
Chapter 6
CONSENSUS

Computer Networks
Summer 2007

Distributed
Computing

Group

Computer Networks Roger Wattenhofer 2

Sequential Computation

memory

object object

thread

Computer Networks Roger Wattenhofer 3

Concurrent Computation

memory

object object

th
re

ad
s

Computer Networks Roger Wattenhofer 4

Asynchrony

• Sudden unpredictable delays
– Cache misses (short)
– Page faults (long)
– Scheduling quantum used up (really long)

Computer Networks Roger Wattenhofer 5

Model Summary

• Multiple threads
– Sometimes called processes

• Single shared memory
• Objects live in memory
• Unpredictable asynchronous delays
• (Many similarities to message passing)

Computer Networks Roger Wattenhofer 6

The Two Generals

Red army wins
If both sides

attack together

Computer Networks Roger Wattenhofer 7

Communications

Red armies send
messengers across valley

Computer Networks Roger Wattenhofer 8

Communications

Messengers
don’t always make it

Computer Networks Roger Wattenhofer 9

Your Mission

Design a protocol to ensure
that red armies attack

simultaneously

Computer Networks Roger Wattenhofer 10

Theorem

There is no non-trivial
protocol that ensures the red
armies attacks simultaneously

Computer Networks Roger Wattenhofer 11

Proof Strategy

• Assume a protocol exists
• Reason about its properties
• Derive a contradiction

Computer Networks Roger Wattenhofer 12

Proof

1. Consider the protocol that sends
fewest messages

2. It still works if last message lost
3. So just don’t send it

– Messengers’ union happy
4. But now we have a shorter protocol!
5. Contradicting #1

Computer Networks Roger Wattenhofer 13

Fundamental Limitation

• Need an unbounded number of
messages

• Or possible that no attack takes
place

Computer Networks Roger Wattenhofer 14

Consensus: Each Thread has a
Private Input

32 19
21

Computer Networks Roger Wattenhofer 15

They Communicate

Computer Networks Roger Wattenhofer 16

They Agree on Some Thread’s
Input

1919 19

Computer Networks Roger Wattenhofer 17

Consensus is important

• With consensus, you can implement
anything you can imagine…

• Examples: with consensus you can
decide on a leader, implement mutual
exclusion, or solve the two generals
problem

Computer Networks Roger Wattenhofer 18

You gonna learn

• In some models, consensus is possible
• In some other models, it is not

• Goal of this and next lecture: to learn
whether for a given model consensus
is possible or not … and prove it!

Computer Networks Roger Wattenhofer 19

Consensus #1
shared memory

• n processors, with n > 1
• Processors can atomically read or

write (not both) a shared memory cell

Computer Networks Roger Wattenhofer 20

Protocol (Algorithm?)

• There is a designated memory cell c.
• Initially c is in a special state “?”
• Processor 1 writes its value v1 into c,

then decides on v1.
• A processor j (j not 1) reads c until j

reads something else than “?”, and
then decides on that.

Computer Networks Roger Wattenhofer 21

Unexpected Delay

Swapped outback at

??? ???

Computer Networks Roger Wattenhofer 22

Heterogeneous Architectures

??? ???

PentiumPentium
286

yawn

(1)

Computer Networks Roger Wattenhofer 23

Fault-Tolerance

??? ???

Computer Networks Roger Wattenhofer 24

Consensus #2
wait-free shared memory

• n processors, with n > 1
• Processors can atomically read or

write (not both) a shared memory cell
• Processors might crash (halt)
• Wait-free implementation… huh?

Computer Networks Roger Wattenhofer 25

Wait-Free Implementation

• Every process (method call)
completes in a finite number of steps

• Implies no mutual exclusion
• We assume that we have wait-free

atomic registers (that is, reads and
writes to same register do not
overlap)

Computer Networks Roger Wattenhofer 26

A wait-free algorithm…

• There is a cell c, initially c=“?”
• Every processor i does the following

r = Read(c);

if (r == “?”) then

Write(c, vi); decide vi;

else

decide r;

Computer Networks Roger Wattenhofer 27

Is the algorithm correct?

time

cell c32 17
?
?
?

32
1732! 17!

Computer Networks Roger Wattenhofer 28

Theorem:
No wait-free consensus

??? ???

