
Chapter 2
APPLICATIONS

Computer Networks
Summer 2006

Distributed
Computing

Group

Distributed Computing Group Computer Networks R. Wattenhofer 2/2

Overview

• Learn specific application layer protocols
– http, ftp, smtp, pop, dns, etc.

• How to program network applications?
• Socket API for Java and Eiffel
• Goals

– learn about protocols by examining popular
application-level protocols

– conceptual and implementation aspects of network
application protocols

– client-server paradigm
– service models

Distributed Computing Group Computer Networks R. Wattenhofer 2/3

Applications vs. Application-Layer Protocols

• Application: communicating,
distributed process
– running in network hosts in

“user space”
– exchange messages to

implement application
– e.g. email, ftp, web

• Application-layer protocol
– one part of application
– define messages

exchanged by applications
and actions taken

– use communication
services provided by
transport layer protocols
(TCP, UDP)

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Distributed Computing Group Computer Networks R. Wattenhofer 2/4

Network applications: some jargon

• Process: program running
within a host
– within same host, two

processes communicate
using interprocess
communication (defined by
Operating System).

– processes running on
different hosts
communicate with an
application-layer protocol
through messages

• User agent: software process,
interfacing with user “above”
and network “below”
– implements application-

level protocol
– Examples

• Web: browser
• E-mail: mail reader
• streaming audio/video:

media player

Distributed Computing Group Computer Networks R. Wattenhofer 2/5

application
transport
network
data link
physical

application
transport
network
data link
physical

Client
• initiates contact with server

(“client speaks first”)
• typically requests service from server
• Web: client implemented in browser
• email: client in mail reader
Server
• provides requested service to client
• e.g. Web server sends requested

Web page, mail server delivers e-mail

request

reply

Client-server paradigm

Typical network app has two
parts: Client and Server

Distributed Computing Group Computer Networks R. Wattenhofer 2/6

API: Application Programming Interface

• Defines interface between
application and transport
layers

• socket: Internet API
• two processes communicate

by sending data into socket,
reading data out of socket

• How does a process identify
the other process with which it
wants to communicate?
– IP address of host running

other process
– “port number”: allows

receiving host to determine
to which local process the
message should be
delivered

– lots more on this later…

Distributed Computing Group Computer Networks R. Wattenhofer 2/7

Data loss
• some apps (e.g. audio) can

tolerate some loss
• other apps (e.g. file transfer)

require 100% reliable data
transfer

Timing
• some apps (e.g. Internet

telephony, interactive
games) require low delay to
be “effective”

Bandwidth
• some apps (e.g. multimedia)

require minimum amount of
bandwidth to be “effective”

• other apps (“elastic apps”)
make use of whatever
bandwidth they get

What transport service does an application need?

Distributed Computing Group Computer Networks R. Wattenhofer 2/8

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

financial apps

Data loss

no loss
no loss
loss-tolerant
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

Transport service requirements of common applications

Distributed Computing Group Computer Networks R. Wattenhofer 2/9

Internet transport protocols services

TCP service
• connection-oriented: setup

required between client, server
• reliable transport between

sending and receiving process
• flow control: sender won’t

overwhelm receiver
• congestion control: throttle

sender when network
overloaded

• does not provide timing,
minimum bandwidth
guarantees

UDP service
• unreliable data transfer

between sending and
receiving process

• does not provide connection
setup, reliability, flow control,
congestion control, timing, or
bandwidth guarantee

• Why bother? Why is there a
UDP service at all?!?

Distributed Computing Group Computer Networks R. Wattenhofer 2/10

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

remote file server
Internet telephony

Application
layer protocol

smtp [RFC 821]
telnet [RFC 854]
http [RFC 2068]
ftp [RFC 959]
proprietary
(e.g. Quicktime)
NFS
proprietary
(e.g. Vocaltec)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP
typically UDP

Internet apps: application, transport protocols

Distributed Computing Group Computer Networks R. Wattenhofer 2/11

The Web: The http protocol

http: hypertext transfer protocol
• Web’s application layer

protocol
• client/server model

– client: browser that
requests, receives, and
“displays” Web objects

– server: Web server sends
objects in response to
requests

• http 1.0: RFC 1945
• http 1.1: RFC 2616

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

http request

http request

http response

http response

Distributed Computing Group Computer Networks R. Wattenhofer 2/12

More on the http protocol

• client initiates TCP connection
(creates socket) to server, port
80

• server accepts TCP connection
from client

• http messages (application-layer
protocol messages) exchanged
between browser (http client)
and Web server (http server)

• TCP connection closed

http is “stateless”
• server maintains no

information about past
client requests

• Protocols that maintain
“state” are complex!

