
Principles of Distributed Computing
Roger Wattenhofer

9 Routing Strikes Back

9.1 Butterfly

Let’s first assume that all the sources are on level0, all destinations are on leveld of a d-dimensional
butterfly.

Algorithm 9.1 (Greedy Butterfly Routing) The unique path from a source on level0 to a desti-
nation on leveld with d hops is the greedy path. In the greedy butterfly routing algorithm each
packet is constrained to follow its greedy path.

Remark:

• In the bit-reversal permutation routing problem, the destination of a packet is the bit-reversed
address of the source. Withd = 3 you can see that both source(000, 0) and source(001, 0) route
through edge(000, 1..2). Will the contention grow with higher dimension? Yes! Choose an odd
d, then all the sources(0 . . . 0b(d+1)/2 . . . bd−1, 0) will route through edge(00..0, (d−1)/2...(d+

1)/2). You can choose the bitsbi arbitrarily. There are2(d+1)/2 bit combinations, which is
√

n/2

for n = 2d sources.

• On the good side, this contention is also a guaranteed time bound, as the following theorem
shows.

Theorem 9.2 (Analysis)The greedy butterfly algorithm terminates inO(
√

n) steps.

Proof. For simplicity we assume thatd is odd. An edge on levell (from a node on levell to a node
on levell + 1) has at most2l sources, and at most2d−l−1 destinations. Therefore the number of paths
through an edge on levell is bounded bynl = 2min(l,d−l−1). A packet can therefore be delayed at most
nl − 1 times on levell. Summing up over all levels, a packet is delayed at most

d−1∑
l=0

nl =
(d−1)/2∑

l=0

nl +
d−1∑

l=(d+1)/2

nl =
(d−1)/2∑

l=0

2l +
(d−3)/2∑

l=0

2l < 3 · 2(d−1)/2 = O(
√

n).

steps. uu

Remarks:

• The bit-reversed routing is therefore asymptotically a worst-case example.

• However, one that requires square-root queues. When being limited to constant queue sizes the
greedy algorithm can be forced to useΘ(n) steps for some permutations.

• A routing problem where all the sources are on level0 and all the destinations are on leveld is
called an end-to-end routing problem. Surprisingly, solving an arbitrary routing problem on a
butterfly (or any hypercubic network) is often not harder.

1

• In the next section we show that there is general square-root lower bound for “greedy” algorithms
for any constant-degree graph. (In other words, our optimal greedy mesh routing algorithm of
Chapter 4 was only possible because the mesh has such a bad diameter...)

9.2 Oblivious Routing

Definition 9.3 (Oblivious) A routing algorithm is oblivious if the path taken by each packet depends
only on source and destination of the packet (and not on other packets, or the congestion encountered).

Theorem 9.4 (Lower Bound) Let G be a graph withn nodes and (maximum) degreed. LetA be
any oblivious routing algorithm. Then there is a one-to-one routing problem for whichA will need
at least

√
n/2d steps.

Proof. SinceA is oblivious, the path from nodeu to nodev is Pu,v; A can be specified byn2 paths.
We must findk one-to-one paths that all use the same edgee. Then we can proof thatA takes at least
k/2 steps.

Let’s look at then− 1 paths to destination nodev. For any integerk let Sk(v) be the set of edges
in G wherek or more of these paths pass through them. Also, letS∗

k(v) be the nodes incident toSk(v).
Since there are two nodes incident to each edge|S∗

k(v)| ≤ 2|Sk(v)|. In the following we assume that
k ≤ (n− 1)/d; thenv ∈ S∗

k(v), hence|S∗
k(v)| > 0.

We have
n− |S∗

k(v)| ≤ (k − 1)(d− 1)|S∗
k(v)|

because every nodeu not inS∗
k(v) is a start of a pathPu,v that entersS∗

k(v) from outside. In particular,
for any nodeu /∈ S∗

k(v) there is an edge(w, w′) in Pu,v that entersS∗
k(v). Since the edge(w, w′) /∈

Sk(v), there are at most(k− 1) starting nodesu for edge(w, w′). Also there are at most(d− 1) edges
adjacent tow′ that are not inSk(v). We get

n ≤ (k − 1)(d− 1)|S∗
k(v)|+ |S∗

k(v)| ≤ 2[1 + (k − 1)(d− 1)]|Sk(v)| ≤ 2kd|Sk(v)|

Thus,|Sk(v)| ≥ n
2kd

. We setk =
√

n/d, and sum over alln nodes:

∑
v∈V

|Sk(v)| ≥ n2

2kd
=

n3/2

2

Since there are at mostnd/2 edges inG, this means that there is an edgee for at least

n3/2/2

nd/2
=
√

n/d = k

different values ofv.
Since edgee is in at leastk different paths in each setSk(v) we can construct a one-to-one permu-

tation problem where edgee is used
√

n/d times (directed:
√

n/2d contention). uu

Remarks:

• In fact, as many as(
√

n/d)! one-to-one routing problems can be constructed with this method.

