
 1

SS 2006 Prof. Gustavo Alonso / Angela Nicoară / Patrick Stüedi

Computer Networks

Exercise 9

Start date: June 16, 2006
Due date: June 23, 2006

1. Task: Implementation of Message Passing

Based on the implementation of the persistent message queue server and clients done in
Exercise 5, the objective of this assignment is to use a message passing mechanism to
generate remote function operations instead of using the pure RPC/RMI mechanism.

Figure 1: The Message Server

• The server DataMessagePoolServer implements two remote methods defined in
the interface class DataMessagePool:

 2

package server;

import java.rmi.Remote;
import java.rmi.RemoteException;

import server.messaging.AckMessage;
import server.messaging.RequestMessage;
import server.messaging.ResultMessage;

public interface DataMessagePool extends Remote {

 public AckMessage receiveRequest(RequestMessage msg) throws
 RemoteException;
 public ResultMessage retrieveResult(AckMessage msg) throws
 RemoteException;
}

Figure 2. The remote interface DataMessagePool.java

- The client sends a request by calling receiveRequest() to instruct the server
to perform certain operations. Once the request is processed, the server
generates a RequestMessage that contains the output and the result of the
operation, and puts it into a specific ResultMessageQueue. The server then
replies to the client with an AckMessage which contains the information about
the ResultMessageQueue where the ResultMessage is stored and the identifier
of the message. Finally, the client calls retrieveResult to retrieve the
ResultMessage from the server.

- The server contains two QueueManager: PersistDataMessageQueueManager

and ResultMessageQueueManager. PersistDataMessageQueueManager and its
structure are the same as those in the Exercise 5. ResultMessageQueueManager
has multiple ResultMessageQueue: one special opQueue to store
ResultMessage related to the queue management; and the same number of
ResultMessageQueue which matches one-by-one to the
PersistDataMessageQueue managed by the PersistDataMessageQueueManager.

- the receiveRequest() method accepts a RequestMessage from the client. The

RequestMessage requests one of the 4 operations (createQueue, deleteQueue,
putMessage, getMessage) which the server supports.

• createQueue, deleteQueue: the server creates/deletes a queue according to
its name. The ResultMessage generated for the operation is stored in
the special ResultMessageQueue – opQueue.

• putMessage, getMessage: the server puts/gets a message to/from a
specific PersistDataMessageQueue. The ResultMessage generated for
the operation is stored in the ResultMessageQueue corresponding to the
PersistDataMessageQueue involved in the operation.

The server creates an AckMessage which contains the ID of the ResultMessage
and the name of the ResultMessageQueue where the message is stored, and
returns the AckMessage to the client.

 3

- the retrieveResult() method accepts an AckMessage from the client.
According to the content of the AckMessage, the server retrieves the
ResultMessage from the corresponding ResultMessageQueue, and returns it to
the client.

• There are three types of messages exchanged between the server and the clients.

- RequestMessage supports 4 types: getRequest, putRequest,
createQueueRequest and deleteQueueRequest, which match to the 4
operations the server supports.

- AckMessage contains 2 fields: String queueName and int msgNumber.
- ResultMessage contains information about the result and output of the

operation. If the operation fails, an OperationException (an inner class of
ResultMessage) is attached to the ResultMessage. The OperationException
shows the exception or error happened during the operation. If the operation
succeeds, no OperationException is attached.

- OperationException is used to replace the RemoteException which is directly
attached to the RMI method call. It has 5 types:

• EXCEPTION_TYPE_MESSAGE_NULL: It happens when trying to put an
empty message to the queue in the server.

• EXCEPTION_TYPE_QUEUE_NOT_FOUND: It happens when trying to delete a
queue, put or get messages from or to a queue, and the queue does not
exist.

• EXCEPTION_TYPE_QUEUE_FULL: It happens when trying to put a message
into a full queue.

• EXCEPTION_TYPE_QUEUE_EMPTY: It happens when trying to get a
message from an empty queue.

• EXCEPTION_TYPE_QUEUE_DUPLICATION: It happens when trying to create
a queue which is already created.

• EXCEPTION_TYPE_UNKNOWN: For all other unknown exceptions.

• Two clients MessageGetClient and MessagePutClient are to be implemented.
Similar to the clients in Exercise 5, these two clients are to get/put messages
from/to the server.
- MessageGetClient generates a GetRequestMessage with the name of the queue

from which the data message is to be retrieved, and sends it to the server.
Then it gets the ResultMessage in which the content of the data message is
stored. The client retrieves messages periodically (1 message per 2 second);
In case the specified queue cannot be found or the queue is empty, the client
will wait and retry.

- MessagePutClient generates a PutRequestMessage with the content of the data
message and the name of the queue. The client generates messages
periodically (1 message per second). In case the queue is full, the client will
wait and retry.

• For this exercise, the program should be single threaded.

 4

2. Multiple Choice: 2 Phase Commit (2PC) - 3 Phase Commit (3PC)

Please answer the following questions. For each question, mark the correct answer. There
is exactly one correct answer per question.

a) One of the rules of 2PC states “Commit can only be decided if everybody votes

YES”. Assume we change that rule to “if everybody votes YES, then the decision
must be to COMMIT”. This will result in:

 the coordinator having to block
 the participants having to block
 a smaller probability of blocking
 less messages being exchanged

b) In linear 2PC, is there any process that is never in an uncertainty period?

 The one at the beginning
 The one at the end
 The one at the beginning and the one at the end
 None

c) How many messages are exchanged in 2PC for N processes if there are no failures

 3N
 2N + 1
 3N + 1
 2N

d) How many messages are exchanged in linear 2PC for N processes if there are no

failures

 3N
 2N +1
 3N +1
 2N

e) How many rounds of one-way communication are needed for 2PC for N processes if

there are no failures (a round implies a set of messages from the same node or sent to
the same node)

 2
 3
 2N
 3N

 5

f) How many rounds of communication are needed for linear 2PC for N processes if
there are no failures (a round implies a set of messages from the same node or sent to
the same node)

 2
 3
 2N
 3N

g) How many messages are exchanged in 3PC for N processes if there are no failures

 3N
 2N
 5N
 3N + N/2

h) How many rounds of communication are needed in 3PC for N processes (a round

implies a set of messages from the same node or sent to the same node)

 5N
 3
 3N
 5

