Chapter 5 (Part 3) LINK LAYER

Distributed

Computing

Group

Computer Networks Summer 2007

Overview

O

- More Wireless Basics
- IEEE 802.11
 - Architecture, Protocol
 - PHY, MAC
 - Cyclic Redundancy codes

 \circ

- Roaming, Security
- a, b, g, etc.
- Bluetooth
- RFID

►O

Physical Layer: Wireless Frequencies

 \mathbf{O}

0

Distributed Computing Group Computer Networks R. Wattenhofer

Frequencies and regulations

• ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)

	Europe (CEPT/ETSI)	USA (FCC)	Japan
Mobile	NMT 453-457MHz,	AMPS, TDMA, CDMA	PDC
phones	463-467 MHz	824-849 MHz,	810-826 MHz,
	GSM 890-915 MHz,	869-894 MHz	940-956 MHz,
	935-960 MHz,	TDMA, CDMA, GSM	1429-1465 MHz,
	1710-1785 MHz,	1850-1910 MHz,	1477-1513 MHz
	1805-1880 MHz	1930-1990 MHz	
Cordless	CT1+ 885-887 MHz,	PACS 1850-1910 MHz,	PHS
telephones	930-932 MHz	1930-1990 MHz	1895-1918 MHz
	CT2	PACS-UB 1910-1930 MHz	JCT
	864-868 MHz		254-380 MHz
	DECT		
	1880-1900 MHz		
Wireless	IEEE 802.11	IEEE 802.11	IEEE 802.11
LANs	2400-2483 MHz	2400-2483 MHz	2471-2497 MHz
	HIPERLAN 1		
	5176-5270 MHz		

0

Signal propagation ranges

- Propagation in free space always like light (straight line)
- Transmission range
 - communication possible
 - low error rate
- Detection range
 - detection of the signal possible
 - no communication possible
- Interference range
 - signal may not be detected
 - signal adds to the background noise

>0

Attenuation by distance

- Attenuation [dB] = 10 log₁₀ (transmitted power / received power)
- Example: factor 2 loss = $10 \log_{10} 2 \approx 3 \text{ dB}$
- In theory/vacuum (and for short distances), receiving power is proportional to 1/d², where d is the distance.
- In practice (for long distances), receiving power is proportional to 1/d^α, α = 4...6.
 We call α the path loss exponent.
- Example: Short distance, what is the attenuation between 10 and 100 meters distance?
 Factor 100 (=100²/10²) loss = 20 dB

Signal-to-Interference-Plus-Noise Ratio

• Communication theorists study complex fading and signal-to-noiseplus-interference (SINR)-based models

- Simplest case:
 - \rightarrow packets can be decoded if SINR is larger than β at receiver

Example

0

- Clients A and B want to send (max. rate x kb/s)
- Assume there is a single frequency
- What total throughput ("spatial reuse") can be achieved...?

>0

Example

4m - 4m - 2m - 1m - 2m - 1m

- Assume a single frequency (and no fancy decoding techniques!)
- Let α =3, β =3, and N=10nW
- Set the transmission powers as follows $P_B = -15 \text{ dBm}$ and $P_A = 1 \text{ dBm}$

SINR of A at AP2:
$$\frac{1.26mW/(7m)^3}{0.01\mu W + 31.6\mu W/(3m)^3} \approx 3.11 \ge \beta$$

SINR of B at AP1:
$$\frac{31.6\mu W/(1m)^3}{0.01\mu W + 1.26mW/(5m)^3} \approx 3.13 \ge \beta$$

A total throughput of 2x kb/s is possible !

