
Chapter 6
PEER-TO-PEER

COMPUTING
Computer Networks

Summer 2006

Distributed
Computing

Group

Distributed Computing Group Computer Networks R. Wattenhofer 6/2

Overview

• What is Peer-to-Peer?
• Dictionary

– Distributed Hashing
– Search
– Join & Leave

• Other systems
• Conclusion

Distributed Computing Group Computer Networks R. Wattenhofer 6/3

“Peer-to-Peer” is…

• Software: Napster, Gnutella, Kazaa, …
• File “sharing”
• Legal issues, RIAA
• Direct data exchange between clients
• Best effort, no guarantees
• 80% of Web Traffic “P2P”

…a socio-cultural phenomenon!

Distributed Computing Group Computer Networks R. Wattenhofer 6/4

“Peer-to-Peer” is also…

• A hot research area: Chord, Pastry, …
• A paradigm beyond Client/Server
• Dynamics (frequent joins and leaves)
• Fault tolerance
• Scalability
• Dictionary… and more!

… a new networking philosophy/technology!

Distributed Computing Group Computer Networks R. Wattenhofer 6/5

Client/Server

Distributed Computing Group Computer Networks R. Wattenhofer 6/6

Client/Server Problems

• Scalability
– Can server serve 100, 1’000, 10’000 clients?
– What’s the cost?

• Security / Denial-of-Service
– Servers attract hackers

• Replication
– Replicating for security
– Replicating close to clients (“caching”)

Distributed Computing Group Computer Networks R. Wattenhofer 6/7

Case Study: Napster

Re
gis

te
r

Beach Boys: Pet Sounds @ 170.13.01.02
Aphex Twin: Ptolemy @ 212.17.11.69
De La Soul: Ring Ring … @ 129.132.13.122
Pavement: Zurich is … @ 129.132.13.122

Se
ar

ch
…

Fi
nd

 @
 …

Distributed Computing Group Computer Networks R. Wattenhofer 6/8

Case Study: Gnutella

Sea
rch

…

Search…

Search…

Search…

Search…

Search…

Search…
Se

ar
ch

…

Se
ar

ch
…

Distributed Computing Group Computer Networks R. Wattenhofer 6/9

Pros/Cons Gnutella

• totally decentralized

• totally
– “flooding” = directionless searching

• Gnutella often does not find searched item
– TTL
– Gnutella “not correct”

inefficient

Distributed Computing Group Computer Networks R. Wattenhofer 6/10

Dictionary ADT

• A collection of objects
– Each object uniquely identified by key

• Supports these operations:
– Search(key) Æ object(key)
– Insert(key, object) Æ OK?
– Delete(key) Æ OK?

Distributed Computing Group Computer Networks R. Wattenhofer 6/11

Dictionary Implementations

• Classic Implementations
– Search Tree (balanced, B-Tree)
– Hashing (various forms)

• “Distributed” Implementations
– Linear Hashing
– Consistent Hashing

Distributed Computing Group Computer Networks R. Wattenhofer 6/12

Distributed Hashing

hash .10111010101110011… ≈ .73

• Remark: Instead of storing a document at the right peer,
just store a forward-pointer

key

0 1.101x

Distributed Computing Group Computer Networks R. Wattenhofer 6/13

Linear Hashing

• Problem: More and more objects should be stored; need
to buy new machines!

• Example: From 4 to 5 machines

0 1

0 1

0 1

Move many objects (about 1/2)

Linear Hashing: Move only a few objects to new machine (about 1/n)

Distributed Computing Group Computer Networks R. Wattenhofer 6/14

Consistent Hashing

• Needs central dispatcher
• Idea: Also the machines get hashed! Each machine is

responsible for the files closest to it. Use multiple hash
funct. for reliability.

