no asynchronous algorithm.

• Can one solve consensus if we allow our algorithms to use randomization?

Yes, we can!

• We tolerate some processes to be faulty (at most \(f \) stop failures).

• General idea: Try to push your initial value; if other processes do not follow, try to push one of the suggested values randomly.
Randomized Algorithm

- At most f stop-failures (assume $n > 9f$)
- For process p_i with initial input $x \in \{0,1\}$:
 1. Broadcast Proposal(x, round)
 2. Wait for $n-f$ Proposal messages.
 3. If at least $n-2f$ messages have value v, then $x := v$, else $x :=$ undecided.
 4. Broadcast Bid(x, round).
 5. Wait for $n-f$ Bid messages.
 6. If at least $n-2f$ messages have value v, then decide on v.
 If at least $n-4f$ messages have value v, then $x := v$.
 Else choose x randomly ($p(0) = p(1) = \frac{1}{2}$)
 7. Go back to step 1 (next round).

What do we want?

- **Agreement**: Non-faulty processes decide non-conflicting values.
- **Validity**: If all have the same input, that input should be decided.
- **Termination**: All non-faulty processes eventually decide.

All processes have same input

- Then everybody will agree on that input in the very first round already.
- Validity follows immediately
- If not, then any decision is fine!
 - Validity follows too (in any case).
What if process i decides in step 6a (Agreement)...?

- Then process i has received at least \(n-2f \) Bid messages with value \(v \).

- Then everybody else has received at least \(n-3f \) messages with value \(v \), and thus everybody will propose \(v \) next round, and thus decide \(v \).

What about termination?

- We have seen that if a process decides in step 6a, all others will follow in the next round at latest.

- If in step 6b/c, all processes choose the same value (with probability \(2^{-n} \)), all give the same bid, and terminate in the next round.

Byzantine & Asynchronous?

- The presented protocol is in fact already working in the Byzantine case!

- (That’s why we have “\(n-4f \)” in the protocol and “\(n-3f \)” in the proof.)

But termination is awfully slow...

- In expectation, about the same number of processes will choose 1 or 0 in step 6c.

- The probability that a strong majority of processes will propose the same value in the next round is exponentially small.
Naïve Approach

• In step 6c, all processes should choose the same value! (Reason: validity is not a problem anymore since for sure there exist 0’s and 1’s and therefore we can safely always propose the same...)

• Replace 6c by: “choose x := 1”!

Problem of Naïve Approach

• What if a majority of processes bid 0 in round 4? Then some of the processes might go into 6b (setting x=0), others into 6c (setting x=1). Then the picture is again not clear in the next round.

• Anyway: Approach 1 is deterministic! We know (#2) that this doesn’t work!

Shared/Common Coin

• The idea is to replace 6c with a subroutine where all the processes compute a so-called shared (a.k.a. common, “global”) coin.

• A shared coin is a random binary variable that is 0 with constant probability, and 1 with constant probability.

Shared Coin Algorithm

Code for process i:
1. Set local coin $c_i := 0$ with probability $1/n$, else (w.h.p.) $c_i := 1$.
2. Use reliable broadcast* to tell all processes about your local coin c_i.
3. If you receive a local coin c_j of another process j, add j to the set coins, and memorize c_j.
Shared Coin Algorithm

4. If you have seen exactly $n-f$ local coins then copy the set coins_i into the set seen_i (but do not stop extending coins_i if you see new coins)
5. Use reliable broadcast to tell all processes about your set seen_i.

6. If you have seen at least $n-f$ sets seen_j which satisfy $\text{seen}_j \subseteq \text{coins}_i$, then terminate with:
7. If you have seen at least a single local coin with $c_j = 0$ then return 0, else (if you have seen 1-coins only) return 1.

Why does the shared coin algorithm terminate?

- For simplicity we look at f crash failures only, assuming that $3f < n$.
- Since at most f processes crash you will see at least $n-f$ local coins in step 4.
- For the same reason you will see at least $n-f$ seen sets in step 6.
- Since we used reliable broadcast, you will eventually see all the coins that are in the other's sets.

Why does the algorithm work?