Attenuation by objects

- Shadowing (3-30 dB):
 - textile (3 dB)
 - concrete walls (13-20 dB)
 - floors (20-30 dB)
- reflection at large obstacles
- scattering at small obstacles
- diffraction at edges
- fading (frequency dependent)

shadowing

reflection

diffraction

>0

Real World Examples

0

▶0

Multipath propagation

• Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

- Time dispersion: signal is dispersed over time
- Interference with "neighbor" symbols: Inter Symbol Interference (ISI)
- The signal reaches a receiver directly and phase shifted
- Distorted signal depending on the phases of the different parts

Effects of mobility

- Channel characteristics change over time and location
 - signal paths change
 - different delay variations of different signal parts
 - different phases of signal parts
- quick changes in power received (short term fading)
- Additional changes in
 - distance to sender
 - obstacles further away
- slow changes in average power received (long term fading)

• Doppler shift: Random frequency modulation

Wireless LAN 802.11: Design goals

- Global, seamless operation
- Low power consumption for battery use
- No special permissions or licenses required
- Robust transmission technology
- Simplified spontaneous cooperation at meetings
- Easy to use for everyone, simple management
- Interoperable with wired networks
- Security (no one should be able to read my data), privacy (no one should be able to collect user profiles), safety (low radiation)
- Transparency concerning applications and higher layer protocols, but also location awareness if necessary

- + Very flexible (economical to scale)
- + Ad-hoc networks without planning possible
- + (Almost) no wiring difficulties (e.g. historic buildings, firewalls)
- + More robust against disasters or users pulling a plug
- Low bandwidth compared to wired networks (10 vs. 100[0] Mbit/s)
- Many proprietary solutions, especially for higher bit-rates, standards take their time
- Products have to follow many national restrictions if working wireless, it takes a long time to establish global solutions (IMT-2000)
- Security
- Economy

►O

Infrastructure vs. ad-hoc networks

Ad-hoc network

Distributed Computing Group Computer Networks R. Wattenhofer

→0

802.11 – Architecture of an infrastructure network

- Station (STA)
 - terminal with access mechanisms to the wireless medium and radio contact to the access point
- Basic Service Set (BSS)
 - group of stations using the same radio frequency
- Access Point
 - station integrated into the wireless
 LAN and the distribution system
- Portal
 - bridge to other (wired) networks
- Distribution System
 - interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS

802.11 – Architecture of an ad-hoc network

- Direct communication within a limited range
 - Station (STA): terminal with access mechanisms to the wireless medium
 - [Independent] Basic Service Set ([I]BSS): group of stations using the same radio frequency
- You may use SDM or FDM to establish several BSS.

802.11 – Protocol architecture

802.11 – The lower layers in detail

- PMD (Physical Medium Dependent)
 - modulation, coding
- PLCP (Physical Layer Convergence Protocol)
 - clear channel assessment signal (carrier sense)
- PHY Management
 - channel selection, PHY-MIB
- Station Management
 - coordination of all
 - managem<u>ent functions</u>

- MAC
 - access mechanisms
 - fragmentation
 - encryption
- MAC Management
 - Synchronization
 - roaming
 - power management
 - MIB (management information base)

m <u>er</u>	it functions	,	nt
с	LLC		Jeme
DL	MAC	MAC Management	lanag
≻	PLCP	DHV Managament	ion N
НЧ	PMD	FITIMAIlayement	Stat

5/20

Infrared vs. Radio transmission

Infrared

- uses IR diodes, diffuse light, multiple reflections (walls, furniture etc.)
- + simple, cheap, available in many mobile devices
- + no licenses needed
- + simple shielding possible
- interference by sunlight, heat sources etc.
- many things shield or absorb IR light
- low bandwidth
- Example: IrDA (Infrared Data Association) interface available everywhere

Radio

- typically using the license free ISM band at 2.4 GHz
- + experience from wireless WAN and mobile phones can be used
- + coverage of larger areas possible (radio can penetrate walls, furniture etc.)
- very limited license free frequency bands
- shielding more difficult, interference with other electrical devices
- Examples: HIPERLAN, Bluetooth

802.11 - Physical layer (802.11legacy)

- 3 versions: 2 radio (2.4 GHz), 1 IR (outdated):
- FHSS (Frequency Hopping Spread Spectrum)
 - spreading, despreading, signal strength, 1 Mbit/s
 - at least 2.5 frequency hops/s, two-level GFSK modulation
- DSSS (Direct Sequence Spread Spectrum)
 - DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK)
 - preamble and header of a frame is always transmitted with 1 Mbit/s, rest of transmission 2 (or optionally 1) Mbit/s
 - chipping sequence: Barker code (+-++-++)
 - max. radiated power 1 W (USA), 100 mW (EU), min. 1mW
- Infrared
 - 850-950 nm, diffuse light,10 m range
 - carrier detection, energy detection, synchronization
 - Distributed Computing Group Computer Networks R. Wattenhofer