• past history (state) must be
maintained

• if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

Distributed Computing Group Computer Networks R. Wattenhofer 2/13

Suppose user enters URL www.inf.ethz.ch/education/index.html
(assume that web page contains text, references to 10 jpeg images)

1. http client initiates TCP
connection to http server
(process) at
www.inf.ethz.ch. Port 80 is
default for http server.

3. http client sends http
request message
(containing URL) into TCP
connection socket

2. http server at host
www.inf.ethz.ch waiting for
TCP connection at port 80,
“accepts” connection,
notifies client

4. http server receives
request message, forms
response message
containing requested
object (index.html in
directory education), sends
message into sockettime

Example for http

Distributed Computing Group Computer Networks R. Wattenhofer 2/14

Example for http (continued)

6. http client receives
response message
containing html file,
displays html. Parsing
html file, finds 10
referenced jpeg pictures

Then…
Steps 1-6 repeated for
each of the 10 jpeg
objects

5. http server closes TCP
connection

time

Distributed Computing Group Computer Networks R. Wattenhofer 2/15

Non-persistent
• http/1.0
• server parses request,

responds, closes TCP
connection

• 2 RTTs (round-trip-time)
to fetch object
– TCP connection
– object request/transfer

• each transfer suffers from
TCP’s initially slow sending
rate

• many browsers open multiple
parallel connections

Persistent
• default for http/1.1
• on same TCP connection:

server, parses request,
responds, parses new
request,…

• client sends requests for all
referenced objects as soon
as it receives base HTML

• fewer RTTs, less slow start

Non-persistent vs. persistent connections

Distributed Computing Group Computer Networks R. Wattenhofer 2/16

http message format: request

• two types of http messages: request, response
• http request message: ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.servername.com
User-agent: Mozilla/4.0
Accept-language: de

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return
and line feed
indicate end
of message

Distributed Computing Group Computer Networks R. Wattenhofer 2/17

http request message: the general format

Distributed Computing Group Computer Networks R. Wattenhofer 2/18

http message format: response

HTTP/1.1 200 OK
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.
requested

html file

Distributed Computing Group Computer Networks R. Wattenhofer 2/19

http response status codes

200 OK
– request succeeded, requested object later in this message

301 Moved Permanently
– requested object moved, new location specified later in this

message (Location:)
400 Bad Request

– request message not understood by server
404 Not Found

– requested document not found on this server
505 HTTP Version Not Supported

First line of server→client response message.
A few sample codes:

Distributed Computing Group Computer Networks R. Wattenhofer 2/20

Be your own http client

1. Telnet to your favorite Web server:
telnet www.sbb.ch 80

2. Type in a GET http request:
GET /index.htm HTTP/1.0

3. Check out response message
sent by http server…

• Opens TCP connection to
port 80 (default http server
port) at www.sbb.ch.

• Anything typed in sent to
port 80 at www.sbb.ch

• By typing this (hit carriage
return twice), you send this
minimal (but complete)
GET request to http server

Could you check the SBB timetable from
within your own application?!?

Distributed Computing Group Computer Networks R. Wattenhofer 2/21

• Authentication: control access
to server content

• authorization credentials:
typically name and password

• stateless: client must present
authorization in each request
– authorization: header line in

each request
– if no authorization: header,

server refuses access,
sends

WWW authenticate:

header line in response

client server

usual http request msg

401: authorization req.
WWW-authenticate:

usual http request msg
+ Authorization: <cred>

usual http response msg

usual http request msg
+ Authorization: <cred>

usual http response msg time

User-server interaction: authentication

Distributed Computing Group Computer Networks R. Wattenhofer 2/22

• server-generated # , server-
remembered #, later used for
– authentication
– remembering user

preferences
– remembering previous

choices
– (…privacy?)

