
 1

SS 2006 Prof. Gustavo Alonso / Angela Nicoară / Patrick Stüedi

Computer Networks
Exercise 4

Start date: May 5, 2006
Due date: May 12, 2006

1. Introduction to Remote Procedure Call (RPC) / Java RMI

RPC is a powerful technology for creating distributed client-server based applications. It
enables the communication between two processes - the client process and the server
process, which may reside on the same computer or on different computers. The client
process makes a remote procedure call to a procedure that is implemented by the server
and retrieves the result.

Java RMI is a Java API for performing remote procedure calls (RPC). It allows to invoke
methods on objects that exist on the same machine or a different one. The server
implements a remote interface that provides the methods that can be called from the
clients.

Java / RMI Settings:

To use RMI, the J2SE SDK (Software Development Kit) must be installed and the Java
environment needs to be set up:

• Download and install the J2SE 1.4.2 SDK or J2SE 1.5.0 SDK from the
http://java.sun.com website.

• Set the PATH environment variable. The <SDK_HOME> is the home directory
where J2SE SDK is installed.

bash$ export PATH=/<SDK_HOME>/bin:$PATH

• Set the CLASSPATH environment variable:

bash$ export CLASSPATH=/<SDK_HOME>/jre/lib/rt.jar:$CLASSPATH

 2

• After the J2SE SDK has been installed, the following Java tools can be found
under the <SDK_HOME>/bin directory:
 - java – the tool that launches a Java application
 - javac – the Java programming language compiler
 - rmic – the Java RMI compiler
 - rmiregistry - the Java Remote Object Registry

RMI Example:

In what follows, we will give an example of a RMI client and server. The server exposes
a remote method int addOne(int i) to the clients. With the input arguments i from
clients, addOne() simply returns i+1.

To create and run the RMI example, the following steps are necessary:

1.1. Writing a RMI server:

- Define the remote interface, in this case, Calculator.java:

package example;

import java.rmi.*;

public interface Calculator extends Remote {
 public int addOne(int i) throws RemoteException;
}

Figure 1. The remote interface Calculator.java

The interface must be public and extend the java.rmi.Remote interface. The addOne(int
i) method of the server class, which implements this interface, is called from the remote
client. Each remote method in the interface must declare that it throws
java.rmi.RemoteException when a failure occurs during the remote invocation. Other
exceptions may also be thrown. Catching and handling the exceptions are up to the
clients that use the remote methods.

- Create the CalculatorImpl.java class that implements the remote interface
Calculator.java:

package example;

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class CalculatorImpl implements Calculator {

 public CalculatorImpl() throws RemoteException {
 UnicastRemoteObject.exportObject(this);
 }

 public int addOne(int i) throws RemoteException {
 return i+1;
 }
}

Figure 2. The remote class CalculatorImpl.java

 3

The UnicastRemoteObject.exportObject(this) method exports the remote object,
so that it is made available to accept incoming calls from clients. In this way, it is ensured
that objects of the class can be used as remote objects, and can be invoked remotely.

- Create the server class CalculatorServer.java to handle the client’s requests:

package example;

import java.net.*;
import java.rmi.*;

public class CalculatorServer {

 public static void main(String[] args){
 try{
 CalculatorImpl c = new CalculatorImpl();
 Naming.rebind("calculator" , c);
 System.out.println("Calculator Server Ready!");
 }
 catch (RemoteException e) {
 System.out.println("Exception in CalculatorImpl.main: " + e);
 }
 catch (MalformedURLException e) {
 System.out.println("A malformed URL has occurred: " + e);
 }
 }
}

Figure 3. The server class CalculatorServer.java

This class provides the rest of the code that makes up the server program: a main method
that creates an instance of the remote object and registers it with the naming facility. The
java.rmi.Naming interface is used for binding, or registering, and looking up remote
objects in the registry (i.e., a server that relates objects with names).
Naming.rebind(“calculator”, c) binds the calculator object with the name “calculator”.
The binding name is case-sensitive. Calling the rebind method makes a remote call to the
RMI registry on the local host. Together with the host name or the IP address where the
server is running, a URL address “rmi://host/calculator” is used to address the
calculator object.

