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Asynchrony

• Sudden unpredictable delays
– Cache misses (short)
– Page faults (long)
– Scheduling quantum used up (really long)
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Model Summary

• Multiple threads
– Sometimes called processes

• Single shared memory
• Objects live in memory
• Unpredictable asynchronous delays
• (Many similarities to message passing)
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The Two Generals

Red army wins
If both sides 

attack together
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Communications

Red armies send 
messengers across valley
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Communications

Messengers
don’t always make it
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Your Mission

Design a protocol to ensure 
that red armies attack 

simultaneously
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Theorem

There is no non-trivial 
protocol that ensures the red 
armies attacks simultaneously
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Proof Strategy

• Assume a protocol exists
• Reason about its properties
• Derive a contradiction
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Proof

1. Consider the protocol that sends 
fewest messages

2. It still works if last message lost
3. So just don’t send it

– Messengers’ union happy
4. But now we have a shorter protocol!
5. Contradicting #1
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Fundamental Limitation

• Need an unbounded number of 
messages

• Or possible that no attack takes 
place
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Consensus: Each Thread has a 
Private Input

32 19
21
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They Communicate
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They Agree on Some Thread’s 
Input

1919 19
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Consensus is important

• With consensus, you can implement 
anything you can imagine…

• Examples: with consensus you can 
decide on a leader, implement mutual 
exclusion, or solve the two generals 
problem
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You gonna learn

• In some models, consensus is possible
• In some other models, it is not

• Goal of this and next lecture: to learn 
whether for a given model consensus 
is possible or not … and prove it!
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Consensus #1
shared memory

• n processors, with n > 1
• Processors can atomically read or 

write (not both) a shared memory cell
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Protocol (Algorithm?)

• There is a designated memory cell c.
• Initially c is in a special state “?”
• Processor 1 writes its value v1 into c, 

then decides on v1.
• A processor j (j not 1) reads c until j 

reads something else than “?”, and 
then decides on that.
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Unexpected Delay

Swapped outback at

??? ???
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Heterogeneous Architectures 

??? ???

PentiumPentium
286

yawn

(1)
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Fault-Tolerance 

??? ???
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Consensus #2
wait-free shared memory

• n processors, with n > 1
• Processors can atomically read or 

write (not both) a shared memory cell
• Processors might crash (halt)
• Wait-free implementation… huh?
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Wait-Free Implementation

• Every process (method call) 
completes in a finite number of steps

• Implies no mutual exclusion
• We assume that we have wait-free 

atomic registers (that is, reads and 
writes to same register do not 
overlap)
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A wait-free algorithm…

• There is a cell c, initially c=“?”
• Every processor i does the following

r = Read(c);

if (r == “?”) then 

Write(c, vi); decide vi;

else 

decide r;
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Is the algorithm correct?

time

cell c32 17
?
?
?

32
1732! 17!
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Theorem:
No wait-free consensus

??? ???
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Proof Strategy

• Make it simple
– n = 2, binary input

• Assume that there is a protocol
• Reason about the properties of any 

such protocol
• Derive a contradiction
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Wait-Free Computation

• Either A or B “moves”
• Moving means

– Register read
– Register write

A moves B moves
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The Two-Move Tree
Initial 
state

Final 
states
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Decision Values

1 0 0 1 1 1
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Bivalent: Both Possible

1 1 1

bivalent

1 0 0
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Univalent: Single Value Possible

1 1 1

univalent

1 0 0



Computer Networks                   Roger Wattenhofer 35

1-valent: Only 1 Possible

0 1 1 1

1-valent

01
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0-valent: Only 0 possible

1 1 1

0-valent

1 0 0
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Summary

• Wait-free computation is a tree
• Bivalent system states

– Outcome not fixed
• Univalent states

– Outcome is fixed
– May not be “known” yet
– 1-Valent and 0-Valent states
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Claim

Some initial system state is bivalent

(The outcome is not always fixed from 
the start.)
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A 0-Valent Initial State

• All executions lead to decision of 0

0 0
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A 0-Valent Initial State

• Solo execution by A also decides 0

0
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A 1-Valent Initial State

• All executions lead to decision of 1

1 1
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A 1-Valent Initial State

• Solo execution by B also decides 1

1
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A Univalent Initial State?

• Can all executions lead to the same 
decision?

0 1
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State is Bivalent

• Solo execution by A
must decide 0

• Solo execution by B 
must decide 1

0 1
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0-valent

Critical States

1-valent

critical
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Critical States

• Starting from a bivalent initial state
• The protocol can reach a critical 

state
– Otherwise we could stay bivalent 

forever
– And the protocol is not wait-free
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From a Critical State

c

If A goes first, 
protocol decides 0

If B goes first, 
protocol decides 1

0-valent 1-valent
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Model Dependency

• So far, memory-independent!
• True for

– Registers
– Message-passing
– Carrier pigeons
– Any kind of asynchronous computation
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What are the Threads Doing?

