
Information Processing Letters 35 (1990) 171-175 

North-Holland 

7 August 1990 

STABILIZING UNISON 

Mohamed G. GOUDA and Ted HERMAN 

Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712-1188, USA 

Communicated by J. Misra 

Received 25 January 1990 

Revised 9 April 1990 

We present an elegant implementation of “clocks” in distributed synchronous systems. The implementation is stabilizing in 
the following sense. Starting from any state, the clocks are guaranteed to reach “unison” where they show the same time, and 

the shown time is incremented in each step. 
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1. Problem 

Consider a finite, undirected, and connected graph. Associated with every node i in the graph is a 
variable x.i, whose value ranges over the natural numbers, and a program P.i of the form: 

begin (action) 0 . . . 0 (action) end 

Each action is of the form 

(guard) -+ (assignment statement) 

The guard of an action in program P.i is a Boolean expression over the x variables and the local variables 
of P.i. The assignment statement of an action in P.i updates variable x.i and the local variables of P. i. 

A state of this system is defined by a value for every x.i and a value for every local variable in each 
program. An action whose guard is true at some state is said to be enabled at that state. Similarly, a 
program that has at least one enabled action at some state is said to be enabled at that state. We assume 
maximal parallelism semantics: starting from any state, the assignment statement of one enabled action in 
each enabled program is executed yielding the next state. Note that executing the assignment statements of 
different programs in parallel does not cause any conflict; this is because the sets of variables updated by 
these statements are mutually exclusive. 

It is required to design the P.i programs so that the following two properties are satisfied. 
(i) Stabilization [l]: Starting from any state, the system is guaranteed to reach a unison state; i.e., one 

where all the x variables have equal values. 
(ii) Unison [2]: Starting from any unison state, the value of every x is incremented by one in every step. 

(This implies that once unison is reached, it is maintained.) 

2. Solution 

Our solution requires that each program P.i have a local variable u whose value ranges over the 
neighbors of node i in the graph. (Two nodes in the graph are called neighbors iff there is an edge between 
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them.) Program P.i can now be defined as follows: 

begin 

end 

x.i < x.u --+ x.i, v := x.u, neighbor. i 

0 x.i=x.u-+x.i, u:= (x.i) + 1, neighbor. i 

where neighb0r.i is a procedure that returns an arbitrary neighbor of node i. We assume that if neighb0r.i 
is invoked infinitely often, then each neighbor of node i is returned infinitely often. 

3. Proof of correctness 

We show in this section that our solution satisfies the two properties of stabilization and unison. 

Theorem 1 (Stabilization). Starting from any state, the system is guaranteed to reach a unison state. 

Proof. Define a function Rank that assigns to each system state S a natural number Rank.S as follows. 

Rank.S = n x (Range.S) + Top.S 

where 

n = the number of nodes in the graph, 

Range.S = (the value of the largest x at state S) - (the value of the smallest x at state S), 

Top.S = the number of x ‘s with the largest value at S. 

Consider the following three propositions about function Rank. 
(i) For each state S, Rank.S > n 

(ii) If a state S is followed by a state S’ then 

Rank.S > Rank.S’, 

and 
(Rank.S = Rank.S’) - (Range.S = Range.S’) A (Top.S = Top.S’) A 

(V node i: x.i is largest at S = x.i is largest at S’) 

(iii) Starting from any nonunison state, function Rank eventually decreases. 
Stabilization of our system follows directly from propositions (i) and (iii); proposition (ii) is needed in 
proving (iii). Proofs for these three propositions follow. 

Proof of (i). The value of Top.S is at most n and at least one. Therefore, the value of Rank.S is smallest 
when Range.S = 0. At such an S, all x’s have equal values which implies Top..9 = n and Rank.S = n. 
Thus, Rank.S 2 n for every state S. 

Proof of (ii). In each transition from a state S to a next state S’, every x whose value is smallest at S is 
incremented by at least one, every x whose value is largest at S is incremented by at most one, and each of 
the remaining x’s either assumes the value of another x or is incremented by at most one. Thus, 

Range. S > Range. S ’ (1) 

If Range.S = Range.S’, then at least one of the x’s whose value is largest at S has been incremented in 
the transition from S to S’. In this case, every x whose value is largest at S’, also has the largest value at 
S. Hence, we get: 

(Range.S = Range.S’) - (Top.S 2 Top.S’) (2) 
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From (1) and (2) and from the definition of Rank, we conclude 

Rank.S 2 Rank.S’ (3) 

The value of Top is at least one and at most n. Thus, the difference in the value of Range from S to S’ 
cannot be compensated by a corresponding difference in the value of Top to keep Rank constant. Thus, 

(Rank.S = Rank.S’) * (Range.S = Range.S’) 

From (4) and from the definition of Rank, we conclude 

(4) 

(Rank.S = Rank.S’) * (Top.S = Top.S’) (5) 

If Range.S = Range.S’, then at least one x whose value is largest at S has been incremented and its 
value is still largest at S’. In this case, every x whose value is largest at S’ also has the largest value at S. 
From these facts and from (4) and (5) we conclude 

(Rank.S = Rank.S’) =) (V no d e i: x.i is largest at S = x.i is largest at S’) 

Proposition (ii) follows directly from (3) (4) (5), and (6). 