- Looks like magic at first…
- General idea: a third of the local coins will be seen by all the processes! If there is a “0” among them we’re done. If not, chances are high that there is no “0” at all.
- Proof details: next few slides…
Proof: Matrix

- Let \(i \) be the first process to terminate (reach step 7).
- For process \(i \) we draw a matrix of all the sets \(\text{seen}_j \) (columns) and local coins \(c_k \) (rows) process \(i \) has seen.
- We draw an “\(\times \)” in the matrix if and only if set \(\text{seen}_i \) includes coin \(c_k \).

Proof: Matrix (\(f=2, n=7, n-f=5 \))

<table>
<thead>
<tr>
<th></th>
<th>(\text{seen}_1)</th>
<th>(\text{seen}_3)</th>
<th>(\text{seen}_5)</th>
<th>(\text{seen}_6)</th>
<th>(\text{seen}_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{i_1})</td>
<td>(\times)</td>
</tr>
<tr>
<td>(c_{i_2})</td>
<td></td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(c_{i_3})</td>
<td>(\times)</td>
</tr>
<tr>
<td>(c_{i_5})</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(c_{i_6})</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
</tr>
<tr>
<td>(c_{i_7})</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td>(\times)</td>
</tr>
</tbody>
</table>

- Note that there are at least \((n-f)^2 \) \(\times \)'s in this matrix (\(\geq n-f \) rows, \(n-f \) \(\times \)’s in each row).

Proof: Matrix

- Lemma 1: There are at least \(f+1 \) rows where at least \(f+1 \) cells have an “\(\times \)”.
- Proof: Suppose by contradiction that this is not the case. Then the number of \(\times \)'s is bounded from above by \(f \cdot (n-f) + (n-f) \cdot f \), ...

\[|X| \leq 2f(n-f) \]

we use \(3f < n \Rightarrow 2f < n-f < (n-f)^2 \)

but we know that \(|X| \geq (n-f)^2 \)

\[\leq |X|. \]

A contradiction!
Proof: The set W

- Let W be the set of local coins where the rows in the matrix have more than f X's.
- Lemma 2: All local coins in the set W are seen by all processes (that terminate).
- Proof: Let $w \in W$ be such a local coin. With Lemma 1 we know that w is at least in $f+1$ seen sets. Since each process must see at least $n-f$ seen sets (before terminating), these sets overlap, and w will be seen.

Proof: End game

- Theorem: With constant probability all processes decide 0, with constant probability all processes decide 1.
- Proof: With probability $(1-1/n)^n \approx 1/e$ all processes choose $c_i = 1$, and therefore all will decide 1.
- With probability $1 - ((1-1/n)^{|W|})$ there is at least one 0 in the set W. Since $|W| \approx n/3$ this probability is constant. Using Lemma 2 we know that in this case all processes will decide 0.

Back to Randomized Consensus

- Plugging the shared coin back into the randomized consensus algorithm is all we needed.
- If some of the processes go into 6b and the others still have a constant chance that they will agree on the same shared coin.
- The randomized consensus protocol finishes in a constant number of rounds!

Improvements

- For crash-failures, there is a constant expected time algorithm which tolerates f failures with $2f < n$.
- For Byzantine failures, there is a constant expected time algorithm which tolerates f failures with $3f < n$.
- Similar algorithms have been proposed for the shared memory model.
Databases et al.

- Consensus plays a vital role in many distributed systems, most notably in distributed databases:
 - Two-Phase-Commit (2PC)
 - Three-Phase-Commit (3PC)

Summary

- We have solved consensus in a variety of models; particularly we have seen
 - algorithms
 - wrong algorithms
 - lower bounds
 - impossibility results
 - reductions
 - etc.

Credits

- The impossibility result (#2) is from Fischer, Lynch, Patterson, 1985.
- The hierarchy (#3) is from Herlihy, 1991.
- The synchronous studies (#4) are from Dolev and Strong, 1983, and others.
- The Byzantine studies (#5) are from Lamport, Shostak, Pease, 1980ff., and others.
- The first randomized algorithm (#6) is from Ben-Or, 1983.

Questions?