
Remote Procedure Call (RPC)
Cesare Pautasso (Gustavo Alonso)
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
pautasso@inf.ethz.ch
http://www.iks.inf.ethz.ch/

©IKS, ETH Zürich. 2

Contents – RPC
Distributed design

Computer networks and communication at a high level
Basics of Client/Server architectures
• programming concept
• interoperability
• binding to services
• delivery guarantees

Putting all together: RPC
programming languages
binding
interface definition language
programming RPC

RPC in the context of large information systems (DCE, TP-Monitors)

©IKS, ETH Zürich. 3

IP, TCP, UDP and RPC
The most accepted standard for
network communication is IP
(Internet Protocol) which
provides unreliable delivery of
single packets to one-hop
distant hosts
IP was designed to be hidden
behind other software layers:

TCP (Transport Control
Protocol) implements
connected, reliable message
exchange
UDP (User Datagram
Protocol) implements
unreliable datagram based
message exchanges

TCP/IP and UDP/IP are visible to
applications through sockets.
The purpose of the socket
interface was to provide a UNIX-
like file abstraction

Yet sockets are quite low level
for many applications, thus, RPC
(Remote Procedure Call)
appeared as a way to

hide communication details
behind a procedural call
bridge heterogeneous
environments

RPC is the standard for
distributed (client-server)
computing

IP
TCP, UDP

SOCKETS
RPC

©IKS, ETH Zürich. 4

Sockets vs. Remote Procedures
Two alternatives for the design
of distributed programs.
Bottom-Up

1. First design network protocol
2. Build program that follows the

protocol using sockets
Top-Down

1. Design program first
2. Partition the program in

different modules
3. Describe the set of procedures

that make up the module
interface

4. Place modules on different
network hosts

5. Add the network protocol to
make the procedures
communicate

What is the advantage?
Using an RPC Compiler the
communication protocol

is generated automatically
from the interface description

ProtocolSocket Socket

RPC
ProtocolProcedure Procedure

©IKS, ETH Zürich. 5

The basics of client/server
Imagine we have a program (a
server) that implements certain
services. Imagine we have other
programs (clients) that would like
to invoke those services.
To make the problem more
interesting, assume as well that:

client and server can reside on
different computers and run
on different operating
systems
the only form of
communication is by sending
messages (no shared memory,
no shared disks, etc.)
some minimal guarantees are
to be provided (handling of
failures, call semantics, etc.)
we want a generic solution
and not a one time hack

Ideally, we want he programs to
behave like this (sounds simple?,
well, this idea is only 20 years
old):
Machine A

(client)
Machine B

(server)

Execution Thread

Service request

Service response

Message
©IKS, ETH Zürich. 6

Problems to solve
1. How to make the service

invocation part of the language
in a more or less transparent
manner.

Don’t forget this important
aspect: whatever you
design, others will have to
program and use

2. How to exchange data between
machines that might use
different representations for
different data types. This
involves two aspects:

data type formats (e.g., byte
orders in different
architectures)
data structures (need to be
flattened and the
reconstructed)

3. How to find the service one
actually wants among a
potentially large collection of
services and servers.

The goal is that the client
does not necessarily need to
know where the server
resides or even which server
provides the service.

4. How to deal with errors in the
service invocation in a more or
less elegant manner:

server is down,
communication is down,
server busy,
duplicated requests ...

©IKS, ETH Zürich. 7

1. RPC as a Programming tool
The notion of distributed service
invocation became a reality at
the beginning of the 80’s when
procedural languages (mainly C)
were dominant.
In procedural languages, the
basic module is the procedure.
A procedure implements a
particular function or service
that can be used anywhere
within the program.
It seemed natural to maintain
this same notion when talking
about distribution: the client
makes a procedure call to a
procedure that is implemented
by the server.
Since the client and server can
be in different machines, the
procedure call is remote.