• server sends “cookie” to client
in response msg
Set-cookie: 1678453

• client presents cookie in later
requests
Cookie: 1678453

client server

usual http request msg

usual http response +
Set-cookie: #

usual http request msg
Cookie: #

usual http response msg

usual http request msg
Cookie: #

usual http response msg

cookie-
specific
action

cookie-
specific
action

Cookies: keeping “state”

Distributed Computing Group Computer Networks R. Wattenhofer 2/23

• Goal: don’t send object if
client has up-to-date cached
version

• Client: specify date of cached
copy in http request
If-modified-since:
<date>

• Server: response contains no
object if cached copy is up-to-
date:
HTTP/1.0 304 Not
Modified

client server

http request msg
If-modified-since:

<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.1 200 OK

<data>

object
modified

Conditional GET: client-side caching

Distributed Computing Group Computer Networks R. Wattenhofer 2/24

client

proxy
server

client

http request

http request

http response

http response

http request

http response

origin
server

origin
server

• Goal: satisfy client
request without involving
origin server

• User sets browser: Web
accesses via web cache

• Client sends all http
requests to web cache
– object in web cache:

web cache returns
object

– else web cache
requests object from
origin server, then
returns object to client

Web Caches (a.k.a. proxy server)

Distributed Computing Group Computer Networks R. Wattenhofer 2/25

Why Web Caching?

origin
servers

public
Internet

institutional
network 100 Mbps LAN

1.5 Mbps
access link

institutional
cache

• Assumption: cache is “close”
to client (e.g. in same network)

• Smaller response time: cache
“closer” to client

• Decrease traffic to distant
servers

• Link out of institutional/local
ISP network is often a
bottleneck

Distributed Computing Group Computer Networks R. Wattenhofer 2/26

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

ftp: The file transfer protocol

• transfer file to/from remote host
• client/server model

– client: side that initiates transfer (either to/from remote)
– server: remote host

• ftp: RFC 959
• ftp server: port 21

Distributed Computing Group Computer Networks R. Wattenhofer 2/27

ftp: separate control and data connections

• ftp client contacts ftp server at
port 21, specifying TCP as
transport protocol

• two parallel TCP connections
opened
– control: exchange

commands, responses
between client, server.
“out of band control”

– data: file data to/from
server

• ftp server maintains “state”:
current directory, earlier
authentication

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

Distributed Computing Group Computer Networks R. Wattenhofer 2/28

ftp commands and responses

Sample commands
• sent as ASCII text over control

channel
• USER username
• PASS password
• LIST returns list of files in

current directory
• RETR filename retrieves

(gets) file
• STOR filename stores (puts)

file onto remote host

Sample return codes
• status code and phrase (as in

http)
• 331 Username OK,

password required
• 125 data connection

already open; transfer
starting

• 425 Can’t open data
connection

• 452 Error writing file

Distributed Computing Group Computer Networks R. Wattenhofer 2/29

Electronic Mail

Three major components
• user agents
• mail servers
• simple mail transfer protocol: smtp

User Agent
• a.k.a. “mail reader”
• composing, editing, reading mail

messages
• Examples: Outlook, Netscape

Messenger, elm, Eudora
• outgoing, incoming messages

stored on server
user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Distributed Computing Group Computer Networks R. Wattenhofer 2/30

• mailbox contains incoming
messages (yet to be read) for
user

• message queue of outgoing (to
be sent) mail messages

• smtp protocol between mail
servers to send email
messages
– “client”: sending mail server
– “server”: receiving mail

server

• Why not sending directly?

Electronic Mail: mail servers

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Distributed Computing Group Computer Networks R. Wattenhofer 2/31

• uses TCP to reliably transfer email message from
client to server, on port 25

• direct transfer: sending server to receiving server
• three phases of transfer

– handshake (greeting)
– transfer of messages
– closure

• command/response interaction
– commands: ASCII text
– response: status code and phrase

• SMTP: RFC 821

Electronic Mail: SMTP

Distributed Computing Group Computer Networks R. Wattenhofer 2/32

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Sample smtp interaction

You can be your own smtp client: telnet to a mail server you know
(telnet mail.inf.ethz.ch 25) and play with the protocol…

Distributed Computing Group Computer Networks R. Wattenhofer 2/33

smtp: more details

• smtp uses persistent
connections

• smtp requires message
(header & body) to be in 7-bit
ASCII

• certain character strings not
permitted in msg (e.g.,
CRLF.CRLF, which is used to
determine the end of a
message by the server).

• Thus msg has to be encoded
(usually into either base-64 or
quoted printable)

Comparison with http
• http: pull
• email: push
• both have ASCII

command/response interaction
and status codes

• http: each object encapsulated
in its own response msg (1.0),
or by use of content-length
field (1.1)

• smtp: multiple objects sent in
multipart msg (as we will see
on the next slides)

Distributed Computing Group Computer Networks R. Wattenhofer 2/34

Mail message format

• smtp: protocol for exchanging email msgs
• RFC 822: standard for text message format:
• header lines, e.g.