Computer Networks Roger Wattenhofer 29

Proof Strategy

• Make it simple
– n = 2, binary input

• Assume that there is a protocol
• Reason about the properties of any

such protocol
• Derive a contradiction

Computer Networks Roger Wattenhofer 30

Wait-Free Computation

• Either A or B “moves”
• Moving means

– Register read
– Register write

A moves B moves

Computer Networks Roger Wattenhofer 31

The Two-Move Tree
Initial
state

Final
states

Computer Networks Roger Wattenhofer 32

Decision Values

1 0 0 1 1 1

Computer Networks Roger Wattenhofer 33

Bivalent: Both Possible

1 1 1

bivalent

1 0 0

Computer Networks Roger Wattenhofer 34

Univalent: Single Value Possible

1 1 1

univalent

1 0 0

Computer Networks Roger Wattenhofer 35

1-valent: Only 1 Possible

0 1 1 1

1-valent

01

Computer Networks Roger Wattenhofer 36

0-valent: Only 0 possible

1 1 1

0-valent

1 0 0

Computer Networks Roger Wattenhofer 37

Summary

• Wait-free computation is a tree
• Bivalent system states

– Outcome not fixed
• Univalent states

– Outcome is fixed
– May not be “known” yet
– 1-Valent and 0-Valent states

Computer Networks Roger Wattenhofer 38

Claim

Some initial system state is bivalent

(The outcome is not always fixed from
the start.)

Computer Networks Roger Wattenhofer 39

A 0-Valent Initial State

• All executions lead to decision of 0

0 0

Computer Networks Roger Wattenhofer 40

A 0-Valent Initial State

• Solo execution by A also decides 0

0

Computer Networks Roger Wattenhofer 41

A 1-Valent Initial State

• All executions lead to decision of 1

1 1

Computer Networks Roger Wattenhofer 42

A 1-Valent Initial State

• Solo execution by B also decides 1

1

Computer Networks Roger Wattenhofer 43

A Univalent Initial State?

• Can all executions lead to the same
decision?

0 1

Computer Networks Roger Wattenhofer 44

State is Bivalent

• Solo execution by A
must decide 0

• Solo execution by B
must decide 1

0 1

Computer Networks Roger Wattenhofer 45

0-valent

Critical States

1-valent

critical

Computer Networks Roger Wattenhofer 46

Critical States

• Starting from a bivalent initial state
• The protocol can reach a critical

state
– Otherwise we could stay bivalent

forever
– And the protocol is not wait-free

Computer Networks Roger Wattenhofer 47

From a Critical State

c

If A goes first,
protocol decides 0

If B goes first,
protocol decides 1

0-valent 1-valent

Computer Networks Roger Wattenhofer 48

Model Dependency

• So far, memory-independent!
• True for

– Registers
– Message-passing
– Carrier pigeons
– Any kind of asynchronous computation

Computer Networks Roger Wattenhofer 49

What are the Threads Doing?

• Reads and/or writes
• To same/different registers

Computer Networks Roger Wattenhofer 50

Possible Interactions

????y.write()

????x.write()

????y.read()

????x.read()

y.write()x.write()y.read()x.read()

Computer Networks Roger Wattenhofer 51

Reading Registers

A runs solo,
decides 0

B reads x

1

0
A runs solo,
decides 1

c

States look
the same to A

Computer Networks Roger Wattenhofer 52

Possible Interactions

??nonoy.write()

??nonox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()

Computer Networks Roger Wattenhofer 53

Writing Distinct Registers

A writes y B writes x

10

c

The song remains the same

A writes yB writes x

Computer Networks Roger Wattenhofer 54

Possible Interactions

?nononoy.write()

no?nonox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()

Computer Networks Roger Wattenhofer 55

Writing Same Registers

States look
the same to A

A writes x B writes x

1
A runs solo,
decides 1

c

0

A runs solo,
decides 0 A writes x

Computer Networks Roger Wattenhofer 56

That’s All, Folks!

nonononoy.write()

nonononox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()

Computer Networks Roger Wattenhofer 57

Theorem

• It is impossible to solve consensus
using read/write atomic registers
– Assume protocol exists
– It has a bivalent initial state
– Must be able to reach a critical state
– Case analysis of interactions

• Reads vs others
• Writes vs writes

Computer Networks Roger Wattenhofer 58

What Does Consensus have to
do with Distributed Systems?

Computer Networks Roger Wattenhofer 59

We want to build a
Concurrent FIFO Queue

Computer Networks Roger Wattenhofer 60

With Multiple Dequeuers!

