Chapter 6
CONSENSUS

Distributed Computing Group

Computer Networks
Summer 2007
Sequential Computation

memory

object

thread

object
Concurrent Computation

threads

memory

object

object
Asynchrony

Sudden unpredictable delays
- Cache misses (*short*)
- Page faults (*long*)
- Scheduling quantum used up (*really long*)
Model Summary

- **Multiple threads**
 - Sometimes called *processes*
- Single shared *memory*
- *Objects* live in memory
- Unpredictable asynchronous delays
- *(Many similarities to message passing)*
The Two Generals

Red army wins
If both sides attack together
Communications

Red armies send messengers across valley
Communications

Messengers don't always make it
Your Mission

Design a protocol to ensure that red armies attack simultaneously
Theorem

There is no non-trivial protocol that ensures the red armies attacks simultaneously.
Proof Strategy

• Assume a protocol exists
• Reason about its properties
• Derive a contradiction
Proof

1. Consider the protocol that sends fewest messages
2. It still works if last message lost
3. So just don’t send it
 - Messengers’ union happy
4. But now we have a shorter protocol!
5. Contradicting #1
Fundamental Limitation

- Need an unbounded number of messages
- Or possible that no attack takes place
Consensus: Each Thread has a Private Input
They Communicate
They Agree on Some Thread’s Input
Consensus is important

• With consensus, you can implement anything you can imagine...

• Examples: with consensus you can decide on a leader, implement mutual exclusion, or solve the two generals problem
You gonna learn

• In some models, consensus is possible
• In some other models, it is not

• Goal of this and next lecture: to learn whether for a given model consensus is possible or not ... and prove it!
Consensus #1
shared memory

1. n processors, with n > 1
2. Processors can atomically read or write (not both) a shared memory cell
Protocol (Algorithm?)

- There is a designated memory cell c.
- Initially c is in a special state “?”
- Processor 1 writes its value v_1 into c, then decides on v_1.
- A processor j (j not 1) reads c until j reads something else than “?”, and then decides on that.
Unexpected Delay

Swapped out back at

Computer Networks Roger Wattenhofer 21
Heterogeneous Architectures

Pentium

Pentium

yawn

286
Fault-Tolerance
Consensus #2
wait-free shared memory

• n processors, with n > 1
• Processors can atomically read or write (not both) a shared memory cell
• Processors might crash (halt)
• Wait-free implementation... huh?
Wait-Free Implementation

- Every process (method call) completes in a finite number of steps
- Implies no mutual exclusion
- We assume that we have wait-free atomic registers (that is, reads and writes to same register do not overlap)
A wait-free algorithm...

- There is a cell c, initially $c=\text{"?"}$
- Every processor i does the following

 $r = \text{Read}(c)$

 if ($r = \text{"?"}$) then

 $\text{Write}(c, v_i); \text{decide } v_i$

 else

 $\text{decide } r$;
Is the algorithm correct?

cell c

32

17

32!

17!

32

17

time
Theorem:
No wait-free consensus
Proof Strategy

- Make it simple
 - $n = 2$, binary input
- Assume that there is a protocol
- Reason about the properties of any such protocol
- Derive a contradiction
Wait-Free Computation

- Either A or B “moves”
- Moving means
 - Register read
 - Register write
The Two-Move Tree

Initial state

Final states

Computer Networks Roger Wattenhofer
Bivalent: Both Possible

bivalent

Computer Networks

Roger Wattenhofer
Univalent: Single Value Possible

Computer Networks

Roger Wattenhofer

34
1-valent: Only 1 Possible
0-valent: Only 0 possible
Summary

• Wait-free computation is a tree
• Bivalent system states
 - Outcome not fixed
• Univalent states
 - Outcome is fixed
 - May not be “known” yet
 - 1-Valent and 0-Valent states
Claim

Some initial system state is bivalent

(The outcome is not always fixed from the start.)
A 0-Valent Initial State

• All executions lead to decision of 0
A 0-Valent Initial State

- Solo execution by A also decides 0
A 1-Valent Initial State

• All executions lead to decision of 1
A 1-Valent Initial State

- Solo execution by B also decides 1
A Univalent Initial State?

• Can all executions lead to the same decision?
State is Bivalent

- Solo execution by A must decide 0
- Solo execution by B must decide 1
Critical States

0-valent

1-valent

critical
Critical States

- Starting from a bivalent initial state
- The protocol can reach a critical state
 - Otherwise we could stay bivalent forever
 - And the protocol is not wait-free
From a Critical State

If A goes first, protocol decides 0

If B goes first, protocol decides 1
Model Dependency

- So far, memory-independent!
- True for
 - Registers
 - Message-passing
 - Carrier pigeons
 - Any kind of asynchronous computation
What are the Threads Doing?