– To:
– From:
– Subject:
(!) Caution: these are not smtp

commands! They are like the
header of a letter, whereas smtp
commands are like the address
on the envelope

• body
– the “message”
– ASCII characters only

header

body

blank
line

Distributed Computing Group Computer Networks R. Wattenhofer 2/35

Message format: multimedia extensions

• MIME: multimedia mail extension, RFC 2045, 2056
• additional lines in message header declare MIME content type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

Distributed Computing Group Computer Networks R. Wattenhofer 2/36

MIME types

Text
• example subtypes: plain,

enriched, html

Image
• example subtypes: jpeg, gif

Audio
• example subtypes: basic (8-bit

mu-law encoded), 32kadpcm
(32 kbps coding)

Video
• example subtypes: mpeg,

quicktime

Application
• other data that must be

processed by reader before
“viewable”

• example subtypes: msword,
octet-stream

Content-Type: type/subtype; parameters

Distributed Computing Group Computer Networks R. Wattenhofer 2/37

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789
--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain
Dear Bob,
Please find a picture of a crepe.
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
base64 encoded data
.........................
......base64 encoded data
--98766789--

MIME Multipart Type

Distributed Computing Group Computer Networks R. Wattenhofer 2/38

Mail access protocols

• SMTP: delivery/storage to receiver’s server
• Mail access protocol: retrieval from server

– POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

– IMAP: Internet Mail Access Protocol [RFC 2060]
• more features (more complex)
• manipulation of stored messages on server

– HTTP: Hotmail, Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP POP3 or
IMAP

receiver’s mail
server

Distributed Computing Group Computer Networks R. Wattenhofer 2/39

POP3 protocol

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user alice
S: +OK
C: pass hungry
S: +OK user successfully logged on

Authorization phase
• client commands:

– user: declare username
– pass: password

• server responses
– +OK
– -ERR

Transaction phase
• client commands

– list: list message numbers
– retr: retrieve message by

number
– dele: delete
– quit

Distributed Computing Group Computer Networks R. Wattenhofer 2/40

People have many identifiers
• passport number, AHV

number, student number,
name, etc.

Internet hosts, routers
• IP address (129.132.130.152);

used for addressing datagrams
• Name (photek.ethz.ch);

used by humans

• We need a map from names to
IP addresses (and vice versa?)

Domain Name System
• distributed database

implemented in hierarchy of
many name servers

• application-layer protocol host,
routers, name servers to
communicate to resolve names
(name/address translation)
– note: is a core Internet

function, but only
implemented as application-
layer protocol

– complexity at network’s
“edge”

DNS: Domain Name System

Distributed Computing Group Computer Networks R. Wattenhofer 2/41

DNS name servers

local name servers
– each ISP, company has

local (default) name server
– host DNS query first goes to

local name server

authoritative name server
– for a host: stores that host’s

IP address, name
– can perform name/address

translation for that host’s
name

Why not centralize DNS?
• single point of failure
• traffic volume
• distant centralized database
• maintenance

…it does not scale!

• no server has all name-to-IP
address mappings

Distributed Computing Group Computer Networks R. Wattenhofer 2/42

DNS: Root name servers

• contacted by local name server that cannot resolve name
• root name server

– contacts authoritative name server if name mapping not known
– gets mapping
– returns mapping to local name server
– currently 13 root name servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Marina del Rey, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA

i NORDUnet Stockholm
k RIPE London

m WIDE Tokyo

a NSI Herndon, VA
c PSInet Herndon, VA
d U Maryland College Park, MD
g DISA Vienna, VA
h ARL Aberdeen, MD
j NSI (TBD) Herndon, VA

Distributed Computing Group Computer Networks R. Wattenhofer 2/43

Simple DNS example

• host photek.ethz.ch wants IP
address of gaia.cs.umass.edu

1. contact local DNS server,
dns.ethz.ch

2. dns.ethz.ch contacts root name
server, if necessary

3. root name server contacts
authoritative name server,
dns.umass.edu, if necessary

requesting host
photek.ethz.ch

gaia.cs.umass.edu

root name server

authoritative
name server

dns.umass.edu

local name server
dns.ethz.ch

1

2
3

4
5

6

Distributed Computing Group Computer Networks R. Wattenhofer 2/44

DNS extended example

Root name server:
• may not know

authoritative name server
• may know intermediate

name server: who to
contact to find
authoritative name server

requesting host
photek.ethz.ch

gaia.cs.umass.edu

root name server

local name server
dns.ethz.ch

1

2
3

4 5

6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

Distributed Computing Group Computer Networks R. Wattenhofer 2/45

DNS Iterated queries

Recursive query
• puts burden of name

resolution on contacted
name server

• heavy load?