Client/Server architectures are
based on Remote Procedure
Calls (RPC)
Once we are working with
remote procedures in mind,
there are several aspects that
are immediately determined:

The input and output
parameters of the procedure
call are used for exchanging
data
Pointers cannot be passed as
parameters in RPC, opaque
references are needed
instead so that the client
can use this reference to
refer to the same data
structure or entity at the
server across different calls.

©IKS, ETH Zürich. 8

2. Interoperability
When exchanging data
between clients and servers
residing in different
environments (hardware or
software), care must be taken
that the data is in the
appropriate format:

byte order: differences
between little endian and
big endian architectures
(high order bytes first or last
in basic data types)
data structures: like trees,
hash tables,
multidimensional arrays, or
records need to be flattened
(cast into a string so to
speak) before being sent

This is best done using an
intermediate representation
format

The concept of transforming the
data being sent to an
intermediate representation
format and back has different
(equivalent) names:

marshalling/un-marshalling
serializing/de-serializing

The non-standard intermediate
representation format is
typically system dependent.
For instance:

SUN RPC: XDR (External Data
Representation)

Having an intermediate
representation format simplifies
the design, otherwise a node
will need to be able to
transform data to any possible
format

©IKS, ETH Zürich. 9

Example (XDR in SUN RPC)
Marshalling or serializing can be
done by hand (although this is
not desirable) using (in C) sprintf
and sscanf:

Message= “Cesare” “ETHZ” “2006”

char *name=“Cesare”, place=“ETHZ”;
int year=2004;

sprintf(message, “%d %s %s %d %d”,
strlen(name), name, strlen(place), place,
year);

Message after marshalling =
“6 Cesare 4 ETHZ 2006”

Remember that the type and
number of parameters is known
in advance, we only need to
agree on the syntax ...

SUN XDR follows a similar
approach:

messages are transformed into
a sequence of 4 byte objects,
each byte being in ASCII code
it defines how to pack different
data types into these objects,
which end of an object is the
most significant, and which
byte of an object comes first
the idea is to simplify
computation at the expense of
bandwidth

6
C e s a
r e
4
E T H Z
2 0 0 6

String length

String length

Number

String content

String content

©IKS, ETH Zürich. 10

3. Binding
A service is provided by a server
located at a particular IP address
and listening to a given port
Binding is the process of
mapping a service name to an
address and port that can be
used for communication
purposes
Binding can be done:

locally: the client must know
the name (address) of the
host of the server
distributed: there is a
separate service (service
location, name and directory
services, etc.) in charge of
mapping names and
addresses. This service must
be reachable by all
participants

With a distributed binder, several
general operations are possible:

REGISTER (Exporting an
interface): A server can
register service names and the
corresponding port
WITHDRAW: A server can
withdraw a service
LOOKUP (Importing an
interface): A client can ask the
binder for the address and
port of a given service

There must also be a way to
locate the binder (predefined
location, environment variables,
configuration file, broadcasting to
all nodes looking for the binder)
Clients usually cache binding
information (rebinding is
attempted on failures)

©IKS, ETH Zürich. 11

4. Call semantics
What happens when a LOCAL

procedure is called?
The procedure always runs once,
exactly.

What happens when a REMOTE
procedure is called?
The procedure never runs because
the server is down.
The procedure does not run because
the client is disconnected from the
network.
The procedure runs, but the client does
not notice because the result is lost.
The procedure runs, but the server
crashes in the middle
The procedure runs, twice, because the
client has resent the request packet.
If all goes well, the procedure runs
once.

How many times
should this procedure run?
Deposit(MyAccount, $99);

Reminder:
it looks like

a procedure call,
but the parameters are

sent back and forth
on the network!