- Reads and/or writes
- To same/different registers
Possible Interactions

<table>
<thead>
<tr>
<th></th>
<th>(x.\text{read}())</th>
<th>(y.\text{read}())</th>
<th>(x.\text{write}())</th>
<th>(y.\text{write}())</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x.\text{read}())</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(y.\text{read}())</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(x.\text{write}())</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(y.\text{write}())</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Reading Registers

A runs solo, decides 0

B reads x

A runs solo, decides 1

States look the same to A
Possible Interactions

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>x.write()</td>
<td>no</td>
<td>no</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>y.write()</td>
<td>no</td>
<td>no</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Writing Distinct Registers

A writes y

B writes x

The song remains the same
Possible Interactions

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>x.write()</td>
<td>no</td>
<td>no</td>
<td>?</td>
<td>no</td>
</tr>
<tr>
<td>y.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>?</td>
</tr>
</tbody>
</table>
Writing Same Registers

A writes x

B writes x

A runs solo, decides 0

A runs solo, decides 1

States look the same to A
That’s All, Folks!

<table>
<thead>
<tr>
<th></th>
<th>x.read()</th>
<th>y.read()</th>
<th>x.write()</th>
<th>y.write()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.read()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>x.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>y.write()</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Theorem

- It is impossible to solve consensus using read/write atomic registers
 - Assume protocol exists
 - It has a bivalent initial state
 - Must be able to reach a critical state
 - Case analysis of interactions
 - Reads vs others
 - Writes vs writes
What Does Consensus have to do with Distributed Systems?
We want to build a Concurrent FIFO Queue
With Multiple Dequeuers!
A Consensus Protocol

2-element array

FIFO Queue with red and black balls

Coveted red ball
Dreaded black ball
Protocol: Write Value to Array
Protocol: Take Next Item from Queue
Protocol: Take Next Item from Queue

I got the coveted red ball, so I will decide my value

I got the dreaded black ball, so I will decide the other’s value from the array
Why does this Work?

• If one thread gets the red ball
• Then the other gets the black ball
• Winner can take her own value
• Loser can find winner’s value in array
 - Because threads write array before dequeuing from queue
Implication

• We can solve 2-thread consensus using only
 - A two-dequeuer queue
 - Atomic registers
Implications

• Assume there exists
 - A queue implementation from atomic registers
• Given
 - A consensus protocol from queue and registers
• Substitution yields
 - A wait-free consensus protocol from atomic registers

contradiction
Corollary

• It is impossible to implement a two-dequeuer wait-free FIFO queue with read/write shared memory.

• This was a proof by reduction; important beyond NP-completeness...
Consensus #3
read-modify-write shared mem.

- n processors, with n > 1
- Wait-free implementation
- Processors can atomically read and write a shared memory cell in one atomic step: the value written can depend on the value read
- We call this a RMW register
Protocol

• There is a cell c, initially c="?"
• Every processor i does the following

\[
\text{RMW} (c), \text{ with} \\
\text{if (c == "?") then} \\
\text{Write}(c, v_i); \text{ decide } v_i; \\
\text{else} \\
\text{decide } c;
\]

atomic step
Discussion

• Protocol works correctly
 - One processor accesses c as the first; this processor will determine decision

• Protocol is wait-free

• RMW is quite a strong primitive
 - Can we achieve the same with a weaker primitive?
Read-Modify-Write
more formally

• **Method takes 2 arguments:**
 - Variable \(x \)
 - Function \(f \)

• **Method call:**
 - Returns value of \(x \)
 - Replaces \(x \) with \(f(x) \)
Consensus #4

Synchronous Systems

• In real systems, one can sometimes tell if a processor had crashed
 - Timeouts
 - Broken TCP connections

• Q: Can one solve consensus at least in synchronous systems with f failures?
• A: Yes, but f+1 rounds needed
Consensus #5
Byzantine Failures

Different processes receive different values
A Byzantine process can behave like a Crashed-failed process

Some messages may be lost
Consensus with Byzantine Failures

f-resilient consensus algorithm:

solves consensus for f failed processes

Q: Is this possible?
A: Yes, but $3f+1$ processes needed!
Atomic Broadcast

• One process wants to broadcast message to all other processes
• Either everybody should receive the (same) message, or nobody should receive the message
• Closely related to Consensus: First send the message to all, then agree!
Consensus #6
Randomization

• So far we looked at deterministic algorithms only. We have seen that there is no asynchronous algorithm.

• Can one solve consensus if we allow our algorithms to use randomization?
Yes, we can!

- We tolerate some processes to be faulty (at most f stop failures)

- General idea: Try to push your initial value; if other processes do not follow, try to push one of the suggested values randomly.
Summary

• We have solved consensus in a variety of models; particularly we have seen
 - algorithms
 - wrong algorithms
 - lower bounds
 - impossibility results
 - reductions
 - etc.