Iterated query
• contacted server replies

with name of server to
contact

• “I don’t know this name,
but ask this server”

requesting host
photek.ethz.ch

gaia.cs.umass.edu

root name server

local name server
dns.ethz.ch

1

2
3

4

5 6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

Distributed Computing Group Computer Networks R. Wattenhofer 2/46

DNS: Caching and updating records

• once (any) name server learns mapping, it caches mapping
– cache entries timeout (disappear) after some time

• update/notify mechanisms under design by IETF
– RFC 2136
– http://www.ietf.org/html.charters/dnsind-charter.html

Distributed Computing Group Computer Networks R. Wattenhofer 2/47

DNS resource records

• Type=NS
– name is domain (e.g. foo.com)
– value is IP address of

authoritative name server for
this domain

RR format: (name, ttl, class, type, value)

• Type=A
– name is hostname
– value is IP address

• Type=CNAME
– name is alias name for some

“canonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com

– value is canonical name

• Type=MX
– value is name of mail server

associated with name

DNS: distributed database storing resource records (RR)

Distributed Computing Group Computer Networks R. Wattenhofer 2/48

Example of DNS lookup

host -v dcg.ethz.ch
Trying "dcg.ethz.ch"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 27554
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3
;; QUESTION SECTION:
;dcg.ethz.ch. IN ANY
;; ANSWER SECTION:
dcg.ethz.ch. 86400 IN CNAME dcg.inf.ethz.ch.
;; AUTHORITY SECTION:
ethz.ch. 3600000 IN NS dns1.ethz.ch.
ethz.ch. 3600000 IN NS dns2.ethz.ch.
ethz.ch. 3600000 IN NS dns3.ethz.ch.
;; ADDITIONAL SECTION:
dns1.ethz.ch. 86400 IN A 129.132.98.12
dns2.ethz.ch. 86400 IN A 129.132.250.220
dns3.ethz.ch. 86400 IN A 129.132.250.2

Distributed Computing Group Computer Networks R. Wattenhofer 2/49

DNS protocol, messages

DNS protocol
• query and reply messages, both with same message format

msg header
• identification: 16 bit

number for query, reply to
query uses same number

• flags:
– query or reply
– recursion desired
– recursion available
– reply is authoritative

Distributed Computing Group Computer Networks R. Wattenhofer 2/50

DNS protocol, messages

Name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

Distributed Computing Group Computer Networks R. Wattenhofer 2/51

Socket programming

Socket API
• introduced in BSD4.1 UNIX,

1981
• explicitly created, used,

released by applications
• client/server paradigm
• two types of transport service

via socket API
– unreliable datagram
– reliable, byte stream-

oriented

a host-local, application-
created/owned,

OS-controlled interface (a
“door”) into which

application process can
both send and

receive messages to/from
another (remote or

local) application process

socket

Goal
• Learn building client/server applications that communicate using

sockets, the standard application programming interface

Distributed Computing Group Computer Networks R. Wattenhofer 2/52

Socket programming with TCP

Socket
• a door between application process and end-end-transport

protocol (UDP or TCP)
TCP service
• reliable transfer of bytes from one process to another

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

Internet

Distributed Computing Group Computer Networks R. Wattenhofer 2/53

Socket programming with TCP

Client must contact server
• server process must first be

running already
• server must have created

socket (“door”) that
welcomes client’s contact

Client contacts server by
• creating client-local TCP

socket
• specifying IP address and

port number of server
process

• When client creates socket: client
TCP establishes connection to
server TCP

• When contacted by client, server
TCP creates new socket for
server process to communicate
with client
– allows server to talk with

multiple clients

TCP provides reliable, in-order
transfer of bytes (“pipe”)

between client and server

application viewpoint

Distributed Computing Group Computer Networks R. Wattenhofer 2/54

Socket programming with TCP (Java)

Example client-server application
• client reads line from standard

input (inFromUser stream),
sends to server via socket
(outToServer stream)

• server reads line from socket
• server converts line to

uppercase, sends back to
client

• client reads and prints
modified line from socket
(inFromServer stream) ou

tT
oS

er
ve

r

to network from network

in
Fr

om
S

er
ve

r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Input stream:
sequence of bytes
into processoutput stream:

sequence of bytes
out of process

Client
process

client TCP
socket

Distributed Computing Group Computer Networks R. Wattenhofer 2/55

Client/server socket interaction with TCP (Java)

wait for incoming
connection request
connectionSocket =

welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Distributed Computing Group Computer Networks R. Wattenhofer 2/56