0 1

Distributed Computing Group Computer Networks R. Wattenhofer 6/15

Not quite happy yet…

• Problem with both linear and consistent hashing is that
all the participants of the system must know all peers…

• Number one challenge: Dynamics!
– Peers join and leave

Distributed Computing Group Computer Networks R. Wattenhofer 6/16

Dynamics

• Machines (peers) are unreliable
– Joins; worse: spontaneous leaves!

• Decentralized (“symmetric”) System
– scalable, fault tolerant, dynamic

Distributed Computing Group Computer Networks R. Wattenhofer 6/17

P2P Dictionary = Hashing

hash 10111010101110011…

0000x 0001x
001x

01x
100x 101x

11x

• Remark: Instead of storing a document at the right peer,
just store a forward-pointer

key

18
0000x 0001x

001x
01x

100x 101x
11x

P2P Dictionary = Search Tree
10

10

10

10
10

10

Distributed Computing Group Computer Networks R. Wattenhofer 6/19

But who stores search tree?

• In particular, where is the root stored?
– Root is scalability & fault tolerance problem
– There is no root…!

• If a peer wants to store/search, how does it know where
to go?
– Does every peer know all others?
– Dynamics! If a peer leaves, all peers must be notified. Too

much overhead
– Idea: Every peer only knows subset of others

Distributed Computing Group Computer Networks R. Wattenhofer 6/20

The Neighbors of Peer 001x

10

10

10

10
10

10

1x

01x

000x 001x

21

P2P Dictionary: Search

0000x

0001x

001x

01x

1x
Search

 1011…

Search
hash
value

1011...

22

P2P Dictionary: Search

0000x 111x

0x

Search
 1011…

Search
hash
value

1011...

1100x

1101x

Search 1011…
10x

23

P2P Dictionary: Search

0000x

Search
 1011…

Search
hash
value

1011...

1100x

Search 1011…
1010x

1011x

Se
ar

ch
 1

01
1…

24

Again: 001 searches 100

10

10

10

10
10

10

1x

01x

000x 001x

25

001 searches 100 (continued)

10

10

10

10
10

10

0x

11x

101x100x
Distributed Computing Group Computer Networks R. Wattenhofer 6/26

Search Analysis

• We have n peers in system
• Assume that “tree” is roughly balanced

– Leaves (peers) on level log2 n ± constant

• Search has O(log n) steps
– After k’th step, you are in subtree on level k
– A “step” is a UDP (or TCP) message
– Latency is dependent on P2P size (world!)

Distributed Computing Group Computer Networks R. Wattenhofer 6/27

Peer Join

• Part 1: Bootstrap

• In order to join a P2P system, a joiner must already
know a peer already in system. Typical solutions are
– Ask a central authority for a list of IP addresses that have

been in the P2P regularly; look up a listing on a web site
– Try some of those you met last time
– Just ping randomly (in the LAN)

• Part 2: Find your place in P2P system

Distributed Computing Group Computer Networks R. Wattenhofer 6/28

2. Find your place

• The random method: Choose a random bit string (which
determines the place)

• Search* for the bit string
• Split with the current leave responsible for the bit string
• Search* for your neighbors

* These are standard searches

29

Example: Bootstrap with 001 peer

10

10

10

10
10

10

Random Bit String = 100101… 30

Joiner searches 100101…

10

10

10

10
10

10

Random Bit String = 100101…

31

Joiner found 100 leave Æ split

10

10

10

10
10

10

10

32

Find neighbors

10

10

10

10
10

10

10

Distributed Computing Group Computer Networks R. Wattenhofer 6/33

Random Join Discussion

• If tree is balanced, the time to join is
– O(log n) for the first part
– O(log n)·O(log n) = O(log2 n) for the second part

• It is believe that since all the peers are chosen their
position randomly, the tree will more or less be balanced.
– However, theory and simulations show that this is widely

believed but not really true.

Distributed Computing Group Computer Networks R. Wattenhofer 6/34

Leave

• Since a leave might be spontaneous, it must be detected
first. Naturally this is done by the neighbors in the P2P
system (all peers periodically ping neighbors).

