Principles of Distributed Computing
Exercise 2: Sample Solution

1. Leader Election in an “almost anonymous” Ring

 a) Yes, it is possible:

 Algorithm 1 Leader Election (all but one nodes have the same ID)

 1: send IDs two hops around the ring
 2: if the same ID has been received twice AND the received ID differs from the own ID then
 3: I am the leader
 4: end if

2. Distributed Computation of the AND

 a) Because the size of the ring is not known to the nodes, the case where all nodes have a one as input and the case where all but one nodes have a one as input cannot be distinguished.

 b) All input values have to be sent all around the ring. In order to detect the returning of the own message, we add a hop counter to each message. If the message has made \(n \) hops, it has arrived where it started.

 c) The following algorithm calculates the AND in a synchronous, non-uniform ring:

 Algorithm 2 AND in the Ring: asynchronous, non-uniform (\(n \) is the number of nodes)

 1: if input bit = 0 then
 2: send 0 to the neighbor in the ring
 3: end if;
 4: for \(i := 2 \) to \(n \) do
 5: if received a 0 and have not already sent a 0 then
 6: send 0 to the neighbor in the ring
 7: end if
 8: end for;
 9: if received at least one 0 then
 10: result := 0
 11: else
 12: result := 1
 13: end if;

 If the result is 1, no message is sent, otherwise there is exactly one message over each link. Thus, time and message complexity are both \(n \).