Example: Java client (TCP)

import java.io.*;
import java.net.*;

class TCPClient {
public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server

Create
output stream

attached to socket

Distributed Computing Group Computer Networks R. Wattenhofer 2/57

Example: Java client (TCP), continued

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

Distributed Computing Group Computer Networks R. Wattenhofer 2/58

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait on welcoming
socket for contact

by client

Create input
stream, attached

to socket

Distributed Computing Group Computer Networks R. Wattenhofer 2/59

Example: Java server (TCP), continued

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

Distributed Computing Group Computer Networks R. Wattenhofer 2/60

Problem: One client can block other clients

Problem can be solved with threads:

ServerSocket welcomeSocket = new ServerSocket(6789);
while(true) {

Socket connectionSocket = welcomeSocket.accept();
ServerThread thread = new ServerThread(connectionSocket);
thread.start();

}

public class ServerThread extends Thread {
/* Handles connection socket */
/* “More or less” code of old server loop */

}

Alternative solution: Client opens socket after reading input line

Distributed Computing Group Computer Networks R. Wattenhofer 2/61

Socket programming with UDP

Remember: UDP: no “connection” between client and server

• no handshaking
• sender explicitly attaches IP

address and port of destination
• server must extract IP address,

port of sender from received
datagram

• UDP: transmitted data may be
received out of order, or lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

Distributed Computing Group Computer Networks R. Wattenhofer 2/62

Client/server socket interaction: UDP (Java)

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =

DatagramSocket()

Client

Create, address (hostid, port=x),
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =

DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

Distributed Computing Group Computer Networks R. Wattenhofer 2/63

Example: Java client (UDP)

se
nd

P
ac

ke
t

to network from network

re
ce

iv
eP

ac
ke

t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (TCP sent
“byte stream”)

Input: receives
packet (TCP
received “byte
stream”)

Client
process

client UDP
socket

Distributed Computing Group Computer Networks R. Wattenhofer 2/64

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

Address using DNS

Distributed Computing Group Computer Networks R. Wattenhofer 2/65

Example: Java client (UDP), continued

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram with
data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

Distributed Computing Group Computer Networks R. Wattenhofer 2/66

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

Distributed Computing Group Computer Networks R. Wattenhofer 2/67

Example: Java server (UDP), continued

String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

Distributed Computing Group Computer Networks R. Wattenhofer 2/68

EiffelNet: Sockets and communication modes

NETWORK_
DATAGRAM_

SOCKET

SOCKET

NETWORK_
SOCKET

NETWORK_
STREAM_
SOCKET

Two modes of socket communication:
- stream communication
- datagram communication

Stream socket:
- provided by the STREAM_classes
- provides sequenced communication without any

loss or duplication of data
- synchronous: the sending system waits until it has

established a connection to the receiving system
and transmitted the data

Datagram socket:
- provided by the DATAGRAM_classes
- asynchronous: the sending system emits its data

and does not wait for an acknowledgment
- efficient, but it does not guarantee sequencing,

reliability or non-duplication

Distributed Computing Group Computer Networks R. Wattenhofer 2/69

Example: Eiffel Server (TCP - stream socket)
class OUR_SERVER
inherit

SOCKET_RESOURCES
STORABLE

create
make

feature
soc1, soc2: NETWORK_STREAM_SOCKET
make (argv: ARRAY [STRING]) is

local
count: INTEGER

do
if argv.count /= 2 then

io.error.putstring ("Usage: ")
io.error.putstring (argv.item (0))
io.error.putstring ("portnumber")

else
create soc1.make_server_by_port (argv.item (1).to_integer)
from

soc1.listen (5)
count := 0

until
count := 5

loop
process
count := count + 1

end
soc1.cleanup

end
rescue soc1.cleanup
end

Closes the open socket and frees
the corresponding resources

CLIENT:
1) Sends to the server a list of strings
5) Receives the result from the server and

print it
SERVER:

2) Receives the corresponding object structure
3) Appends to it another string
4) Returns the result to the client

Accepts communication with the
client and exchange messages

• Accepts communication with the client
• Receives a message from the client
• Extends the message
• Sends the message back to the client

Create server socket on ‘portnumber’