• If a peer that left was detected, it must be replaced. If
peer had sibling leaf, the sibling might just do a “reverse
split.”

• If not, search recursively… example!

35

Peer 01 leaves spontaneously

0

10

10

10

1. Go down sibling
tree, until you hit
sibling leaves.

2. Make the left sibling
the new common
node.

3. Move the free right
sibling to the empty
spot.

Distributed Computing Group Computer Networks R. Wattenhofer 6/36

Was that all?

• Yes, you now mastered all the P2P basics…
Congratulations!

• But there are some nasty “technicalities” ☺
• Most importantly we would like to know what happened

to the data that was stored at the peer that left (important
question if we want to use the P2P network as a
storage/file system). We study that soon…

• First some other comments…

Distributed Computing Group Computer Networks R. Wattenhofer 6/37

Questions of experts…

• Q: I know so many other structured peer-to-peer
systems; they are completely different from the one
you showed us!

• A: They look different, but in fact the difference comes
mostly from the way they are presented. (I give a few
examples on the next slides)

Distributed Computing Group Computer Networks R. Wattenhofer 6/38

Chord

• The most cited system by Ion Stoica, Robert Morris,
David Karger, M. Frans Kaashoek, and Hari
Balakrishnan, MIT, presented at ACM SIGCOMM 2001.

• Most discussed system in distributed systems and
networking books, for example in Edition 4 of
Tanenbaum’s Computer Networks.

• There are extensions on top of it, such as CFS, Ivy

Distributed Computing Group Computer Networks R. Wattenhofer 6/39

Chord

• Every peer
has log n
many
neighbors;
one in about
distance 2-k,
k=1, 2, …, log
n

0000x 0001x
001x

01x

100x

101x

11x

Distributed Computing Group Computer Networks R. Wattenhofer 6/40

Skip List

• Are you afraid of programming balanced search trees (e.g.
AVL or red-black tree)?!?

• Then the skip list is a data structure for you!

• Idea: Ordered linked list with extra pointers

Distributed Computing Group Computer Networks R. Wattenhofer 6/41

Skip List

17 34 ∞60 69 78 847 11 32root

• (Doubly) linked list, with sorted items
• All items have additional pointers on levels 1, …, k, with

probability 2-k

• Search, insert, delete: Start with root, search for the right
interval on highest level, then continue with lower levels.

root ∞

0
1
2
3

root
root

∞

∞

Distributed Computing Group Computer Networks R. Wattenhofer 6/42

Skip List

• It can easily be shown that search, insert, and delete
terminate in O(log n) expected time, if there are n items
in the skip list

• Also, on expectation, the number of pointers is only
twice as many as with a regular linked list, thus the
memory overhead is edible

• As a plus, the items are always ordered…

Distributed Computing Group Computer Networks R. Wattenhofer 6/43

Skip Net

• Use the skip list as a peer-to-peer architecture: Again
each peer gets a random value between 0 and 1, and is
then responsible for storing that interval.

• Instead of a root and a sentinel node (“∞”), the list is
short-wired as a ring

• There exist several proposals towards this end…

Distributed Computing Group Computer Networks R. Wattenhofer 6/44

Many many others...

• Original work by Plaxton, Rajaraman, and Richa;
“unfortunately” theory paper, so it includes many other
aspects, such as a distance discussion… similar
proposals are Pastry/Tapestry, or Kademlia.

• Some proposals improve the design; e.g. The Viceroy
resp. Koorde proposals are Butterfly-based resp.
DeBruijn-based and therefore only need a constant
number of neighbors per peer.

• Closest/best design in reality is Freenet. However,
Freenet has some questionable design properties

Distributed Computing Group Computer Networks R. Wattenhofer 6/45

Why should I care?

• Q: I don’t want to program a worldwide music stealing
application, so why should I care?

• A: Many future networking applications will have a form
of decentralized control, for scalability, fault-tolerance,
and security.

• Example: P2P Spam-Filtering (Spamato-P2P).