©IKS, ETH Zürich. 12

Defining Call semantics
A client makes an RPC to a
service at a given server. After a
time-out expires, the client may
decide to re-send the request. If
after several tries there is no
success, what may have
happened depends on the call
semantics:

Maybe: no guarantees. The
procedure may have been
executed (the response
message(s) was lost) or may
have not been executed (the
request message(s) was lost).
It is very difficult to write
programs based on this type of
best effort semantics since the
programmer has to take care of
all possibilities

At least-once: the procedure will
be executed if the server does
not fail, but it is possible that it
is executed more than once.
This may happen, for instance, if
the client re-sends the request
after a time-out. If the server is
designed so that service calls are
idempotent (produce the same
outcome given the same input),
this might be acceptable.
At most-once: the procedure
will be executed either once or
not at all. Re-sending the
request will not result in the
procedure executing several
times. The server must perform
some kind of duplicate
detection and filtering and
reply retransmission

©IKS, ETH Zürich. 13

RPC Error semantics

Server failureNetwork failureNormal execution

Request sent: 1/N
Execution: 0/1
Result sent: 0/N
Result received: 0/1

Request sent: 1/N
Execution: 1
Result sent: 1/N
Result received: 1

Request sent: 1
Execution: 1
Result sent: 1
Result received: 1

At-Most-Once

Request sent: 1/N
Execution: 0/N
Result sent: 0/N
Result received: 0/1

Request sent: 1/N
Execution: 1/N
Result sent: 1/N
Result received: 1

Request sent: 1
Execution: 1
Result sent: 1
Result received: 1

At-Least-Once

Request sent: 1
Execution: 0/1
Result sent: 0/1
Result received: 0/1

Request sent: 0/1
Execution: 0/1
Result sent: 0/1
Result received: 0/1

Request sent: 1
Execution: 1
Result sent: 1
Result received: 1

Maybe

Type of failure
Semantics

How RPC works

©IKS, ETH Zürich. 15

Making it work in practice
One cannot expect the
programmer to implement all
these mechanisms every time a
distributed application is
developed. Instead, they are
provided by a so called RPC
system (a first example of low
level middleware)
What does an RPC system do?

Provides an interface
definition language (IDL) to
describe the services
Generates all the additional
code necessary to make a
procedure call remote and to
deal with all the
communication aspects
Provides a binder in case it
has a distributed name and
directory service system

CLIENT
call to remote procedure

CLIENT stub procedure
Bind
Marshalling
Send Communication

module

Client process

Communication
module

Dispatcher
(select
stub)

SERVER stub procedure
Unmarshalling
Return

SERVER
remote procedure Server process

©IKS, ETH Zürich. 16

In more detail
Client
code

Client
stub

Comm.
Module

RPC

Binder Comm.
module

Server
stub

Server
code

Register service request
ACKbind

Look up request
Look up response

send RPC request

call

RPC response

return

return

©IKS, ETH Zürich. 17

IDL (Interface Definition Language)
All RPC systems come with a
language that allows to
describe services in an abstract
manner (independent of the
programming language used).
This language has the generic
name of IDL (e.g., the IDL of SUN
RPC is XDR)
The IDL allows to define each
service in terms of their names,
and input and output
parameters (plus maybe other
relevant aspects).
An interface compiler is then
used to generate the stubs for
clients and servers (rpcgen in
SUN RPC). It might also
generate procedure headings
that the programmer can then
use to fill out the details of the
server-side implementation.

Given an IDL specification, the
interface compiler performs a
variety of tasks to generate the
stubs in a target programming
language (like C):

1. Generates the client stub
procedure for each procedure
signature in the interface. The
stub will be then compiled and
linked with the client code

2. Generates a server stub. It can
also create a server main, with the
stub and the dispatcher compiled
and linked into it. This code can
then be extended by the
developer by writing the
implementation of the
procedures