Listen on socket for at most ‘5’ connections

Distributed Computing Group Computer Networks R. Wattenhofer 2/70

class OUR_MESSAGE

inherit
LINKED_LIST

[STRING]
STORABLE
undefine

is_equal, copy
end

create
make

end

process is
local

our_new_list: OUR_MESSAGE
do

soc1.accept
soc2 ?= soc1.accepted
our_new_list ?= retrieved (soc2)

from
our_new_list.start

until
our_new_list.after

loop
io.putstring (our_new_list.item)
our_new_list.forth
io.new_line

end

our_new_list.extend ("Server message. %N")
our_new_list.general_store (soc2)
soc2.close

end
end

The message exchanged between
server and client is a linked list of
strings

• the server obtains access to the server
• accept - ensures synchronization to with the client
• accept - creates a new socket which is accesible

through the attribute accepted
• the accepted value is assigned to soc2 - this makes
soc1 available to accept connections with other
clients

Extends the message received from the client

Receives a message from the
client, extend it, and send it back.

Sends the extended message back to the client

Closes the socket

Example: Eiffel Server (TCP - stream socket), continued

Distributed Computing Group Computer Networks R. Wattenhofer 2/71

class OUR_CLIENT
inherit

NETWORK_CLIENT
redefine

received
end

create
make_client

feature
our_list: OUR_MESSAGE
received: OUR_MESSAGE

make_client (argv: ARRAY [STRING]) is
-- Build list, send it, receive modified list, and

print it.
do

if argv.count /= 3 then
io.error.putstring ("Usage: ")
io.error.putstring (argv.item (0))
io.error.putstring ("hostname portnumber”)

else
make (argv.item (2).to_integer, argv.item (1))
build_list
send (our_list)
receive
process_received
cleanup

end
rescue
cleanup
end

…

4. Receives the message
from the server

5. Prints the content of
the received message

6. Closes the open socket
and free the corresponding
resources

3. Sends the list of strings
to the server

1. Creates a socket and
setup the communication

2. Builds the list of strings

The message exchanged
between server and client

Example: Eiffel Client (TCP - stream socket)

Distributed Computing Group Computer Networks R. Wattenhofer 2/72

Example: Eiffel Client (TCP - stream socket), continued

build_list is
do

create our_list.make
our_list.extend ("This ")
our_list.extend ("is ")
our_list.extend (“a")
our_list.extend ("test.")

end

process_received is
do

if received = Void then
io.putstring ("No list received.")

else
from received.start until received.after loop

io.putstring (received.item)
received.forth

end
end

end
end

Prints the content of the
received message in
sequence

Builds the list of strings
‘our_list’ for transmission to
the server

Distributed Computing Group Computer Networks R. Wattenhofer 2/73

Example: Eiffel Server (UDP - datagram socket)

class OUR_DATAGRAM_SERVER
create

make
feature

make (argv: ARRAY [STRING]) is
local

soc: NETWORK_DATAGRAM_SOCKET
ps: MEDIUM_POLLER
readcomm: DATAGRAM_READER
writecomm: SERVER_DATAGRAM_WRITER

do
if argv.count /= 2 then

io.error.putstring ("Usage: ")
io.error.putstring (argv.item (0))
io.error.putstring (" portnumber")

else
create soc.make_bound (argv.item (1).to_integer)
create ps.make

create readcomm.make (soc)
ps.put_read_command (readcomm)
create writecomm.make (soc)
ps.put_write_command (writecomm)
. . .

Creates poller with multi-event polling

Creates a network datagram
socket bound to a local
address with a specific port

1. Creates read and write commands
2. Attach them to a poller
3. Set up the poller for execution

1. Creates a read command which it attaches to the socket
2. Enters the read command into the poller
3. Creates a write command which it attaches to the socket
4. Enters the write command into the poller

Distributed Computing Group Computer Networks R. Wattenhofer 2/74

Example: Eiffel Server (UDP - datagram socket), continued

. . .
ps.make_read_only

ps.execute (15, 20000)
ps.make_write_only
ps.execute (15, 20000)
soc.close

end
rescue

if not soc.is_closed then
soc.close

end
end

end

1. Sets up the poller to accept read commands only and
then executes the poller -- enable the server to get the
read event triggered by the client’s write command

2. Reverses the poller’s set up to write-only, and then
executes the poller

Monitors the sockets for the corresponding events and
executes the command associated with each event that
will be received