Computer Networks Roger Wattenhofer 61

A Consensus Protocol

2-element array

FIFO Queue
with red and
black balls

8

Coveted red ball Dreaded black ball

Computer Networks Roger Wattenhofer 62

Protocol: Write Value to Array

0 1
0

(3)

Computer Networks Roger Wattenhofer 63

0

Protocol: Take Next Item from
Queue

0 1
8

Computer Networks Roger Wattenhofer 64

0 1

Protocol: Take Next Item from
Queue

I got the
coveted red ball,
so I will decide

my value

I got the dreaded
black ball, so I will
decide the other’s
value from the

array
8

Computer Networks Roger Wattenhofer 65

Why does this Work?

• If one thread gets the red ball
• Then the other gets the black ball
• Winner can take her own value
• Loser can find winner’s value in array

– Because threads write array
before dequeuing from queue

Computer Networks Roger Wattenhofer 66

Implication

• We can solve 2-thread consensus
using only
– A two-dequeuer queue
– Atomic registers

Computer Networks Roger Wattenhofer 67

Implications

• Assume there exists
– A queue implementation from atomic registers

• Given
– A consensus protocol from queue and registers

• Substitution yields
– A wait-free consensus protocol from atomic

registers

cont
radi

ction

Computer Networks Roger Wattenhofer 68

Corollary

• It is impossible to implement a two-
dequeuer wait-free FIFO queue with
read/write shared memory.

• This was a proof by reduction;
important beyond NP-completeness…

Computer Networks Roger Wattenhofer 69

Consensus #3
read-modify-write shared mem.
• n processors, with n > 1
• Wait-free implementation
• Processors can atomically read and

write a shared memory cell in one
atomic step: the value written can
depend on the value read

• We call this a RMW register

Computer Networks Roger Wattenhofer 70

Protocol

• There is a cell c, initially c=“?”
• Every processor i does the following

RMW(c), with

if (c == “?”) then

Write(c, vi); decide vi;

else

decide c;

atomic step

Computer Networks Roger Wattenhofer 71

Discussion

• Protocol works correctly
– One processor accesses c as the first;

this processor will determine decision
• Protocol is wait-free
• RMW is quite a strong primitive

– Can we achieve the same with a weaker
primitive?

Computer Networks Roger Wattenhofer 72

Read-Modify-Write
more formally

• Method takes 2 arguments:
– Variable x
– Function f

• Method call:
– Returns value of x
– Replaces x with f(x)

Computer Networks Roger Wattenhofer 73

Consensus #4
Synchronous Systems

• In real systems, one can sometimes
tell if a processor had crashed
– Timeouts
– Broken TCP connections

• Q: Can one solve consensus at least in
synchronous systems with f failures?

• A: Yes, but f+1 rounds needed

Computer Networks Roger Wattenhofer 74

Consensus #5
Byzantine Failures

Faulty
processor 1p

2p

3p

4p5p

a
b

ac

Different processes receive different values

Computer Networks Roger Wattenhofer 75

1p

2p

3p

4p5p

a

a

A Byzantine process can behave like a
Crashed-failed process

Some messages may be lost

Faulty
processor

Computer Networks Roger Wattenhofer 76

Consensus with Byzantine
Failures

solves consensus for f failed processes

Q: Is this possible?
A: Yes, but 3f+1 processes needed!

f-resilient consensus algorithm:

Computer Networks Roger Wattenhofer 77

Atomic Broadcast

• One process wants to broadcast
message to all other processes

• Either everybody should receive the
(same) message, or nobody should
receive the message

• Closely related to Consensus: First
send the message to all, then agree!

Computer Networks Roger Wattenhofer 78

Consensus #6
Randomization

• So far we looked at deterministic
algorithms only. We have seen that
there is no asynchronous algorithm.

• Can one solve consensus if we allow
our algorithms to use randomization?

Computer Networks Roger Wattenhofer 79

Yes, we can!

• We tolerate some processes to be
faulty (at most f stop failures)

• General idea: Try to push your initial
value; if other processes do not
follow, try to push one of the
suggested values randomly.

Computer Networks Roger Wattenhofer 80

Summary

• We have solved consensus in a variety
of models; particularly we have seen
– algorithms
– wrong algorithms
– lower bounds
– impossibility results
– reductions
– etc.