The clients uses the URL “rmi://host/calculator” to get the reference to the remote
object and invoke the method. The URL includes the host name (host), or IP address, on
which the registry and remote object is being run and a name (calculator) that identifies
the remote object in the registry.

1.2. Creating a RMI client:

Before a client can call the remote method addOne(int), it needs to retrieve the remote
reference to the calculator object. RMI provides a lookup() method in the
java.rmi.Naming class to get the reference to the remote object:

Calculator cal = (Calculator) Naming.lookup(“rmi://host/calculator”);

 4

The client class example is as follows:

package example;

import java.rmi.*;
import java.net.*;

public class CalculatorClient {

 public static void main(String args[]) {
 if (args.length == 0 || !args[0].startsWith("rmi:")){
 System.out.println(“Usage:
 java calculatorClient rmi://host/calculator number");
 return;
 }

 try {
 Calculator cal = (Calculator) Naming.lookup(args[0]);
 int input = (new Integer(args[1])).intValue();
 int output = cal.addOne(input);
 System.out.println("The output of addOne(" + input + ")" + " is " + output);
 }
 catch (MalformedURLException e) {
 System.out.println(args[0] + " is not a valid RMI URL");
 }
 catch (RemoteException e) {
 System.out.println("Remote object throw exception: " + e);
 }
 catch (NotBoundException e) {
 System.out.println("Cannot find the requested remote object on the server");
 }
 }
}

Figure 4. The remote client class CalculatorClient.java

The client constructs a name (calculator) used to look up a calculator remote object. The
argument of the lookup method (args[0]) is the URL address of the remote host on which
the calculator object runs. The URL passed to the Naming.lookup method has the same
URL syntax as the URL passed in the Naming.rebind call, which was discussed earlier.

1.3. Compiling and running the example:

- Compile the client and the server programs:

bash$ javac example/*.java

- Generate the stub and skeleton class files for remote objects:

bash$ rmic example.CalculatorImpl

Running rmic on the CalculatorImpl class will generate the stub and the skeleton classes
for the CalculatorImpl remote object (CalculatorImpl_Skel.class and
CalculatorImpl_Stub.class) in the example directory.

Note: In J2SE 1.5.0 SDK, by default, rmic does not generate any skeleton classes.

- Starting the server: Before starting the server, the rmiregistry must be started and
leave it running in the background:

 5

bash$ rmiregistry &
bash$ java example.CalculatorServer

Note: Make sure that the classpath used to start the rmiregistry includes the stubs and
skeleton class files generated in the previous step.

- Running the client:

bash$ java example.CalculatorClient rmi://host/calculator 100

- The result is then displayed:

The Output of addOne(100) is 101

2. Task: Implementation of a server-client application with RMI

The objective of this assignment is to implement a server and two clients that exchange
messages through the server, as shown in Figure 5.

Figure 5: The Message Server

• The server MessagePoolServer implements two remote methods defined in the
interface class MessagePool:

import java.rmi.*;

public interface MessagePool extends Remote {
 public void put(String msg) throws RemoteException;
 public String get() throws RemoteException;
}

Figure 6: The remote interface MessagePool.java

- the put() method accepts a String message from the client, and stores it into
the FIFO (First In First Out) queue in the server. In case the queue is full, the
put() operation will fail, and a QueueFullException exception will be thrown.

 6

In case the message from the client is null, the server will throw a
MessageNullException exception.

- the get() method retrieves the message out of the queue to the client which

invoked it. The retrieved message will be deleted from the queue. In case the
queue is empty, the get() operation will fail and a QueueEmptyException
exception will be thrown.

• The FIFO message queue MessageQueue has a maximum size of 100 messages.

Messages are strings with the maximum length of 100 characters.

• Implement two clients: MessagePutClient.java generates messages periodically

(1 message per 1 second), and MessageGetClient.java retrieves messages
periodically (1 message per 2 seconds). The message could be the timestamp of
the client or any random generated string.

• Make sure all cases are handled:

- Retrieving from an empty queue / Adding a message to a full queue
- Trying to add a message to a full queue

• For this assignment the program should be single threaded.