DSSS PHY packet format

- Synchronization
 - synch., gain setting, energy detection, frequency offset compensation
- SFD (Start Frame Delimiter)
 - 1111001110100000
- Signal
 - data rate of the payload (0x0A: 1 Mbit/s DBPSK; 0x14: 2 Mbit/s DQPSK)

- Service (future use, 00: 802.11 compliant)
- Length (length of the payload)
- HEC (Header Error Check)
 - protection of signal, service and length, $x^{16}+x^{12}+x^5+1$

MAC layer: DFWMAC

- Traffic services
 - Asynchronous Data Service (mandatory)
 - exchange of data packets based on "best-effort"
 - support of broadcast and multicast
 - Time-Bounded Service (optional)
 - implemented using PCF (Point Coordination Function)
- Access methods
 - DFWMAC-DCF CSMA/CA (mandatory)
 - collision avoidance via binary exponential back-off mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not used for broadcasts)
 - DFWMAC-DCF w/ RTS/CTS (optional)
 - avoids hidden terminal problem
 - DFWMAC-PCF (optional)
 - · access point polls terminals according to a list

►O

- defined through different inter frame spaces
- no guaranteed, hard priorities
- SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
- PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF

►O

- DIFS (DCF, Distributed Coordination Function IFS)
 - lowest priority, for asynchronous data service

- station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness)

- Sending unicast packets
 - station has to wait for DIFS before sending data
 - receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC)
 - automatic retransmission of data packets in case of transmission errors

>0

- station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
- acknowledgement via CTS after SIFS by receiver (if ready to receive)
- sender can now send data at once, acknowledgement via ACK
- other stations store medium reservations distributed via RTS and CTS

O

- If packet gets too long transmission error probability grows
- A simple back of the envelope calculation determines the optimal fragment size

5/30

>0

DFWMAC-PCF

• An access point can poll stations

O

 \mathbf{O}

0

5/32

Frame format

2 2 6 6 2 6 0-2312 6 4 bytes Frame Duration Address Address Address |Sequence | Address CRC Data 2 3 Control ID Control 1 4

_ Byte 1: version, type, subtype

Byte 2: two DS-bits, fragm., retry, power man., more data, WEP, order

- Type
 - control frame, management frame, data frame
- Sequence control
 - important against duplicated frames due to lost ACKs
- Addresses
 - receiver, transmitter (physical), BSS identifier, sender (logical)
- Miscellaneous
 - sending time, checksum, frame control, data

>0

MAC address format

scenario	to DS	from DS	address 1	address 2	address 3	address 4
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure network, from AP	0	1	DA	BSSID	SA	-
infrastructure network, to AP	1	0	BSSID	SA	DA	-
infrastructure network, within DS	1	1	RA	ТА	DA	SA

→0-

DS: Distribution System AP: Access Point DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address TA: Transmitter Address

0-

→0

Special Frames: ACK, RTS, CTS

• Acknowledgement

byte	es 2	2	6	4
ACK	Frame Control	Duration	Receiver Address	CRC

• Request To Send

byte	es 2	2	6	6	4
RTS	Frame Control	Duration	Receiver Address	Transmitter Address	CRC

►O

Clear To Send

byte	es 2	2	6	4
CTS	Frame Control	Duration	Receiver Address	CRC

0-

→0

MAC management

- Synchronization
 - try to find a LAN, try to stay within a LAN
 - timer etc.
- Power management
 - sleep-mode without missing a message
 - periodic sleep, frame buffering, traffic measurements
- Association/Reassociation
 - integration into a LAN
 - roaming, i.e. change networks by changing access points
 - scanning, i.e. active search for a network
- MIB Management Information Base
 - managing, read, write

5/36

• In an infrastructure network, the access point can send a beacon

0

5/37

• In an ad-hoc network, the beacon has to be sent by any station

 \cap

0

Power management

- Idea: if not needed turn off the transceiver
- States of a station: sleep and awake
- Timing Synchronization Function (TSF)
 - stations wake up at the same time
- Infrastructure
 - Traffic Indication Map (TIM)
 - · list of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - list of broadcast/multicast receivers transmitted by AP
- Ad-hoc
 - Ad-hoc Traffic Indication Map (ATIM)
 - announcement of receivers by stations buffering frames
 - more complicated no central AP
 - collision of ATIMs possible (scalability?)