(6) 

Proof of (iii). Consider a computation that starts with a nonunison state S; we show that the value of Rank 
eventually decreases along that computation. From (ii), the value of Rank does not increase along any 
computation; therefore, it suffices to show that the value of Rank does not remain constant along the 
computation. 

Because the starting state S is a nonunison state, not all x’s have equal values at S. Hence, from graph 
connectivity, the graph has two neighboring nodes i and j such that x.i has the largest value at state S, 
and x.i > x. j at S. Suppose that the value of Rank remains constant along some initial prefix of the 
computation. Then, from (ii), x.i has the largest value and x.i > x.j at every state of the prefix. Along this 
prefix, procedure neighb0r.i eventually returns a neighbor u of node i, possibly node j, such that x.i > X.U. 
At the resulting state, say S’, neither action of program P.i is enabled. Thus the value of x.i at the next 
state S” remains the same as its value at S’. In other words, the largest value of all the x’s remains 
constant in the transition from S’ to S”. But because the smallest value of all the x’s is guaranteed to 
increase in every transition (including the one from S’ to S”), we have Range.S’ > Range.S”. From (ii), 
we get Rank.S’ > Rank.S”. This concludes our proof of (iii). 

As mentioned earlier, Theorem 1 follows from propositions (i) and (iii). q 

Theorem 2 (Unison). Starting from any unison state, the value of every x is incremented by one in every step. 

Proof. At a unison state, all the x’s are equal and only the second action of every program P.i is enabled. 
Executing the assignment statements of all these actions in parallel increments by one the value of every x. 
Thus, the resulting state is a unison state, and the same argument can be repeated to show that the value of 
every x is incremented in every step. q 

4. Convergence span 

The proof of Theorem 1, and especially that of proposition (iii), describes how the system converges to a 
unison state. One of the nodes whose x is largest “eventually” compares its x with the x of a neighboring 
node, and finds that the value of its x is larger. As a result, this node does not increment its x in the 
current step, and the value of Top is decreased by one. This continues at most n - 1 times before Range is 
decreased by one. 
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Let k be the average number of steps it takes a node whose x is largest to finally compare its x with a 
neighboring x of a lesser value. (A good estimate for k could be the average number of neighbors for each 
node in the graph.) Starting from a state S, the system converges to unison within 

k x (n - 1) x (Range.S) steps. 

Note that if S is a unison state, then this value reduces to zero as expected. 

5. Related work 

The above system was inspired by the recent work of Even and Rajsbaum [2], in which they consider 
how to start up a distributed system in the absence of a global start up signal (i.e., one that can be heard 
by all the programs in the system at the same time). Their work has led to a system in which the program 
of node i can be defined as follows: 

begin (V neighbor u of node i: (x.i = x.u) V (x.i = x.u - 1)) 

+ x.i := x.i + 1 
end 

This system solves the start up problem as follows. If the system is started at a unison state, but the 
programs of different nodes start executing at different instants, then although unison may be lost in the 
early states of the computation, unison is eventually restored as all programs become executing. 

There are, however, two problems with this system. First, if the system starts at a nonunison state, then 
its convergence to a unison state is not guaranteed. For example, if the system is started at a state where 
the values of two neighboring x’s differ by two, then unison can never be reached. Second, the 
“atomicity” of this system is large: testing the guard of an action at some node requires comparing the x 
of that node with the x’s of all its neighbors. 

The first problem can be solved by slightly modifying the program of node i to become: 

begin (V neighbor u of node i: x.i < x.u) + x.i = x.i + 1 end 

Our interest in solving the second problem has led to the system in Section 2. It is possible to simplify 
this system slightly by making the program of node i as follows: 

begin x.i<x.u+x.i, u:=x.i+l, neighbor.iend 

Correctness of the last two systems can be established by an argument similar to the correctness proof 
in Section 3. 

In reviewing this note, one referee observed that if our original program P.i is modified slightly to: 

begin x.i<x.u-+x.i, u:=x.u+l, neighb0r.i 

0 x.i>x.u+x.i, u:=x.i+l, neighb0r.i 

end 

then stabilization can be proved easily. In particular, the modified program satisfies the following 
proposition (which is not satisfied by the original program). 

If a state S is followed by a state S’, then 
(V node i: x.i is largest at S - x.i is largest at S’). 
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Using this proposition, one can prove a second proposition: 

(V neighboring nodes i and j: 
if x.i is largest at some state, then x. j is largest at some subsequent state). 

From these two propositions, it is straightforward to show that starting from any state, the system 
eventually reaches a state where every x.i is largest; such a state is clearly a unison state. 

In this program, every x.i is incremented by at least one in every step, even when the system is in 
nonunison. By comparison, our original program does not increment the largest x.i’s when the system is 
in nonunison. Thus, the modified program appears to “consume” the x.i’s faster than our original 
program during nonunison. We are thankful to the referee for his/her keen observation and good taste. 
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