
 1

SS 2005 Prof. Gustavo Alonso / Jianbo Xue

Vernetzte Systeme

Exercise 9

Ausgabe: 26. Mai 2005
Abgabe: 3. Juni 2005

1. Introduction of RPC / Java RMI

RPC is a common technique for constructing distributed, client-server based application.
It enables the intercommunication between two processes - client process and server
process, which might be located on a single host or on different hosts. The client process
calls the remote procedures which is shared by the server process, and get the return
result.

RMI (Remote Method Invocation) is a Java implementation of RPC, which includes a
core Java API and class library. It allows Java objects on different hosts to communicate
with each other. The server implements a remote interface that specifies which of its
methods can be invoked by clients, so that the clients invoke the remote methods as
normal local methods.

Java/RMI Setting:
RMI is included in the core Java API and class library. To use RMI, JDK (Java
Development Kit) should be installed and Java environment has to be setup.

• Download and install the JDK 1.4.2 from http://java.sun.com
• Setup path to $JDK_HOME/bin, where $JDK_HOME is the home directory where

JDK is installed. In case $JDK_HOME=/usr/java

% setenv PATH=/usr/java/bin:$PATH or,
% export PATH /usr/java/bin:$PATH

• Setup environmental argument CLASSPATH for JDK
as .;$JDK_HOME/lib/rt.jar

% setenv CLASSPATH=.:/usr/java/lib/rt.jar or,

 2

% export CLASSPATH .:/usr/java/lib/rt.jar

• Find the executable files java, javac, rmiregistry, rmic under the directory
$JDK_HOME/bin .

RMI Example:

Here is a simple example to show how to create a RMI server and client.
A RMI server exposes one remote method int addOne(int i) to the clients. With the
input arguments i from clients, addOne() simply returns i+1.

Server Side:
First, an interface class declaring the method is created

package example;
import java.rmi.*;

public interface Calculator extends Remote{
 public int addOne(int i) throws RemoteException;

}

List 1. Interface Calculator

All the remote methods are declared to throw RemoteException when failure occurs
during the remote invocation. Catching and handling the RemoteException is up to the
clients which use the remote methods.

The class CalculatorImpl implements the interface:

package example;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class CalculatorImpl implements Calculator{

 public CalculatorImpl() throws RemoteException {
 UnicastRemoteObject.exportObject(this);
 }

 public int addOne(int i) throws RemoteException {
 return i+1;
 }
}

List 2. Class CalculatorImpl

In the CalculatorImpl() constructor, UnicastRemoteObject.exportObject(this)
exports the object by listening for connections on some port, so that the invocation from
clients can be processed.

Now, the way to create a server CalculatorServer to handle the client’s request is as
follows:

 3

package example;
import java.net.*;
import java.rmi.*;

public class CalculatorServer {
 public static void main(String[] args){
 try{
 CalculatorImpl c = new CalculatorImpl();
 Naming.rebind("calculator" , c);
 System.out.println("Calculator Server Ready!");
 }
 catch (RemoteException e) {
 System.out.println("Exception in CalculatorImpl.main: " + e);
 }
 catch (MalformedURLException e) {
 System.out.println("MalformedURLException " + e);
 }
 }
}

List 3. Class CalculatorServer

Naming.rebind(“calculator”, c) is to bind the calculator object with the name
“calculator”. The binding name is case-sensitive. Together with the IP address or URL
name of the host where the server is running on, a URL address
“rmi://server_ip/calculator” is used to address the calculator object.

Clients can use the URL “rmi://server_ip/calculator” to get the reference to the remote
object and invoke the method. Here, server_ip is the IP address or URL name of the host
where the server is running.

Client Side:
Before a client can call the remote method addOne(int), it needs to retrieve the remote
reference to the calculator object. RMI provides a method lookup() in the class
java.rmi.Naming for clients to get the reference to the remote object:

Calculator cal = (Calculator) Naming.lookup(“rmi://server_ip/calculator”);

The example of the client is shown below:

package example;
import java.rmi.*;
import java.net.*;

public class CalculatorClient {
 public static void main(String args[]) {
 System.out.println("args length = " + args.length);
 if (args.length == 0 || !args[0].startsWith("rmi:")){
 System.err.println(
 "Usage: java calculatorClient rmi://host.domain/calculator
number");
 return;
 }

 4

 try {
 Calculator cal = (Calculator) Naming.lookup(args[0]);
 int input = (new Integer(args[1])).intValue();
 int output = cal.addOne(input);
 System.out.println(
 "The output of addOne(" + input + ")" + " is " + output);
 }
 catch (MalformedURLException e) {
 System.err.println(args[0] + " is not a valid RMI URL");
 }
 catch (RemoteException e) {
 System.err.println("Remote object threw exception " + e);
 }
 catch (NotBoundException e) {
 System.err.println(
 "Cannot find the requested remote object on the server");
 }
 }
}

List 4. Class CalculatorClient

Compiling the Stubs:
Compile all the classes of server and client as usual. Additionally, the stubs and skeletons
that RMI program required need to be generated as well.

% rmic CalculatorImpl

rmic is the tool included with the JDK. Run rmic on the remote object’s class will
generate the stubs and skeletons for the CalculatorImpl remote object as
CalculatorImpl_Skel.calss and CalculatorImpl_Stub.class.

Setup:
The server will be started using the following commands:

% rmiregistry &
% java example.CalculatorServer

On the client side, type:

% java example.CalculatorClient rmi://server_ip/calculator 100
The Output of addOne(100) is 101

The result is then displayed.

2. Task: Implementation of Server/Client with RMI
This exercise is to implement a server and two clients exchanging messages through a
server, as shown in Figure 1.

 5

Figure 1: Message Server

• The server MessagePoolServer implements two remote methods defined in the

interface class MessagePool:
import java.rmi.*;

public interface MessagePool extends Remote {
 public void put(String msg) throws RemoteException;
 public String get() throws RemoteException
}

List 5. Interface MessagePool

- put() method accepts a String message from the client, and stores it into the
FIFO queue in the server. In case the queue is full, put() operation will fail,
and a QueueFullException will be thrown. In case the message from the client
is null, the server will throw a MessageNullException.

- get() method retrieves the message out of the queue to the client which

invoke it. The retrieved message will be deleted from the queue. In case the
queue is empty, get() operation will fail and a QueueEmptyException will be
thrown.

• The FIFO message queue MessageQueue should have a size of 100 messages.

Messages are strings with at most 500 characters.

• Implement two clients: MessagePutClient generates messages periodically (1

message per 1 second), and MessageGetClient retrieve messages periodically (1
message per 2 second). The message could be the timestamp of the client or any
random generated string.

• Make sure all cases are handled:

- Retrieving from an empty queue / Adding message to a full queue
- Trying to add a message to a full queue

• For this exercise the program should be single threaded.