Power saving with wake-up patterns (infrastructure)

0

5/40

>0

Power saving with wake-up patterns (ad-hoc)

0

5/41

>0

- No or bad connection? Then perform:
- Scanning
 - scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer
- Reassociation Request
 - station sends a request to one or several AP(s)
- Reassociation Response
 - success: AP has answered, station can now participate
 - failure: continue scanning
- AP accepts reassociation request
 - signal the new station to the distribution system
 - the distribution system updates its data base (i.e., location information)
 - typically, the distribution system now informs the old AP so it can release resources

5/42

►O

Quiz: Which 802.11 standard?

Distributed Computing Group Computer Networks R. Wattenhofer

5/44

WLAN: IEEE 802.11 – future developments (03/2005)

- 802.11c: Bridge Support
 - Definition of MAC procedures to support bridges as extension to 802.1D
- 802.11d: Regulatory Domain Update
 - Support of additional regulations related to channel selection, hopping sequences
- 802.11e: MAC Enhancements QoS
 - Enhance the current 802.11 MAC to expand support for applications with Quality of Service requirements, and in the capabilities and efficiency of the protocol

►O

- Definition of a data flow ("connection") with parameters like rate, burst, period...
- Additional energy saving mechanisms and more efficient retransmission
- 802.11f: Inter-Access Point Protocol
 - Establish an Inter-Access Point Protocol for data exchange via the distribution system
 - Currently unclear to which extend manufacturers will follow this suggestion
- 802.11g: Data Rates > 20 Mbit/s at 2.4 GHz; 54 Mbit/s, OFDM
 - Successful successor of 802.11b, performance loss during mixed operation with 11b
- 802.11h: Spectrum Managed 802.11a
 - Extension for operation of 802.11a in Europe by mechanisms like channel measurement for dynamic channel selection (DFS, Dynamic Frequency Selection) and power control (TPC, Transmit Power Control)

WLAN: IEEE 802.11– future developments (03/2005)

- 802.11i: Enhanced Security Mechanisms
 - Enhance the current 802.11 MAC to provide improvements in security.
 - TKIP enhances the insecure WEP, but remains compatible to older WEP systems
 - AES provides a secure encryption method and is based on new hardware
- 802.11j: Extensions for operations in Japan
 - Changes of 802.11a for operation at 5GHz in Japan using only half the channel width at larger range

- 802.11k: Methods for channel measurements
 - Devices and access points should be able to estimate channel quality in order to be able to choose a better access point of channel
- 802.11m: Updates of the 802.11 standards
- 802.11n: Higher data rates above 100Mbit/s
 - Changes of PHY and MAC with the goal of 100Mbit/s at MAC SAP
 - MIMO antennas (Multiple Input Multiple Output), up to 600Mbit/s are currently feasible
 - However, still a large overhead due to protocol headers and inefficient mechanisms
- 802.11p: Inter car communications
 - Communication between cars/road side and cars/cars
 - Planned for relative speeds of min. 200km/h and ranges over 1000m
 - Usage of 5.850-5.925GHz band in North America

WLAN: IEEE 802.11– future developments (03/2005)

- 802.11r: Faster Handover between BSS
 - Secure, fast handover of a station from one AP to another within an ESS
 - Current mechanisms (even newer standards like 802.11i) plus incompatible devices from different vendors are massive problems for the use of, e.g., VoIP in WLANs

- Handover should be feasible within 50ms in order to support multimedia applications efficiently
- 802.11s: Mesh Networking
 - Design of a self-configuring Wireless Distribution System (WDS) based on 802.11
 - Support of point-to-point and broadcast communication across several hops
- 802.11t: Performance evaluation of 802.11 networks
 - Standardization of performance measurement schemes
- 802.11u: Interworking with additional external networks
- 802.11v: Network management
 - Extensions of current management functions, channel measurements
 - Definition of a unified interface
- 802.11w: Securing of network control
 - Classical standards like 802.11, but also 802.11i protect only data frames, not the control frames. Thus, this standard should extend 802.11i in a way that, e.g., no control frames can be forged.