2

• The proof can be extended to the case where the one-to-one routing problem consists ofR route
requests. The lower bound is thenΩ(R

d
√

n
).

• There is a node that needs to routeΩ(
√

n/d) packets.

• The lower bound can be extended to randomized oblivious algorithms... however, if we are
allowed to use randomization, the lower bound gets much weaker. In fact, one can use Valiant’s
trick also in the butterfly: In a first phase, we route each packet on the greedy path to a random
destination on leveld, in the second phase on the same row back to level0, and in a third phase
on the greedy path to the destination. This way we can escape the bad one-to-one problems
with high probability. (There are much more good one-to-one problems than bad one-to-one
problems.) One can show that with this trick one can route any one-to-one end-to-end routing
problem in asymptotically optimalO(log n) time (with high probability).

• If a randomized algorithm fails (takes too long), simply re-run it. It will be likely to succeed
then. On the other hand, if a deterministic algorithm fails in some rare instance, re-running it
will not help!

9.3 Offline Routing

There are a variety of other aspects in routing. In this section we study one of them to gain further
insights.

Definition 9.5 (Offline Routing) We are given a routing problem (graph and set of routing requests).
An offline routing algorithm is a (not distributed) algorithm that sees the whole input (the routing
problem).

Remarks:

• Offline routing is worth being studied because the same communication pattern might appear
whenever you run your (important!) (parallel) algorithm.

• In offline routing, path selection and scheduling can be studied independently.

Definition 9.6 (Path Selection)We are given a routing problem (a graph and a set of routing re-
quests). A path selection algorithm selects a path (a route) for each request.

Remarks:

• Path selection is efficient if the paths are “short” and do not interfere if they do not need to.
Formally, this can be defined by congestion and dilation (see below).

• For some routing problems, path selection is easy. If the graph is a tree, for example, the best
path between two nodes is the direct path. (Every route from a source to a destination includes
at least all the links of the shortest path.)

Definition 9.7 (Dilation, Congestion) The dilation of a path selection is the length of a maximum
path. The contention of an edge is the number of paths that use the edge. The congestion of a path
selection is the load of a most contended edge.

3

Remarks:

• A path selection should minimize congestion and dilation.

• Networking researchers have defined the “flow number” which is defined as the minimum
max(congestion, dilation) over all possible path selections.

• Alternatively, congestion can be defined with directed edges, or nodes.

Definition 9.8 (Scheduling) We are given a set of source-destination paths. A scheduling algorithm
specifies which messages traverse which link at which time step (for an appropriate model).

Remark: The most popular model is store-and-forward (with small queues). Other popular models
have no queues at all: e.g. hot-potato routing or direct routing (where the source might delay the
injection of a packet; once a packet is injected however, it will go to the destination without stop.)

Lemma 9.9 (Lower Bound) Scheduling takes at leastΩ(C + D) steps, whereC is the congestion
andD is the dilation.

Remark: We aim for algorithms that are competitive with the lower bound. (As opposed to algorithms
that finish inO(f(n)) time;C + D andn are generally not comparable.)

Algorithm 9.10 (Direct Tree Routing) We are given a tree, and a set of routing requests. (Since
the graph is a tree each route request will take the direct path between source and destination; in
other words, path selection is trivial.) Choose an arbitrary rootr. Now sort all packets using the
following order (breaking ties arbitrarily): packetp comes before packetq if the path ofp reaches a
node closer tor then the path ofq. Now scan all packets in this order, and for each packet greedily
assign its injection time to be the first that does not cause a conflict with any previous packet.

Theorem 9.11 (Analysis)Algorithm 9.10 terminates in2C + D steps.

Proof. A packetp first goes up, then down the tree; thus turning at nodeu. Let eu anded be the “up”
resp. “down” edge on the path adjacent tou. The injection time of packetp is only delayed by packets
that traverseeu or ed (if it contends with a packetq on another edge, and packetq has not a lower order,
then it contends also oneu or eq). Since congestion isC, there are at most2C − 2 many packetsq.
Thus the algorithm terminates after2C + D steps. uu

Remark: [Leighton, Maggs, Rao 1988] have shown that the existence of aO(C + D) schedule for
any routing problem (on any graph!) using the Lovasz Local Lemma. Later the result was made more
accessible by [Leighton, Maggs, Richa 1996] and others. Still it is too hard for this course...

4