3. It might generate a *.h file for
importing the interface and all
the necessary constants and types

©IKS, ETH Zürich. 18

Putting it all together

DCE runtime environment

RPC
protocols

security
service

cell
service

distributed
file service

thread
service

IDL
sources

interface
headers

IDL compiler

IDLclient
code

client stub

RPC run time
service library

language specific
call interface

RPC API

server
code

server stub

RPC run time
service library

language specific
call interface

RPC API

client process server processDCE
development
environment

©IKS, ETH Zürich. 19

RPC in pseudocode
//your client code
result = function(parameters)

//client side stub
function(parameters) {

address a = bind(“function”);
socket s = connect(a);
send(s,”function”);
send(s,parameters);
receive(s,result); //blocking
return result;

}
//server side stub
void dispatch_function(socket s) {

receive(s,parameters);
result = function(parameters);
send(s,result);

}

//rpc server main loop
void rpc_server() {

register(“function”,address);
while (true) {

socket s = accept(); //blocking
receive(s,id);
if (id == “function”)

dispatch_function(s);
close(s);

}
}

©IKS, ETH Zürich. 20

Programming RPC directly
RPC usually provides different
levels of interaction to provide
different degrees of control over
the system:

Each level adds more complexity
to the interface and requires the
programmer to take care of
more aspects of a distributed
system

The Simplified Interface (in SUN
RPC) has only three calls:

rpc_reg() registers a
procedure as a remote
procedure and returns a
unique, system-wide
identifier for the procedure
rpc_call() given a procedure
identifier and a host, it
makes a call to that
procedure
rpc_broadcast() is similar to
rpc_call() but broadcasts the
message instead

The IDL compiler automatically
generates the stubs calling the
RPC library using defaults.
Direct access allow more control
of transport protocols, security,
marshalling, binding,
asynchronous procedures, etc.

Bottom Level

Expert Level

Intermediate Level

Top Level

Simplified Interface

©IKS, ETH Zürich. 21

RPC Application Example
SALES POINT CLIENT
IF no_customer_#
THEN New_customer
ELSE Lookup_customer
Check_inventory
IF enough_supplies
THEN Place_order
ELSE ...

Customer
database

INVENTORY CONTROL
CLIENT
Lookup_product
Check_inventory
IF supplies_low
THEN

Place_order
Update_inventory

...

DB
MS

Products
databaseDB

MS

Inventory
and order
databaseDB

MS

New_customer
Lookup_customer
Delete_customer
Update_customer

New_product
Lookup_product
Delete_product
Update_product

Place_order
Cancel_order

Update_inventory
Check_inventory

Server 1

Server 3

Server 2

©IKS, ETH Zürich. 22

RPC in perspective
ADVANTAGES

RPC provided a mechanism to
implement distributed
applications in a simple and
efficient manner
RPC followed the programming
techniques of the time
(procedural languages) and fitted
quite well with the most typical
programming languages (C),
thereby facilitating its adoption
by system designers
RPC allowed the modular and
hierarchical design of large
distributed systems:

client and server are separate
the server encapsulates and
hides the details of the back
end systems (such as
databases)

DISADVANTAGES
RPC is not a standard, it is an
idea that has been
implemented in many different
ways (not necessarily
compatible)
RPC allows designers to build
distributed systems but does
not solve many of the problems
distribution creates. In that
regard, it is only a low level
construct
RPC was designed with only one
type of interaction in mind:
client/server. This reflected the
hardware architectures at the
time when distribution meant
small terminals connected to a
mainframe. As hardware and
networks evolve, more flexibility
was needed

©IKS, ETH Zürich. 23

RPC system issues
RPC was one of the first tools
that allowed the modular design
of distributed applications
RPC implementations tend to be
quite efficient in that they do not
add too much overhead.
However, a remote procedure is
always slower than a local
procedure:

should a remote procedure
be transparent (identical to a
local procedure)? (yes: easy of
use; no: increase programmer
awareness)
should location be
transparent? (yes: flexibility
and fault tolerance; no: easier
design, less overhead)
should there be a centralized
name server (binder)?