Distributed Computing Group Computer Networks R. Wattenhofer 2/75

Example: Eiffel Client (UDP - datagram socket)

class OUR_DATAGRAM_CLIENT

create
make

feature
make (argv: ARRAY [STRING]) is

local
soc: NETWORK_DATAGRAM_SOCKET

ps: MEDIUM_POLLER
readcomm: DATAGRAM_READER
writecomm: CLIENT_DATAGRAM_WRITER

do
if argv.count /= 3 then

io.error.putstring ("Usage: ")
io.error.putstring (argv.item (0))
io.error.putstring ("hostname portnumber")

else
create soc.make_targeted_to_hostname

(argv.item (1), argv.item
(2).to_integer)

create ps.make

create readcomm.make (soc)
ps.put_read_command (readcomm)
create writecomm.make (soc)
ps.put_write_command (writecomm)
. . .

1. Creates a read command which it attaches to the socket
2. Enters the read command into the poller
3. Creates a write command which it attaches to the socket
4. Enters the write command into the poller

Command executed in case of a read
event

1. Create read and write commands
2. Attach them to a poller
3. Set up the poller for execution

Create a datagram socket connected to
‘hostname’ and ‘port’

Creates poller with multi-event polling

Command executed by the client when
the socket “is ready for writing”

Distributed Computing Group Computer Networks R. Wattenhofer 2/76

. . .
ps.make_write_only
ps.execute (15, 20000)
ps.make_read_only
ps.execute (15, 20000)
soc.close

end
rescue

if not soc.is_closed then
soc.close

end
end Monitors the sockets for the corresponding events and

executes the command associated with each event that
will be received

1. Sets up the poller to write commands only and then
executes the poller

2. Reverses the poller’s set up to accept read commands
only, and then executes the poller -- enables the client to
get the read event triggered by the server’s write
command

Example: Eiffel Client (UDP - datagram socket), continued

Distributed Computing Group Computer Networks R. Wattenhofer 2/77

Example: Eiffel Command class (UDP - datagram socket)

class OUR_DATAGRAM_READER

inherit
POLL_COMMAND
redefine

active_medium
end

create
make

feature
active_medium:

NETWORK_DATAGRAM_SOCKET

execute (arg: ANY) is
local

rec_pack: DATAGRAM_PACKET
i: INTEGER

do
rec_pack := active_medium.received (10, 0)
io.putint (rec_pack.packet_number)
from i := 0 until i > 9 loop

io.putchar (rec_pack.element (i))
i := i + 1

end
end

end

Commands and events:
• Each system specify certain communication events
that it wants to monitor, and certain commands to be
executed on occurrence of the specified events

• The commands are objects, instances of the class
POLL_COMMAND

• The class POLL_COMMAND has the procedure
execute which executes the current command

Command classes:

• OUR_DATAGRAM_READER – represents operations
that must be triggered in the case of a read event

• CLIENT_DATAGRAM_WRITER – command
executed by the client when the socket “is ready for
writing”

• SERVER_DATAGRAM_WRITER – command
executed by the server when the socket “is ready for
writing”

Prints all the caracters from the packet

Receive a packet of size 10 characters

Prints the packet number of the packet

Distributed Computing Group Computer Networks R. Wattenhofer 2/78

class CLIENT_DATAGRAM_WRITER
inherit

POLL_COMMAND
redefine

active_medium
end

create
make

feature
active_medium:

NETWORK_DATAGRAM_SOCKET

execute (arg: ANY) is
local

sen_pack: DATAGRAM_PACKET
char: CHARACTER

do
-- Make packet with 10 characters ‘a’ to

‘j’
-- in succesive positions
create sen_pack.make (10)
from char := ‘a’ until char > ‘j’ loop

sen_pack.put_element (char |-| ‘a’)
char := char.next

end
sen_pack.set_packet_number (1)
active_medium.send (sen_pack, 0)

end
end

class SERVER_DATAGRAM_WRITER
inherit

POLL_COMMAND
redefine

active_medium
end

create
make

feature
active_medium:

NETWORK_DATAGRAM_SOCKET

execute (arg: ANY) is
local

sen_pack: DATAGRAM_PACKET
i: INTEGER

do
-- Make packet with 10 characters ‘a’ in
-- succesive positions
create sen_pack.make (10)
from i := 0 until i > 9 loop

sen_pack.put_element (‘a’, i)
i := i + 1

end
sen_pack.set_packet_number (2)
active_medium.send (sen_pack, 0)

end
end

Command executed by the client when
the socket “is ready for writing”

Command executed by the server when
the socket “is ready for writing”

Example: Eiffel Command class (UDP - datagram socket), cont