Distributed Computing Group Computer Networks R. Wattenhofer

- Idea
 - Universal radio interface for ad-hoc wireless connectivity
 - Interconnecting computer and peripherals, handheld devices, PDAs, cell phones replacement of IrDA
 - Embedded in other devices, goal: 5€/device (2005: 40€/USB bluetooth)
 - Short range (10 m), low power consumption, license-free 2.45 GHz ISM
 - Voice and data transmission, approx. 1 Mbit/s gross data rate

One of the first modules (Ericsson).

5/48

- History
 - 1994: Ericsson (Mattison/Haartsen), "MC-link" project
 - Renaming of the project: Bluetooth according to Harald "Blåtand" Gormsen [son of Gorm], King of Denmark in the 10th century
 - 1998: foundation of Bluetooth SIG, www.bluetooth.org
 - 1999: erection of a rune stone at Ercisson/Lund ;-)
 - 2001: first consumer products for mass market, spec. version 1.1 released
- Special Interest Group
 - Original founding members: Ericsson, Intel, IBM, Nokia, Toshiba
 - Added promoters: 3Com, Agere (was: Lucent), Microsoft, Motorola
 - > 2500 members
 - Common specification and certification of products

►O

Characteristics

- 2.4 GHz ISM band, 79 RF channels, 1 MHz carrier spacing
 - Channel 0: 2402 MHz ... channel 78: 2480 MHz
 - G-FSK modulation, 1-100 mW transmit power
- FHSS and TDD
 - Frequency hopping with 1600 hops/s
 - Hopping sequence in a pseudo random fashion, determined by a master
 - Time division duplex for send/receive separation
- Voice link SCO (Synchronous Connection Oriented)
 - FEC (forward error correction), no retransmission, 64 kbit/s duplex, point-to-point, circuit switched
- Data link ACL (Asynchronous ConnectionLess)
 - Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched
- Topology
 - Overlapping piconets (stars) forming a scatternet

5/50

►O

Piconet

- Collection of devices connected in an ad hoc fashion
- One unit acts as master and the others as slaves for the lifetime of the piconet
- Master determines hopping pattern, slaves have to synchronize
- Each piconet has a unique hopping pattern
- Participation in a piconet = synchronization to hopping sequence
- Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked)

Forming a piconet

- All devices in a piconet hop together
 - Master gives slaves its clock and device ID
 - Hopping pattern: determined by device ID (48 bit, unique worldwide)
 - Phase in hopping pattern determined by clock
- Addressing
 - Active Member Address (AMA, 3 bit)
 - Parked Member Address (PMA, 8 bit)

5/52

>0

Scatternet

• Linking of multiple co-located piconets through the sharing of common master or slave devices

>0

- Devices can be slave in one piconet and master of another
- Communication between piconets

Bluetooth protocol stack

AT: attention sequence

OBEX: object exchange

SDP: service discovery protocol RFCOMM: radio frequency comm.

TCS BIN: telephony control protocol specification – binary BNEP: Bluetooth network encapsulation protocol

Distributed Computing Group Computer Networks R. Wattenhofer

Frequency selection during data transmission

5/55

- Piconet/channel definition
- Low-level packet definition
 - Access code
 - Channel, device access, e.g., derived from master
 - Packet header

SCO payload types

►O

	payload (30)					
HV1	audio (10) FEC (20)					
HV2	audio (20)			FEC (10)		
HV3	audio (30)					
DV	audio (10)	header (1)	payload (0-9)	2/3 FEC	CRC (2)	
HV3 DV	audio (10)	audi header (1)	io (30) payload (0-9)	2/3 FEC	CRC	

>0

(bytes)

0-

5/57

-0

ACL Payload types

AUX1

header (1) payload (0-29)