RPC can be used to build
systems with many layers of
abstraction.
However, every RPC call implies:

Several messages through
the network
At least one context switch
(at the client when it places
the call, but there might be
more)
Threads are typically used in
the server to handle
concurrent requests

When a distributed application
is complex, deep RPC chains are
to be avoided

©IKS, ETH Zürich. 24

RPC and Concurrency
A local procedure call happens within
the same thread of control.
A remote procedure call involves at
least two different threads (one on
the client and one on the server host)
The server may use two threads: the
dispatcher listens for requests and
passes them to a worker thread for
processing
The client may not block and use a
listener thread to wait for the results

Client Server

W
or

ke
r

Listener Di
sp

at
ch

er

©IKS, ETH Zürich. 25

RPC Pitfalls

Although RPC strives to keep the
remote call transparent, there are
a number of limitations
No Shared Memory between
client and server
Arguments and Results are passed
by copy (not by reference).
Difficult to exchange pointers and
complex data structures
Cannot pass a file opened on the
client as a parameter to the server
(and viceversa)
Remote calls are orders of
magnitude slower than local ones,
do not call too often!

Calls may fail due to network
problems
The server address must be
configured on the client, unless
dynamic binding is used
Nobody can snoop the
parameters of a local call
(unless you use a debugger or
you force a core dump…), but
all parameters of every RPC are
visible on the network
The caller of a local procedure
can be trusted because it is the
same program. Can the server
trust the client of a remote
procedure in the same way?

Local
P

Local
P

CALL Local
P

Remote
P

Client
Stub

TCP
IP Server Server

Stub

©IKS, ETH Zürich. 26

Transport Service/ OS

Cell Directory
Service

Thread Service

DCE
The Distributed Computing
Environment is a standard
implementation of RPC and a
distributed run-time environment
provided by the Open Software
Foundation (OSF). It provides:

RPC
Cell Directory: A sophisticated
Name and Directory Service
Time: for clock synchronization
across all nodes
Security: secure and
authenticated communication
Distributed File: enables sharing
of files across a DCE
environment
Threads: support for threads
and multiprocessor
architectures

RPC

Distributed
File Service

Security
Service

Distributed Applications

Time
Service

DCE

©IKS, ETH Zürich. 27

OSF DCE

DCE’s model and goals
Not intended as a final product
but as a basic platform to build
more sophisticated middleware
tools
Its services are provided as the
most basic services needed in
any distributed system. Any
other functionality needs to be
implemented on top of it
DCE is not just an specification
of a standard (e.g., CORBA) but
an implementation that acts as
the standard. Since the API is
the same across all platforms,
interoperability is always
guaranteed
DCE is packaged in a modular
way so that services that are not
used do not need to be licensed

Microsoft DCOM is built on top
of DCE RPC.

Encina ToolkitEncina

Structured
File

Service

Peer to
Peer

Comm

Reliable
Queuing
Service

Encina Monitor

Distributed Applications

©IKS, ETH Zürich. 28

From RPC we go to ...
Stored procedures

Two tier architectures are, in fact,
client/server systems. They need
some sort of interface to allow
clients to invoke the functionality
of the server. RPC is the ideal
interface for client/server
interactions on a LAN
To add flexibility to their servers,
software vendors added to them
the possibility of programming
procedures that will run inside
the server and that could be
invoked through RPC
This turned out to be very useful
for databases where such
procedures could be used to hide
the schema and the SQL
programming from the clients.
The result was stored procedures,
a common mechanism found in
all database systems

Distributed environments
When designing distributed
applications, there are a lot of
crucial aspects common to all of
them. RPC does not address any
of these issues
To support the design and
deployment of distributed
systems, programming and run
time environments started to be
created. These environments
provide, on top of RPC, much of
the functionality needed to build
and run a distributed application
The notion of distributed
environment is what gave rise to
middleware.
Web Services (with SOAP) are an
example of extending the notion
of RPC to call services located
across the Web.