• Reads and/or writes
• To same/different registers
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Possible Interactions

????y.write()

????x.write()

????y.read()

????x.read()

y.write()x.write()y.read()x.read()
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Reading Registers

A runs solo, 
decides 0

B reads x

1

0
A runs solo, 
decides 1

c

States look 
the same to A
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Possible Interactions

??nonoy.write()

??nonox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()
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Writing Distinct Registers

A writes y B writes x

10

c

The song remains the same

A writes yB writes x
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Possible Interactions

?nononoy.write()

no?nonox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()
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Writing Same Registers

States look 
the same to A

A writes x B writes x

1
A runs solo, 
decides 1

c

0

A runs solo, 
decides 0 A writes x
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That’s All, Folks!

nonononoy.write()

nonononox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()
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Theorem

• It is impossible to solve consensus 
using read/write atomic registers
– Assume protocol exists
– It has a bivalent initial state
– Must be able to reach a critical state
– Case analysis of interactions

• Reads vs others
• Writes vs writes
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What Does Consensus have to 
do with Distributed Systems?
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We want to build a 
Concurrent FIFO Queue
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With Multiple Dequeuers!
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A Consensus Protocol

2-element array

FIFO Queue 
with red and 
black balls

8

Coveted red ball Dreaded black ball
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Protocol: Write Value to Array

0 1
0

(3)
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0

Protocol: Take Next Item from 
Queue

0 1
8



Computer Networks                   Roger Wattenhofer 64

0 1

Protocol: Take Next Item from 
Queue

I got the 
coveted red ball, 
so I will decide 

my value

I got the dreaded 
black ball, so I will 
decide the other’s 
value from the 

array
8
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Why does this Work?

• If one thread gets the red ball
• Then the other gets the black ball
• Winner can take her own value
• Loser can find winner’s value in array

– Because threads write array
before dequeuing from queue
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Implication

• We can solve 2-thread consensus 
using only
– A two-dequeuer queue
– Atomic registers
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Implications

• Assume there exists
– A queue implementation from atomic registers

• Given
– A consensus protocol from queue and registers

• Substitution yields
– A wait-free consensus protocol from atomic 

registers

cont
radi

ction
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Corollary

• It is impossible to implement a two-
dequeuer wait-free FIFO queue with 
read/write shared memory.

• This was a proof by reduction; 
important beyond NP-completeness…
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Consensus #3
read-modify-write shared mem.
• n processors, with n > 1
• Wait-free implementation
• Processors can atomically read and

write a shared memory cell in one 
atomic step: the value written can 
depend on the value read

• We call this a RMW register
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Protocol

• There is a cell c, initially c=“?”
• Every processor i does the following

RMW(c), with

if (c == “?”) then 

Write(c, vi); decide vi;

else 

decide c;

atomic step
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Discussion

• Protocol works correctly
– One processor accesses c as the first; 

this processor will determine decision
• Protocol is wait-free
• RMW is quite a strong primitive

– Can we achieve the same with a weaker 
primitive?
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Read-Modify-Write 
more formally

• Method takes 2 arguments:
– Variable x
– Function f

• Method call:
– Returns value of x
– Replaces x with f(x)
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Consensus #4
Synchronous Systems

• In real systems, one can sometimes 
tell if a processor had crashed
– Timeouts
– Broken TCP connections

• Q: Can one solve consensus at least in 
synchronous systems with f failures?

• A: Yes, but f+1 rounds needed
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Consensus #5
Byzantine Failures

Faulty 
processor 1p

2p

3p

4p5p

a
b

ac

Different processes receive different values
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1p

2p

3p

4p5p

a

a

A Byzantine process can behave like a 
Crashed-failed process 

Some messages may be lost

Faulty 
processor
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Consensus with Byzantine 
Failures

solves consensus for f failed processes

Q: Is this possible?
A: Yes, but 3f+1 processes needed! 

f-resilient consensus algorithm:
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Atomic Broadcast

• One process wants to broadcast 
message to all other processes

• Either everybody should receive the 
(same) message, or nobody should 
receive the message

• Closely related to Consensus: First 
send the message to all, then agree!
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Consensus #6
Randomization

• So far we looked at deterministic 
algorithms only. We have seen that 
there is no asynchronous algorithm.

• Can one solve consensus if we allow 
our algorithms to use randomization?
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Yes, we can!

• We tolerate some processes to be 
faulty (at most f stop failures)

• General idea: Try to push your initial 
value; if other processes do not 
follow, try to push one of the 
suggested values randomly.
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Summary

• We have solved consensus in a variety 
of models; particularly we have seen 
– algorithms
– wrong algorithms
– lower bounds
– impossibility results
– reductions
– etc.