Baseband data rates

0		 0			→0			
ACL	Туре	Payload Header [byte]	User Payload [byte]	FEC	CRC	Symmetric max. Rate [kbit/s]	Asymmetri max. Rate Forward	c [kbit/s] Reverse
1 slot	DM1	1	0-17	2/3	yes	108.8	108.8	108.8
	DH1	1	0-27	no	yes	172.8	172.8	172.8
3 slot	DM3	2	0-121	2/3	yes	258.1	387.2	54.4
	DH3	2	0-183	no	yes	390.4	585.6	86.4
Ealat	DM5	2	0-224	2/3	yes	286.7	477.8	36.3
5 5101	DH5	2	0-339	no	yes	433.9	723.2	57.6
	AUX1	1	0-29	no	no	185.6	185.6	185.6
ſ	HV1	na	10	1/3	no	64.0		
sco	HV2	na	20	2/3	no	64.0		
	HV3	na	30	no	no	64.0		
L L	DV	1 D	10+(0-9) E) 2/3 D	yes D	64.0+57.6 E)	

Data Medium/High rate, High-quality Voice, Data and Voice

Distributed Computing Group Computer Networks R. Wattenhofer

5/59

Baseband link types

- Polling-based TDD packet transmission
 - 625µs slots, master polls slaves
- SCO (Synchronous Connection Oriented) Voice
 - Periodic single slot packet assignment, 64 kbit/s full-duplex, point-to-point
- ACL (Asynchronous ConnectionLess) Data
 - Variable packet size (1,3,5 slots), asymmetric bandwidth, point-to-multipoint

Robustness

• Slow frequency hopping with hopping patterns determined by a master

>0

- Protection from interference on certain frequencies
- Separation from other piconets (FH-CDMA)
- Retransmission

Baseband States of a Bluetooth Device

Standby: do nothing Inquire: search for other devices Page: connect to a specific device Connected: participate in a piconet

Park: release AMA, get PMA Sniff: listen periodically, not each slot Hold: stop ACL, SCO still possible, possibly participate in another piconet

Distributed Computing Group Computer Networks R. Wattenhofer

Example: Power consumption/CSR BlueCore2

<i>.</i>		
•	Typical Average Current Consumption (1)	
•	VDD=1.8V Temperature = 20°C	
•	Mode	
•	SCO connection HV3 (1s interval Sniff Mode) (Slave)	26.0 mA
•	SCO connection HV3 (1s interval Sniff Mode) (Master)	26.0 mA
•	SCO connection HV1 (Slave)	53.0 mA
•	SCO connection HV1 (Master)	53.0 mA
•	ACL data transfer 115.2kbps UART (Master)	15.5 mA
•	ACL data transfer 720kbps USB (Slave)	53.0 mA
•	ACL data transfer 720kbps USB (Master)	53.0 mA
•	ACL connection, Sniff Mode 40ms interval, 38.4kbps UART	4.0 mA
•	ACL connection, Sniff Mode 1.28s interval, 38.4kbps UART	0.5 mA
•	Parked Slave, 1.28s beacon interval, 38.4kbps UART	0.6 mA
•	Standby Mode (Connected to host, no RF activity)	47.0 μA
•	Deep Sleep Mode(2)	20.0 µA

- Notes:
- (1) Current consumption is the sum of both BC212015A and the flash.
- (2) Current consumption is for the BC212015A device only.
- (More: <u>www.csr.com</u>)

L2CAP - Logical Link Control and Adaptation Protocol

- Simple data link protocol on top of baseband
- Connection oriented, connectionless, and signaling channels
- Protocol multiplexing
 - RFCOMM, SDP, telephony control
- Segmentation & reassembly
 - Up to 64kbyte user data, 16 bit CRC used from baseband
- QoS flow specification per channel
 - Follows RFC 1363, specifies delay, jitter, bursts, bandwidth
- Group abstraction
 - Create/close group, add/remove member

L2CAP logical channels

0

L2CAP packet formats

0	→ 0				→ 0
	Connectior				
	2	2	≥2	0-65533	bytes
	length	CID=2	PSM	payload	
	longar			payload	

Connection-oriented PDU

2	2	0-65535	bytes
length	CID	payload	

Signaling command PDU

Security

SDP – Service Discovery Protocol

- Inquiry/response protocol for discovering services
 - Searching for and browsing services in radio proximity
 - Adapted to the highly dynamic environment
 - Can be complemented by others like SLP, Jini, Salutation, ...
 - Defines discovery only, not the usage of services
 - Caching of discovered services
 - Gradual discovery
- Service record format
 - Information about services provided by attributes
 - Attributes are composed of an 16 bit ID (name) and a value
 - values may be derived from 128 bit Universally Unique Identifiers (UUID)

5/68

►O

Additional protocols to support legacy protocols/apps

- RFCOMM
 - Emulation of a serial port (supports a large base of legacy applications)
 - Allows multiple ports over a single physical channel
- Telephony Control Protocol Specification (TCS)

►∩-

- Call control (setup, release)
- Group management
- OBEX
 - Exchange of objects, IrDA replacement
- WAP
 - Interacting with applications on cellular phones

Distributed Computing Group Computer Networks R. Wattenhofer

>0

Profiles

- Represent default solutions for usage models
 - Vertical slice through the protocol stack
 - Basis for interoperability
- Generic Access Profile
- Service Discovery Application Profile
- Cordless Telephony Profile
- Intercom Profile
- Serial Port Profile
- Headset Profile
- Dial-up Networking Profile
- Fax Profile
- LAN Access Profile
- Generic Object Exchange Profile
- Object Push Profile
- File Transfer Profile
- Synchronization Profile

Protocols

►O

Applications

WPAN: IEEE 802.15-1 – Bluetooth

- Data rate
 - Synchronous, connection-oriented: 64 kbit/s

►O

- Asynchronous, connectionless
 - 433.9 kbit/s symmetric
 - 723.2 / 57.6 kbit/s asymmetric
- Transmission range
 - POS (Personal Operating Space) up to 10 m
 - with special transceivers up to 100 m
- Frequency
 - Free 2.4 GHz ISM-band
- Security
 - Challenge/response (SAFER+), hopping sequence
- Cost
 - 50€ adapter, drop to 5€ if integrated
- Availability
 - Integrated into some products, several vendors

Distributed Computing Group Computer Networks R. Wattenhofer

►O

WPAN: IEEE 802.15-1 – Bluetooth

- Connection set-up time
 - Depends on power-mode
 - Max. 2.56s, avg. 0.64s
- Quality of Service
 - Guarantees, ARQ/FEC
- Manageability
 - Public/private keys needed, key management not specified, simple system integration
- + Advantages: already integrated into several products, available worldwide, free ISM-band, several vendors, simple system, simple ad-hoc networking, peer to peer, scatternets
- Disadvantages: interference on ISM-band, limited range, max. 8 devices/network&master, high set-up latency

►O
- 802.15-2: Coexistence
 - Coexistence of Wireless Personal Area Networks (802.15) and Wireless
 Local Area Networks (802.11), quantify the mutual interference
- 802.15-3: High-Rate
 - Standard for high-rate (20Mbit/s or greater) WPANs, while still lowpower/low-cost
 - Data Rates: 11, 22, 33, 44, 55 Mbit/s
 - Quality of Service isochronous protocol
 - Ad-hoc peer-to-peer networking
 - Security
 - Low power consumption
 - Low cost
 - Designed to meet the demanding requirements of portable consumer imaging and multimedia applications

►0

- 802.15-4: Low-Rate, Very Low-Power
 - Low data rate solution with multi-month to multi-year battery life and very low complexity

►O

5/74

- Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation
- Data rates of 20-250 kbit/s, latency down to 15 ms
- Master-Slave or Peer-to-Peer operation
- Support for critical latency devices, such as joysticks
- CSMA/CA channel access (data centric), slotted (beacon) or unslotted
- Automatic network establishment by the PAN coordinator
- Dynamic device addressing, flexible addressing format
- Fully handshaked protocol for transfer reliability
- Power management to ensure low power consumption
- 16 channels in the 2.4 GHz ISM band, 10 channels in the 915 MHz US ISM band and one channel in the European 868 MHz band

- Function
 - Standard: In response to a radio interrogation signal from a reader (base station) the RFID tags transmit their ID
 - Enhanced: additionally data can be sent to the tags, different media access schemes (collision avoidance)
- Features
 - No line-of sight required (compared to, e.g., laser scanners)
 - RFID tags withstand difficult environmental conditions (sunlight, cold, frost, dirt etc.)
 - Products available with read/write memory, smart-card capabilities
- Categories
 - Passive RFID: operating power comes from the reader over the air which is feasible up to distances of 3 m, low price (1€)
 - Active RFID: battery powered, distances up to 100 m

►0

- Data rate
 - Transmission of ID only (e.g., 48 bit, 64kbit, 1 Mbit)
 - 9.6 115 kbit/s
- Transmission range
 - Passive: up to 3 m
 - Active: up to 30-100 m
 - Simultaneous detection of up to, e.g., 256 tags, scanning of, e.g., 40 tags/s
- Frequency
 - 125 kHz, 13.56 MHz, 433 MHz,
 2.4 GHz, 5.8 GHz and many others
- Security
 - Application dependent, typ. no crypt. on RFID device
- Cost
 - Very cheap tags, down to \$1 (passive)
 - Availability
 - Many products, many vendors

Distributed Computing Group

- Connection set-up time
 - Depends on product/medium access scheme (typ. 2 ms per device)

5/76

- Quality of Service
 - none
- Manageability

Computer Networks R. Wattenhofer

- Very simple, same as serial interface
- Advantages: extremely low cost, large experience, high volume available, no power for passive RFIDs needed, large variety of products, relative speeds up to 300 km/h, broad temp. range
- Disadvantages: no QoS, simple denial of service, crowded ISM bands, typ. one-way (activation/ transmission of ID)

 \bigcirc

- Applications
 - Total asset visibility: tracking of goods during manufacturing, localization of pallets, goods etc.
 - Loyalty cards: customers use RFID tags for payment at, e.g., gas stations, collection of buying patterns
 - Automated toll collection: RFIDs mounted in windshields allow commuters to drive through toll plazas without stopping
 - Others: access control, animal identification, tracking of hazardous material, inventory control, warehouse management, ...
- Local Positioning Systems
 - GPS useless indoors or underground, problematic in cities with high buildings
 - RFID tags transmit signals, receivers estimate the tag location by measuring the signal's time of flight

- Example Product: Intermec RFID UHF OEM Reader
 - Read range up to 7m
 - Anticollision algorithm allows for scanning of 40 tags per second regardless of the number of tags within the reading zone
 - US: unlicensed 915 MHz, Frequency Hopping
 - Read: 8 byte < 32 ms</p>
 - Write: 1 byte < 100ms</p>
- Example Product: Wireless Mountain Spider
 - Proprietary sparse code anti-collision algorithm
 - Detection range 15 m indoor, 100 m line-of-sight
 - > 1 billion distinct codes
 - Read rate > 75 tags/s
 - Operates at 308 MHz

ISM band interference

- Many sources of interference
 - Microwave ovens, microwave lightning
 - 802.11, 802.11b, 802.11g, 802.15, Home RF
 - Even analog TV transmission, surveillance
 - Unlicensed metropolitan area networks
 - ...
- Levels of interference
 - Physical layer: interference acts like noise
 - Spread spectrum tries to minimize this
 - FEC/interleaving tries to correct
 - MAC layer: algorithms not harmonized
 - E.g., Bluetooth might confuse 802.11

►O

802.11 vs. Bluetooth

- Bluetooth may act like a rogue member of the 802.11 network
 - Does not know anything about gaps, inter frame spacing etc.

- IEEE 802.15-2 discusses these problems
 - Proposal: Adaptive Frequency Hopping
 - a non-collaborative Coexistence Mechanism
- Real effects? Many different opinions, publications, tests, formulae:
 - Results from complete breakdown to almost no effect
 - Bluetooth (FHSS) seems more robust than 802.11b (DSSS)

Distributed Computing Group Computer Networks R. Wattenhofer